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Appendices

In this section we prove Theorem 1 and Theorem 2.

A Preliminaries

A.1 Notation

We first introduce some relevant concepts from functional analysis. If E is Hilbert space we denote by h., .iE and
k.kE its corresponding inner product and norm, respectively. If E and F are two Hilbert spaces, we use k.k to
denote the operator norm kAk = supf :kfk1 kAfk, where A is an operator from E to F . We denote by A⇤ the
adjoint of A.

If E is separable with an orthonormal basis {ek}k, then k.k1 and k.k2 are the trace norm and Hilbert-Schmidt
norm on E and are given by:

kAk1 =
X

k

h(A⇤A)
1
2 ek, eki

kAk2 = kA⇤Ak1.

where A is an operator from E to E. �max(A) is used to denote the algebraically largest eigenvalue of A. For f in
E and g in F we denote by g⌦f the tensor product viewed as an application from E to F with (g⌦f)h = ghf, hiE
for all h in E. C1(Ω) denotes the space of continuously differentiable functions on Ω and Lr(Ω) the space of
r-power Lebesgues-integrable function. Finally for any vector � in R

nd, we use the notation �(a,i) = �(a�1)d+i for
a 2 [n] and i 2 [d].

A.2 Operator valued kernels and feature map derivatives

Let X and Y be two open subsets of Rp and R
d . HY is a reproducing kernel Hilbert space of functions f : Y ! R

with kernel kY . We denote by H a vector-valued reproducing kernel Hilbert space of functions T : x 7! Tx from
X to HY and we introduce the feature operator Γ : x 7! Γx from X to L(HY ,H) where L(HY ,H) is the set of
bounded operators from HY to H. For every x 2 X , Γx is an operator defined from HY to H.

The following reproducing properties will be used extensively:

• Reproducing property of the derivatives of a function in HY ( Steinwart et al., 2008, Lemma 4.34): provided
that the kernel kY is differentiable m-times with respect to each coordinate, then all f 2 HY are differentiable
for every multi-index ↵ 2 N

d
0 such that ↵  m, and

@↵f(y) = hf, @↵k(y, .)iHY
8y 2 Y,

where @↵ky(y, y
0

) = @αk(y,y
0

)
@αy

. In particular we will use the notation

@ik(y, y
0

) =
@k(y, y

0

)

@yi
, @i+dk(y, y

0

) =
@k(y, y

0

)

@y
0

i

.

• Reproducing property in the vector-valued space H: For any f 2 HY and any T 2 H we have the following:

hTx, fiHY
= hT,ΓxfiH

In particular for every y 2 Y we get:

hTx, k(y, ·)iHY
= hT,Γxk(y, ·)iH

Using now the reproducing property in HY we get:

T (x, y) := Tx(y) = hT,Γxk(y, ·)iH
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Kernel Conditional Exponential Family

A.3 The conditional infinite dimensional exponential family

Let q0 be a base density function of a probability distribution over Y and ⇡ a probability distribution over X . ⇡

and q0 are fixed and are assumed to be supported in the whole spaces X and Y, respectively.

We introduce the following functions Z : HY ! R
⇤
+, such that for every f 2 HY we have

Z(f) :=

Z

Y

exp (hf, k(y, .)iHY
)q0(dy).

We consider now the following family of operators

T = {T 2 H : Z(Tx) < 1, 8x 2 X}.

This allows to introduce the Kernel Conditional Exponential Family as the family of conditional distributions
satisfying

P =

⇢
pT (x|y) = q0(y)

e(hT,Γxk(y,·)iH)

Z(Tx)

����T 2 T

�
.

Given samples (Xi, Yi)
n
i=1 2 X ⇥ Y following a joint distribution p0 the goal is to approximate the conditional

density function p0(y|x) in the case where p0(y|x) 2 P (i.e. 9T0 2 T such that p0(y|x) = pT0(y|x) ). To this end,
we introduce the expected conditional score function between two conditional distributions p(.|x) and q(.|x) under
⇡,

J(p||q) =
1

2

Z

x

Z

y

dX

i=1

⇥
@i log p(y|x)� @i log q(y|x)

⇤2
p(dy|x)⇡(dx).

This function has the nice property that J(p||q) � 0 and that J(p||q) = 0 , q = p, which makes it a good
candidate as a loss function.

The marginal distribtion p0(x) doesn’t have to match ⇡(x) in general as long as they have the same support. For
purpose of simplicity we will assume that p0(x) = ⇡(x).

A.4 Assumptions

We make the following assumptions:

(A) (well specified) The true conditional density p0(y|x) = pT0(y|x) 2 P for some T0 in T .

(B) Y is a non-empty open subset of of the form R
d with a piecewise smooth boundary @Y := Y \ Y, where Y

denotes the closure of Y.

(C) kY is twice continuously differentiable on Y ⇥ Y and @↵,↵kY is continuously extensible to Y ⇥ Y for all
|↵|  2.

(D) For all x 2 X and all i 2 [d], as y approaches @Y : k@ik(y, ·)kYp0(y|x) = o(kyk1�d)

(E) The operator Γ is uniformly bounded for the operator norm kΓxkOp   for all x 2 X .

(F) (Integrability) for some ✏ � 1 and all i 2 [d]:

k@ik(y, ·)kY 2 L2✏(Y, p0), k@2
i k(y, ·)kY 2 L✏(Y, p0), k@ik(y, ·)kY@i log q0(y) 2 L✏(Y, p0).

B Theorems

In this section, we prove the main theorems of the document, by extending the proofs of Sriperumbudur et al., 2017
to the case of the vector-valued RKHS. We provide complete steps for all the proofs, including those that carry
over from the earlier work, to make the presentation self-contained; the reader may compare with (Sriperumbudur
et al., 2017, Section 8) to see the changes needed in the conditional setting.
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B.1 Score Matching

Theorem 3 (Score Matching). Under Assumptions (A) to (F), the following holds:

1. J(pT0 ||pT ) < +1 for all T 2 T

2. For all T 2 H define

J(T ) =
1

2
hT � T0, C(T � T0)iH, (6)

where

C :=

Z

X⇥Y

dX

i=1

⇥
Γx@ik(y, ·)⌦ Γx@ik(y, ·)

⇤

| {z }
Cx,y

p0(dx, dy) = Ep0
[CX,Y ]. (7)

then C a trace-class positive operator on H and for all T 2 T J(T ) = J(pT0
||PT ).

3. Alternatively,

J(T ) =
1

2
hT,CT iH + hT, ⇠iH + J(pT0 ||q0).

where

H 3 ⇠ :=

Z

X⇥Y

dX

i=1

Γx

⇥
@i log q0(y)@ik(y, ·) + @2

i k(y, ·)
⇤

| {z }
⇠x,y

p0(dx, dy) = Ep0 [⇠X,Y ]

Moreover, T0 satisfies CT0 = �⇠

4. For any � > 0, a unique minimizer T� of J�(T ) := J(T ) + �
2 kTk2H over H exists and is given by:

T� = �(C + �I)�1⇠ = (C + �I)�1CT0.

Proof. We prove the results in the same order as stated in the theorem:

1. By the reproducing property of the real valued space HY we have: T (x, y) = hTx, k(y, ·)iHY
. Using the

reproducing property for the derivatives of real valued functions in an RKHS in Lemma 3, we get

@iT (x, y) = @ihTx, k(y, ·)iHY
= hTx, @ik(y, ·)iHY

8i 2 [d].

Finally, using the reproducing property in the vector-valued space H,

@iT (x, y) = hT,Γx@ik(y, ·)iH, 8i 2 [d].

it is easy to see that

J(pT0 ||pT ) =
1

2

Z

X⇥Y

dX

i=1

hT0 � T,Γx@ik(y, .)i2Hp0(dx, dy). (8)

By Assumptions (E) and (F),

kΓx@ik(y, ·)kH  kΓxkOpk@ik(y, ·)kHY
 

p
@i@i+dk(y, y) 2 L2(p0),

and therefore by Cauchy-Schwarz inequality,

J(T ) = J(pT0 ||pT ) 
1

2
kT0 � Tk2H

Z

X⇥Y

dX

i=1

kΓx@ik(y, ·)k2Hp0(dx, dy) < +1.

which means that J(T ) < 1 for all T 2 T .

13



Kernel Conditional Exponential Family

2. Starting from (8), it is easy to see that:

J(T ) =
1

2

Z

X⇥Y

dX

i=1

hT0 � T,Γx@ik(y, ·)⌦ Γx@ik(y, ·)(T0 � T )iHp0(dx, dy)

=
1

2

Z

X⇥Y

hT0 � T,Cx,y(T0 � T )iHp0(dx, dy)

.

In the first line, we used the fact that ha, bi2H = ha, biHha, biH = ha, b ⌦ baiH for any a and b in a Hilbert
space H. By further observing that Cx,y and (T0 � T ) ⌦ (T0 � T ) are Hilbert-Schmidt operators as

kCx,ykHS  2
Pd

i=1 k@ik(y, ·)k < 1 by Lemma 1 and k(T0 � T )⌦ (T0 � T )kHS = k(T0 � T )k2H < 1 we get
that:

J(T ) =
1

2

Z

X⇥Y

h(T0 � T )⌦ (T0 � T ), Cx,yiHSp0(dx, dy)

Using Assumption (F) we have by Lemma 2 that Cx,y is p0-integrable in the Bochner sense (see Retherford,
1978) Definition 1) and that the inner product and integration may be interchanged:

J(T ) =
1

2

*
(T0 � T )⌦ (T0 � T ),

Z

X

Z

Y

Cx,yp0(dx, dy)

+

HS

=
1

2
hT0 � T,C(T0 � T )iH

3. From (6) we have J(T ) = 1
2 hT,CT iH�hT,CT0iH+ 1

2 hT0, CT0iH. Recalling that: @iT (x, y) = hT,Γx@ik(y, ·)iH
for all i 2 [d], and using @iT0(x, y) = @i log p0(y|x)� @i log q0(y|x) one gets:

hT,CT0iH =

Z

X⇥Y

h dX

i=1

@iT (x, y)@iT0(x, y)
i
p0(dx, dy)

=

Z

X⇥Y

h dX

i=1

@iT (x, y)@i log p0(y|x)
i
p0(dx)dy �

Z

X⇥Y

h dX

i=1

@iT (x, y)@i log q0(y|x)
i
p0(dx, dy)

(a)
=

Z

X

p0(dx)

Z

@Y

p0(y|x)ryT (x, y). ~dS �
Z

X⇥Y

h dX

i=1

@2
i T (x, y) + @iT (x, y)@i log q0(y|x)

i
p0(dx, dy).

(a) is obtained using the first Green’s identity, where @Y is the boundary of Y and ~dS is the oriented

surface element. The first term
R
X
⇡(dx)

R
@Y

p0(y|x)ryT (x, y). ~dS vanishes by Lemma 4, which relies on

Assumption (D). The second term can be written as:
R
X⇥Y

hT, ⇠x,yiHp0(dx, dy).

By Assumptions (E) and (F) ⇠x,y is Bochner p0-integrable, therefore:
Z

X⇥Y

hT, ⇠x,yiHp0(dx, dy) =
D
T,

Z

X⇥Y

⇠x,yp0(dx, dy)
E
H

= hT, ⇠iH.

Hence hT,CT0iH = �hT, ⇠iH and ⇠ = �CT0. Moreover, one can clearly see that:

hT0, CT0iH =

Z

X⇥Y

dX

i=1

(@iT0(x, y))
2p0(dx, dy) = J(pT0 ||q0).

And the result follows.

4. For � > 0, (C + �I) is invertible as C is a symmetric trace-class operator. Moreover, (C + �I)
1
2 is well

defined and one can easily see that:

J�(T ) =
1

2
k(C + �I)

1
2T + (C + �I)�

1
2 ⇠k2H � 1

2
h⇠, (C + �I)�1⇠iH + c0

with c0 = J(pT0 ||q0). J�(T ) is minimized if and only if (C + �I)
1
2T = (C + �I)�

1
2 ⇠ and therefore T =

(C + �I)�1⇠ is the unique minimizer of J�(T ).
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B.2 Estimator of T0

Given samples (Xa, Ya)
n
a=1 drawn i.i.d. from p0 and � > 0, we define the empirical score function as

Ĵ(T ) :=
1

2
hT, ĈT iH + hT, ⇠̂iH + J(pT0

||q0).

where:

Ĉ :=
1

n

nX

a=1

dX

i=1

ΓXa
@ik(Ya, ·)⌦ ΓXa

@ik(Ya, ·)

⇠̂ : =
1

n

nX

a=1

dX

i=1

ΓXa

⇥
@i log q0(Ya)@ik(Ya, ·),+@2

i k(Ya, ·)
⇤
.

are the empirical estimators of C and ⇠ respectively.

Theorem 4 (Estimator of T0). For and any � > 0, we have the following:

1. The unique minimizer T�,n of Ĵ�(T ) := Ĵ(T ) + �
2 kTk2H over H exists and is given by

T�,n = �(Ĉ + �I)�1⇠̂.

2. Moreover, T�,n is of the form

T�,n = � 1

�
⇠̂ +

nX

b=1

dX

i=1

�(b�1)d+iΓXb
@ik(Yb, ·),

where (�b) are obtained by solving the following linear system:

(G+ n�I)� =
h

�

with:

(G)(a�1)d+i,(b�1)d+j = hΓXa
@ik(Ya, .),ΓXb

@jk(Yb, .) iH.

and:

(h)(a�1)d+i = h⇠̂,ΓXa
@ik(Ya, .)iH.

Proof. 1. The same proof as in Theorem 3 holds with C and ⇠ replaced by Ĉ and ⇠̂.

2. We will use the general representer theorem stated in Lemma 6. We have that:

T�,n = arginf
T2H

1

2
hTĈT iH + hT, ⇠̂iH +

�

2
kTk2H

= arginf
T2H

1

2

nX

a=1

dX

i=1

hT,ΓXa
@ik(Ya, .)i2H + hT, ⇠̂iH +

�

2
kTk2H

= arginf
T2H

V (hT,�1iH, ..., hT,�nd+1iH) +
�

2
kTk2H.

Where V (✓1, ..., ✓nd+1) :=
1
2n

Pn

a=1

Pd

i=1 ✓
2
(a�1)d+i

+✓nd+1 is a convex differentiable function and �(a�1)d+i :=

ΓXa
@ik(Ya, .) where a 2 [n], i 2 [d] and �nd+1 = ⇠̂. Therefore, it follows from Lemma 6 that:

T�,n = �⇠̂ +
nX

a=1

dX

i=1

�(a�1)d+i�(a�1)d+i.
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where � and � satisfy:

�(�, �) +rV (K(�, �)) = 0

with K =

✓
G h

hT k⇠̂k2H

◆
.

The gradient rV of V is given by rV (z, t) = ( 1
n
z, 1). The above equation reduces then to �� + 1 = 0 and

�� + 1
n
G� + �

n
h = 0 which yields � = � 1

�
and ( 1

n
G+ �I)� = 1

n�
h.

B.3 Consistency and convergence

Theorem 5 (Consistency and convergence rates for T�,n). Let � > 0 be a positive number and define
↵ = max( 1

2(�+1) ,
1
4 ) 2 ( 14 ,

1
2 ), under Assumptions (A) to (F):

1. if T0 2 R(C) then kTn,� � T0k ! 0 when �
p
n ! 1, � ! 0 and n ! 1.

2. if T0 2 R(C�) for some � > 0 then kTn,� � T0k = Op0(n
� 1

2+↵) for � = n�↵

Proof. Recalling that T�,n = �(Ĉ + �I)�1⇠̂ We consider the following decomposition:

T�,n � T� = �(Ĉ + �I)�1(⇠̂ + (Ĉ + �I)T�)
(⇤)
= �(Ĉ + �I)�1(⇠̂ + ĈT� + C(T0 � T�))

= (Ĉ + �I)�1(C � Ĉ)(T� � T0)� (Ĉ + �I)�1(⇠̂ + ĈT0)

= (Ĉ + �I)�1(C � Ĉ)(T� � T0)� (Ĉ + �I)�1(⇠̂ � ⇠) + (Ĉ + �)�1(C � Ĉ)T0.

We used the fact that �T� = C(T0 � T�) in (⇤). Define now

S1 := k(Ĉ + �I)¯1(C � Ĉ)(T� � T0)kH
S2 := k(Ĉ + �I)�1(⇠̂ � ⇠)kH
S3 := k(Ĉ + �I)�1(C � Ĉ)T0kH

A0(�) := kT�,n � T0kH.

it comes then:

kT� � T0kH  kT�,n � T�kH + kT� � T0kH
 S1 + S2 + S2 +A0(�),

Using Lemma 10 we can bound S1, S2 and S3. Note that Cx,y as defined in (7) is a positive, self-adjoint trace-class
operator by Lemma 1 , we therefore have:

kCx,yk2HS =
dX

i,j=1

hΓx@ik(y, ·),Γx@jk(y, ·)i2H 
dX

i,j=1

kΓx@ik(y, ·)k2HkΓx@jk(y, ·)k2H

 (

dX

i=1

kΓx@ik(y, ·)k2H)2  d

dX

i=1

kΓx@ik(y, ·)k4H  d4
dX

i=1

k@ik(y, ·)k4HY
.

The last inequality is obtained using Assumption (E). Using now Assumption (F) for ✏ = 2 one can get:

Z

X⇥Y

kCx,yk2HSp0(dx, dy)  d4
dX

i=1

Z

X⇥Y

k@ik(y, ·)k4HY
p0(dx, dy) < +1.
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Lemma 10 can then be applied to get the following inequalities:

S1 k(Ĉ + �I)�1kk(C � Ĉ)(T� � T0)kH = Op0(
A(�)

�
p
n
)

S3 k(Ĉ + �I)�1kk(C � Ĉ)T0k = Op0
(

1

�
p
n
)kH

k(C + �I)�1k  1

�

To bound S2 we need to show that k⇠̂ � ⇠kH = Op0
(n� 1

2 ). The same argument as in Sriperumbudur et al., 2017
holds:

Ep0
k⇠̂ � ⇠k2H =

1

n

 Z

X⇥Y

k⇠x,yk2Hp0(dx, dy)� k⇠k2
!

 1

n

Z

X⇥Y

k⇠x,yk2Hp0(dx, dy)

By Assumption (F) for ✏ = 2 we have that
R
X⇥Y

k⇠x,yk2Hp0(dx,dy) < 1. One can therefore apply Chebychev
inequality to get the results. It comes that:

S2  k(Ĉ + �I)�1kk⇠̂ � ⇠kH = Op0(
1

�
p
n
)

Using the bounds on S1, S2 and S3 we get:

kT�,n � T0kH = Op0(
1

�
p
n
+

A0(�)

�
p
n

) +A0(�) (9)

1. By Lemma 9 we have A0(�) ! 0 as � ! 0 if T0 2 R(C). Therefore it follows from (9) that kT�,n � T0k ! 0
as � ! 0, �

p
n ! 1 and n ! 1.

2. We have by Lemma 9 that if T0 2 R(C�) for � > 0 then:

A0(�)  max{1, kCk��1}kC��T0kH�min{1,�}.

The result follows by choosing � = n
�max{ 1

4 ,
1

2(γ+1)
} = n�↵.

We denote by KL(pT0 ||pT ) the expected KL divergence between pT0 and pT under the marginal p0(x).

Theorem 6 (Consistency and convergence rates for pTλ,n
). Assuming Assumptions (A) to (F), and

kkk1 := supy2Y k(y, y) < 1 and that pT0
(y|x) is supported on Y for all x 2 X then the following holds:

1. KL(pT0
||pTλ,n

) ! 0 as �
p
n ! 1, � ! 0 and n ! 1.

2. If T0 2 R(C�) for some � > 0 then by defining ↵ = max( 1
2(�+1) ,

1
4 ) 2 ( 14 ,

1
2 ), and choosing � = n�↵ we have

that KL(p0||pTn,λ
) = Op0(n

�1+2↵)

Proof. By Lemma 8, we have that T = H and we can assume without loss of generality that T0 2 R(C). Using
Lemma 7 (also see van der Vaart et al., 2008 Lemma 3.1 ), one can see that for a given x :

KL(pT0(Y |x)||pTλ,n
(Y |x))  kT0(x)� T�,n(x)k21 exp kT0(x)� T�,n(x)k1(1 + kT0(x)� T�,n(x)k1) (10)

Moreover, using Assumption (E) and the fact that kkk1 < 1 one can see that
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|T0(x, y)� T�,n(x, y)|HY
= hT0 � T�,n,Γxk(y, ·)iH
 kT0 � T�,nkHkΓxk(y, ·)kH

which gives after taking the supremum:

kT0(x)� T�,n(x)k1  kkk1kT0 � T�,nkH (11)

for all x 2 X . Using (11) in (10) and taking the expectation with respect to x, one can conclude using Theorem 5.

C Auxiliary results

Lemma 1. Under Assumptions (C), (E) and (F) we have that:

1. Cx,y is a trace-class positive and symmetric operator for all (x, y) 2 X ⇥ Y

2. Cx,y is Bochner-integrable for all (x, y) 2 X ⇥ Y

3. C is a trace-class positive and symmetric operator

Proof. Recall that C =
R
X⇥Y

Cx,yp0(dx, dy) where Cx,y =
Pd

i=1 Γx@ik(y, ·)⌦ Γx@ik(y, ·) is a positive self-adjoint
operator. The trace norm of Cx,y satisfies:

kCx,yk1 
dX

i=1

kΓx@ik(y, ·)⌦ Γx@ik(y, ·)k1

=
dX

i=1

kΓx@ik(y, ·)k2H 
dX

i=1

kΓxk2Opk@ik(y, ·)k2HY

(a)

 2
dX

i=1

k@ik(y, ·)k2HY
< 1.

(a) comes from Assumption (E). This implies that Cx,y is trace-class. Moreover, by Assumption (F) for ✏ = 1 :
k@ik(y, ·)kHY

2 L2✏(Y, p0) which leads to:

Z

X⇥Y

kCx,yk1p0(dx, dy) < 1.

This means that Cx,y is p0-integrable in the Bochner sense ( Retherford, 1978, Definition 1 and Theorem 2 ) and
its integral C is trace-class with:

kCk1 =
���
Z

X⇥Y

Cx,yp0(dx, dy)
���
1

Z

X⇥Y

kCx,yk1p0(dx, dy) < 1.

Lemma 2. Let X be a topological space endowed with a probability distribution P. Let B be a separable Banach
space. Define R to be an B-valued measurable function on X in the Bochner sense ( Retherford, 1978 Definition
1 ), satisfying

R
X
kR(x)kBdP(x) < 1, then R is P-integrable in the Bochner sense (Retherford, 1978 Definition

1, Theorem 6) and for any continuous linear operator T from B to another Banach space A, then TR is also
P-integrable in the Bochner sense and:

Z

X

TR(x)dP(x) = T

Z

X

R(x)dP(x)
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For a proof of this result see Retherford, 1978, Definition 1, Therorem 6 and 7.

Lemma 3 (RKHS of differentiable kernels (Steinwart et al., 2008 Chap 4.4, Corollary 4.36)). Let
X 2 R

d be an open subset, m � 0, and k be an m-times continuously differentiable kernel on X with RKHS H.
Then every function f 2 H is m-times continuously differentiable, and for ↵ 2 N

d
0 with |↵|  m we have:

|@↵f(x)|  kfk2H(@↵,↵k(x, x))
1
2

@↵f(x) = hf, @↵k(x, ·)iH

A proof of this result can be found in Steinwart et al., 2008 (Chap 4.4, Corollary 4.36)

Lemma 4. Under Assumptions (B) to (D) we have the following:

Z

X

⇡(dx)

Z

@Y

p0(y|x)ryT (x, y). ~dS = 0 8T 2 T

where @Y is the boundary of Y and ~dS is an oriented surface element of @Y.

Proof. First let’s prove that kryT (x, y)kp0(y|x) = o(kyk1�d) for all x 2 X . Where the norm used is the euclidian
norm in R

d. Using the reproducing property and Cauchy-Schwarz inequality one can see that:

kryT (x, y)k2 =

dX

i=1

(@iT (x, y))
2 =

dX

i=1

hTx, @ik(y, .)i2

 kTxk2
⇣ dX

i=1

k@ik(y, .)k2
⌘

By Assumption (D), one can see that
qPd

i=1k@ik(y, .)k2p0(y|x) = o(kxk1�d), therefore it comes that

kryT (x, y)kp0(y|x) = o(kyk1�d). Using Lemma 5 one gets that
R
@Y

p0(y|x)ryT (x, y). ~dS = 0 for all x 2 X
which leads to the result.

Lemma 5. Let Ω be an open set in R
d with piece-wise smooth boundary @Ω. Let u be a real valued function

defined over Ω and v : Rd ! R
d a vector valued function. We assume that u and v are measurable and that

kv(x)k|u(x)| = o(kxk1�d). Then the following surface integral is null:

Z

@Ω

u(x)v(x). ~dS = 0

where ~dS is an element of the surface @Ω.

More details on this result can be found in Pietzsch, 1994

Lemma 6 (Generalized representer theorem). Let H be a vector-valued Hilbert space and let (�i)
m
i=1 2 Hm.

Suppose J : H ! R is such that J(T ) = V (hT,�1iH, ..., hT,�miH) for T 2 H, where V : Rm ! R is a convex and
gâteaux-differentiable function. Define:

T� = arginf
T2H

J(T ) +
�

2
kTk2H

where � > 0. Then there exists (↵i)
m
i=1 2 R

m such that T� =
Pm

i=1 ↵i�i where ↵ := (↵1, ...,↵m) satisfies the
following equation:

(�I + (rV ) �K)↵ = 0,

with (K)i,j = h�i,�jiH, ß 2 [m], j 2 [m]
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Proof. Define A : H ! R
m, T 7! (hT,�iiH)mi=1. Then T� = arginfT2H V (AT ) + �

2 kTk2H. Taking the gâteaux-
differential at T , the optimality condition yields:

0 = A⇤rV (AT�) + �T� , A⇤
⇣
� 1

�
rV (AT�)

⌘
= T�

, (9↵ 2 R
m)T� = A⇤↵,↵ = � 1

�
rV (AT�)

, (9↵ 2 R
m)T� = A⇤↵,↵ = � 1

�
rV (AA⇤↵)

where A⇤ : Rm ! H is the adjoint of A which can be obtained as follows. Note that:

(8T 2 H) (8↵ 2 R
m) hAT,↵i =

mX

i=1

↵ihT,�iH =
D
T,

mX

i=1

↵i�i

E
H

thus A⇤↵ =
Pm

i=1 ↵i�i. Therefore AA⇤↵ =
Pm

i=1 ↵jA�j =
Pm

j=1 ↵j(h�j ,�iiH) and hence AA⇤ = K.

Lemma 7 (Bound on KL divergence between pf and pg ( van der Vaart et al., 2008 Lemma 3.1 )). As-
sume that kkk1 < 1 and let f and g in HY such that Z(f) and Z(g) are finite, then: KL(pf ||qg) 
kf � gk21 exp kf � gk1(1 + kf � gk1)

Lemma 8 (see Lemma 14 in Sriperumbudur et al., 2017). Suppose supy2Y k(y, y) < 1 and supp(q0) = Y. Then

T = H and for any T0 there exists eTO 2 R(C) such that peT0
= p0.

Proof. Since kkk1 < 1 then Z(Tx)  exp kTxkkkk1 < 1 for all T 2 H, therefore T = H. Moreover, since
supp(pT0)(y|x) = Y for all x in X , this implies that the null space of C N (C) can either be the set of functions
T (x, y) = m(x) or {0}. Indeed, for T 2 N (C) we have hT,CT i = 0 which leads to

R
X⇥Y

kryTk22p0(dx,dy) = 0
which means that p0-almost surely, Tx(y) = m(x) a constant function of y if the set of constant functions belong to

HY , or Tx(y) = 0 otherwise. LetfT0 be the orthogonal projection of T0 onto R(C) = N (C)? then T0 can be written

in the form T0(x, y) = m(x) + eT0(x, y). It comes that
R
Y
expT0(x, y)q0(dy) = expm(x)

R
Y
exp eT0(x, y)q0(dy)

almost surely in x. And we finally get p0-almost surely:

pT0
(y|x) =

expT0(x, y)

Z(T0(x))
=

expT0(x, y) +m(x)

expm(x)Z(T0(x))
= pT0

(y|x)

Lemma 9 (Proposition A.3 in Sriperumbudur et al., 2017). Let C be a bounded, positive self-adjoint compact
operator on a separable Hilbert space H. For � > 0 and T 2 H, define T� := (C + �I)�1CT and A✓(�) :=
kC✓(T� � T )kH for ✓ � 0. Then the following hold.

1. For any ✓ > 0, A✓(�) ! 0 as � ! 0 and if T 2 R(C), then A0(�) ! 0 as � ! 0.

2. If T 2 R(C�) for � � 0 and � + ✓ > 0, then

A✓(�)  max{1, kCk�+✓�1}�min{1,�+✓}kC��TkH

Proof. 1. Since C is bounded, compact and positive self-adjoint, Hilbert-Shmidt and H is a separable Hilbert
space then C admits an Eigen-decomposition of the form C =

P
l ↵l�lh�liH where (↵l)l2N are positive

eigenvalues and (�l)l2N are the corresponding unit eigenvectors that form an ONB for R(C). Let ✓ = 0.
Since T 2 R(C),

A2
0(�) = k(C + �I)�1CT � Tk2H =

���
X

i

↵i

↵i + �
hT,�iiH�i �

X

i

hT,�iiH�i

���
2

H

=
���
X

i

�

↵i + �
hT,�iiH�i

���
2

H
=
X

i

⇣ �

↵i + �

⌘2
hT,�ii2H ! 0 as � ! 0
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by the dominated convergence theorem. For any ✓ > 0, we have:

A2
0(�) = kC✓(C + �I)�1CT � C✓Tk2H =

���
X

i

↵i

↵i + �
hT,�iiH�i �

X

i

hT,�iiH�i

���
2

H
.

Let T = TR + TN where TR 2 R(C✓), TN 2 R(C✓)
?

if 0 < ✓  1 and TN 2 R(C)
?

if ✓ � 1. Then

A2
0(�) = kC✓(C + �I)�1CT � C✓Tk2H = kC✓(C + �I)�1CTR � C✓TRk2H

=
���
X

i

↵1+✓
i

↵i + �
hTR,�iiH�i �

X

i

↵✓
i hTR,�iiH�i

���
2

H

=
���
X

i

�↵✓
i

↵i + �
hTR,�iiH�i

���
2

H
=
X

i

⇣ �↵✓
i

↵i + �

⌘2
hTR,�ii2H ! 0 as � ! 0

2. If T 2 R(C�), then there exists g 2 H such that T = C�g. This yields

A2
0(�) = kC✓(C + �I)�1CT � C✓Tk2H = kC✓(C + �I)�1C1+�g � C�+✓gk2H

=
���
X

i

�↵
�+✓
i

↵i + �
hg,�iiH�i

���
2

H
=
X

i

⇣�↵�+✓
i

↵i + �

⌘2
hg,�ii2H

Suppose 0 < � + ✓ < 1. Then

�↵
�+✓
i

↵i + �
=
⇣ ↵i

↵i + �

⌘�+✓⇣ �

↵i + �

⌘1���✓

��+✓  ��+✓

On the other hand, for � + ✓ � 1, we have:

�↵
�+✓
i

↵i + �
=
⇣ ↵i

↵i + �

⌘
↵
�+✓�1
i �  kk�+✓�1�.

Using the above bounds yields the result.

Lemma 10 (Proposition A.4 in Sriperumbudur et al., 2017). Let X be a topological space, H be a separable Hilbert
space and L+

2 (H) be the space of positive, self-adjoint Hilbert-Schmidt operators on H. Define R :=
R
X
r(x)dP(x)

and R̂ := 1
n

Pm

a=1 r(Xa) where P 2 M1
+(X ) is a positive measure with finite mean, (Xa)

m
a=1 ⇠ P and r is an

L+
2 (H)-valued measurable function on X satisfying

R
X
kr(x)k2HSdP(x) < 1. Define g� := (R + �I)�1Rg for

g 2 H, � > 0 and A0(�) := kg� � gkH. Let ↵ � 0 and ✓ � 0. Then the following hold:

1. k(R̂�R)(g� � g)kH = OP(
A0(�)p

m
)

2. kR↵(R+ �I)�✓k  �↵�✓.

3. kR̂↵(R̂+ �I)�✓k  �↵�✓.

4. k(R+ �I)�✓(R̂�R)k = OP(
1p

m�2θ
).

Proof. 1. Not that for any f 2 H,

EPk(R̂�R)fk2H = EPkR̂fk2H + kRfk2H � 2EPhR̂f, RfiH

where EPhR̂f, RfiH = 1
n

Pn

a=1 EPhr(Xa)f,Rf)iH = 1
n

Pn

a=1 EPhr(Xa), f ⌦ RfiHS . SinceR
X
kr(x)k2HSdP(x) < 1, r(x) is P-integrable in the Bochner sense (see Retherford, 1978 ), and therefore it

follows EPhr(Xa), f ⌦RfiHS = h
R
X
r(x)dP(x), f ⌦RfiHS = kRfk2HS . Therefore,

EPk(R̂�R)fk2H = EPkR̂fk2H � kRfk2H
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where

EPk
1

m

mX

a=1

r(Xa)fk2H =
1

m2

mX

a,b=1

EPhr(XA)f, r(Xb)fiH.

Splitting the sum into two parts (one with a = b and the other with a 6= b), it is easy to verify that
EPkR̂fk2H = 1

m

R
X
kr(x)fk2HdP(x) + m�1

m
kRfk2H, therefore yielding

EPk(R̂�R)fk2H =
1

m

⇣Z

X

kr(x)fk2HdP(x)� kRfk2H
⌘
 1

m

Z

X

kr(x)fk2HdP(x))

 kfk2H
m

Z

X

kr(x)k2HSdP(x)

Using f = g� � g, an application of Chebyshev’s inequality yields the result.

2. kR↵(R + �I)�✓k = supi
�α
i

(�i+�)θ
= supi

⇥
( �i

�i+�
)↵ 1

(�i+�)θ�α

⇤
 supi

1
(�i+�)θ�α  �↵�✓, where (�i)i2n are the

eigenvalues of R.

3. Same as above, after replacing (�i)i2N by the eigenvalues of R̂

4. Since k(R+ �I)�✓(R̂�R)k  k(R+ �I)�✓(R̂�R)k2HS , consider EPk(R+ �I)�✓(R̂�R)k2HS , which using
the technique in the proof of (1), can be shown to be bounded as

EPk(R+ �I)�✓(R̂�R)k2HS  1

m

Z

X

k(R+ �I)�✓r(x)k2HSdP(x) (12)

Note that

k(R+ �I)�✓r(x)k2HS = hR+ �I)�✓r(x), R+ �I)�✓r(x)iHS

= k(R+ �I)�2✓kTr(r(x)r(x)) = k(R+ �I)�2✓kkr(x)k2HS

 ��2✓kr(x)k2HS (13)

where the inequality follows from (3). Using (12) and (13), we obtain

EPk(R+ �I)�✓r(x)k2HS  1

m�2✓

Z

X

k(R+ �I)�✓r(x)k2HSdP(x)

The result follows by an application of Chebyshev’s inequality.

D Failure case for the score-matching approach

We first recall the expressions of the score and expected conditional score for convenience. If r and s are two
densities that are differentiable and positive, then the score objective as introduced in Hyvärinen et al., 2005 is
given by:

J (r||s) :=
1

2

Z

X

r(x)krx log r(x)�rx log s(x)k2dx (14)

If p0(y|x) and q(y|x) are two conditional densities, then the expected conditional score under some marginal
distribution ⇡(x) is given by:

J(p0|q) =

Z

X

J (p0(.|x)q(.|x))⇡(x)dx (15)
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Figure 3: A Failure case for the expected conditional score-matching. Here a conditional density of the form
p0(y|x) = pA(y)H(x)+(1�H(x))pB(y) is considered, where pA and pB are supported on two disjoint sets A ⇢ R

⇤
�

and B ⇢ R
⇤
+ and H denotes the Heaviside step function. The red curve and blue curve represent p0(y|x > 0) = pA

and and p0(y|x <= 0) = pB respectively, while the green curve represent the mixture q(y) = 1
2 (pA(y) + pB(y)).

This is a case where the expected conditional score fails to separate the two conditional distributions p0(y|x) and
q(y).

The positivity condition of the target density r is crucial to get a well-behaved divergence between r and s in
(14). When this condition fails, the score becomes degenerate. For instance, if r is supported on two disjoint sets
A and B of X it can be written in the form:

r(x) = ↵ApA(x) + ↵BpB(x)

where ↵A and ↵B are non-negative and sum to 1, and pA and pB are two distributions supported on A and B

respectively. In this case, any mixture s(x) = �ApA(x) + �BpB(x) satisfies J(r||s) = 0.

Similarly, for the conditional expected score in (15) to be well behaved, the conditional density p0(y|x) needs
to be positive on Y for all x in X . When this condition fails to hold, the same degeneracy happens. Indeed, as
shown in Figure 3, consider p0 of the form:

p0(y|x) = pA(y)H(x) + (1�H(x))pB(y)

where pA and pB are supported on two disjoint sets A and B respectively and H denotes the Heaviside step
function. For this choice of p0 any mixture q(y) = �ApA(y) + �BpB(y) of pA and pB satisfies J(p0||q) = 0. This
is because their scores match exactly: ry log p0(y|x) = ry log q(y) whenever p0(y|x) > 0. Note that in this case q

doesn’t depend on x, which means that this approach might learn a model where x and y are independent while
a simple investigation of the joint samples (Xi, Yi) would suggest the opposite.

E Additional experimental results

Additional experimental results are shown in Figure 4 on the Red Wine and Parkinsons datasets.

Experimental results on the synthetic grid dataset are shown in Figure 5 in the case where an isotropic RBF
kernel is used.
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Figure 4: Scatter plot of 2-d slices of red wine and parkinsons data sets, the dimensions are (x6, x7) for red
wine and (x15, x16) for parkinsons. The black points represent 1000 data points from the data sets. In red, 1000
samples from each of the three models KEF, KCEF and NADE.
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Figure 5: Experimental comparison of proposed method KCEF and other methods ( LSCDE and NADE ) on
synthetic grid dataset. log-likelihood per dimension vs dimension, N = 2000. The log-likelihood is evaluated on a
separate test set of size 2000.
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