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Abstract

Computing the medoid of a large number
of points in high-dimensional space is an in-
creasingly common operation in many data
science problems. We present an algorithm
Med-dit to compute the medoid with high
probability, which uses O(n log n) distance
evaluations. Med-dit is based on a connec-
tion with the multi-armed bandit problem.
We evaluate the performance of Med-dit em-
pirically on the Netflix-prize and single-cell
RNA-Seq datasets, containing hundreds of
thousands of points living in tens of thou-
sands of dimensions, and observe a 5-10x
improvement in performance over the cur-
rent state of the art. We have released the
code of Med-dit and our empirical results at
https://github.com/bagavi/Meddit

1 INTRODUCTION

An important building block in many modern data
analysis problems such as clustering is the e�cient
computation of a representative point for a large set of
points in high dimension. A commonly used represen-
tative point is the centroid of the set, the point which
has the smallest average distance from all other points
in the set. For example, k-means clustering [Stein-
haus, 1956, MacQueen et al., 1967, Lloyd, 1982] com-
putes the centroid of each cluster under the squared
Euclidean distance. In this case, the centroid is the
arithmetic mean of the points in the cluster, which
can be computed very e�ciently. E�cient computa-
tion of centroid is central to the success of k-means,
as this computation has to be repeated many times in
the clustering process.

While commonly used, centroid su↵ers from several
drawbacks. First, the centroid is in general not a point
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in the dataset and thus may not be interpretable in
many applications. This is especially true when the
data is structured like in images, or when it is sparse
like in recommendation systems [Leskovec et al., 2014].
Second, the centroid is sensitive to outliers: several far
away points will significantly a↵ect the location of the
centroid. Third, while the centroid can be e�ciently
computed under squared Euclidean distance, there are
many applications where using this distance measure
is not suitable. Some examples would be applications
where the data is categorical like medical records [Sud-
low et al., 2015]; or situations where the data points
have di↵erent support sizes such as in recommendation
systems [Leskovec et al., 2014]; or cases where the data
points are on a high-dimensional probability simplex
like in single cell RNA-Seq analysis [Ntranos et al.,
2016]; or cases where the data lives in a space with no
well known Euclidean space like while clustering on
graphs from social networks.

An alternative to the centroid is the medoid; this is
the point in the set that minimizes the average dis-
tance to all the other points. It is used for example in
k-medoids clustering [Kaufman and Rousseeuw, 1987].
On the real line, the medoid is the median of the set of
points. The medoid overcomes the first two drawbacks
of the centroid: the medoid is by definition one of the
points in the dataset, and it is less sensitive to outliers
than the centroid. In addition, centroid algorithms are
usually specific to the distance used to define the cen-
troid. On the other hand, medoid algorithms usually
work for arbitrary distances.

The naive method to compute the medoid would re-
quire computing all pairwise distances between points
in the set. For a set with n points, this would re-
quire the computation of

�n
2

�
distances, which would

be computationally prohibitive when there are hun-
dreds of thousands of points and each point lives in a
space with dimensions in tens of thousands.

In the one-dimensional case, the medoid problem re-
duces to the problem of finding the median, which can
be solved in linear time through Quick-select [Hoare,
1961]. However, in higher dimensions, no linear-time
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algorithm is known. RAND [Eppstein and Wang, 2006]
is an algorithm that estimates the average distance
of each point to all the other points by sampling a
random subset of other points. It takes a total of

O

⇣
n logn

✏2

⌘
distance computations to approximate the

medoid within a factor of (1 + ✏�) with high prob-
ability, where � is the maximum distance between
two points in the dataset. We remark that this is an
approximation algorithm, and moreover � may not
be known apriori. RAND was leveraged by TOPRANK
[Okamoto et al., 2008] which uses the estimates ob-
tained by RAND to focus on a small subset of candidate
points, evaluates the average distance of these points
exactly, and picks the minimum of those. TOPRANK

needs O(n
5
3 log

4
3 n) distance computations to find the

exact medoid with high probability under a distribu-
tional assumption on the average distances. trimed
[Newling and Fleuret, 2017] presents a clever algorithm
to find the medoid with O(n

3
2 2⇥(d)) distance evalua-

tions, which works very well when the points live in a
space of dimensions less than 20 (i.e., 2d ⌧

p
n) under

a distributional assumption on the points (in particu-
lar on the distribution of points around the medoid).
However, the exponential dependence on dimension
makes it impractical when d � 50, which is the case
we consider here. Note that their result requires the
distance measure to satisfy the triangle inequality.

In this paper, we present Med(oid)-(Ban)dit, a
sampling-based algorithm that finds the exact medoid
with high probability. It takes O(n log n) distance
evaluations under natural distributional assumptions
on the distances, which are justified by the character-
istics observed in real data (Section 2). In contrast to
trimed, the number of distance computations is in-
dependent of the dimension d; moreover, there is no
specific requirement for the distance measure, e.g. the
triangle inequality or the symmetry. Thus, Med-dit
is particularly suitable for high-dimensional data and
general distance measures.

In Figure 1, we showcase the performance of RAND and
Med-dit on the largest cluster of the single cell RNA-
Seq gene expression dataset of 10xGenomics [2017].
This consists of 27, 998 gene-expressions of each of
109, 140 cells, i.e 109, 140 points in 27, 998 dimensions.
We note that Med-dit evaluates around 10 times fewer
distances than RAND to achieve similar performance.
At this scale running TOPRANK and trimed is compu-
tationally prohibitive.

The main idea behind Med-dit is noting that the prob-
lem of computing the medoid can be posed as that
of computing the best arm in a multi-armed bandit

1The computation of the true medoid here is also com-
putationally prohibitive and is discussed in Section 4.

Figure 1: Large single cell dataset: We plot the prob-
ability that RAND and Med-dit do not return the true
medoid as a function of the number of distance evalu-
ations per point over 1000 monte-carlo trials. We note
that Med-dit needs much fewer distance evaluations
than RAND for comparable performance.1

(MAB) setting [Even-Dar et al., 2002, Jamieson and
Nowak, 2014, Lai and Robbins, 1985]. One views
each point in the medoid problem as an arm whose
unknown parameter is its average distance to all the
other points. Pulling an arm corresponds to evaluating
the distance of that point to a randomly chosen point,
which provides an estimate of the arm’s unknown pa-
rameter. We leverage the extensive literature on multi-
armed bandits to propose Med-dit, which is a variant
of the Upper Confidence Bound (UCB) Algorithm [Lai
and Robbins, 1985].

Like the other sampling based algorithms RAND and
TOPRANK, Med-dit also aims to estimate the average
distance of every point to the other points by evalu-
ating its distance to a random subset of points. How-
ever, unlike these algorithms where each point receives
a fixed amount of sampling decided apriori, the sam-
pling in Med-dit is done adaptively. More specifically,
Med-dit maintains confidence intervals for the average
distances of all points and adaptively evaluates dis-
tances of only those points which could potentially be
the medoid. Loosely speaking, points whose lower con-
fidence bounds on the average distance are small form
the set of points that could potentially be the medoid.
As the algorithm proceeds, additional distance evalu-
ations narrow the confidence intervals. This rapidly
shrinks the set of points that could potentially be the
medoid, enabling the algorithm to declare a medoid
while evaluating a few distances.
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We mention that multi-armed bandits have been used
to obtain randomised algorithms to reduce computa-
tional costs in problems with no inherent stochastic-
ity before; for instance in the context of searching
large state-spaces in Markovian Decision Problems like
the Monte-Carlo tree search of Kocsis and Szepesvári
[2006].

In Section 2 we delve more into the problem formula-
tion and assumptions. In Section 3 we present Med-dit
and analyze its performance. We extensively validate
the performance of Med-dit empirically on two large-
scale datasets: a single cell RNA-Seq gene expression
dataset of 10xGenomics [2017], and the Netflix-prize
dataset of Bennett et al. [2007] in Section 4.

2 PROBLEM FORMULATION

Consider n points x1, x2, · · · , xn lying in some space U
equipped with the distance function d : U ⇥ U 7! R+.
Note that we do not assume the triangle inequality or
the symmetry for the distance function d. Therefore
the analysis here encompasses directed graphs, or dis-
tances like Bregman divergence and squared Euclidean
distance. We use the standard notation of [n] to refer
to the set {1, 2, · · · , n}. Let di,j , d(xi, xj) and let
the average distance of a point xi be

µi ,
1

n� 1

X

j2[n]�{i}

di,j .

The medoid problem can be defined as follows.

Definition 1. For a set of points X =
{x1, x2, · · · , xn}, the medoid is the point in X
with the smallest average distance to other points. 2

Let xi⇤ be the medoid. The index i
⇤ and the average

distance µ
⇤ of the medoid are given by

i
⇤ , argmin

i2[n]
µi, µ

⇤ , min
i2[n]

µi.

In the worst case over distances and points, we would
need to evaluate O(n2) distances to compute the
medoid. Consider the following example.

Example 1. Consider a setting where there are n

points. We pick a point i uniformly at random from
[n] and set all distances to point i to 0. For every
other point j 2 [n] � {i}, we pick a point k uniformly
at random from [n] � {i, j} and set dj,k = dk,j = n.
As a result, each point apart from i has a distance of
n to at least one point. Thus picking the point with
distance 0 would require at least O(n2) distance evalu-
ations. We note that this distance does not satisfy the
triangle inequality, and thus is not a metric.

2There may be multiple medoids in a set of points, but
we restrict ourselves to the case where the medoid is unique
in this manuscript for simplicity of exposition.

Figure 2: Histogram of `1 distance of 4 randomly
chosen points (from 20, 000 points). We note that the
standard deviations are around 0.05.

The issue with Example 1 is that, the empirical dis-
tributions of distances of any point (apart from the
true medoid) have heavy tails. However, such worse-
case instances rarely arise in practice. Consider the
following real-world example.

Example 2. We consider the `1 distance between each
pair of points in a cluster – 109, 140 points in 27, 998
dimensional probability simplex – taken from a sin-
gle cell RNA-Seq dataset from 10xGenomics [2017].
Empirically the `1 distance for a given point follows
a Gaussian-like distribution with a small variance,
as shown in Figure 2. Modelling distances among
high-dimensional points by a Gaussian distribution is
also discussed in Linderman and Steinerberger [2017].
Clearly the distances do not follow a heavy-tailed dis-
tribution like Example 1.

2.1 The Distance Sampling Model

Example 2 suggests that for any point xi, we can esti-
mate its average distance µi by the empirical mean
of its distance from a subset of randomly sampled
points. Let us formally state this. For any point xi,
let Di = {di,j , j 6= i} be the set of distances asso-
ciated with xi. Define the random distance samples
Di,(1), Di,(2), · · · , Di,(k) to be i.i.d. sampled with re-
placement from Di. We note that

E[Di,(j)] = µi, 8i 2 [n], j 2 [k].

Hence the average distance µi can be estimated as

µ̂i =
1

k

kX

i=1

Di,(k).
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To capture the concentration property illustrated in
Example 2, we assume the random variables Di,(j),
i.e. sampling with replacement from Di, are �-sub-
Gaussian 3 for all i. While Di,(j) are trivially sub-
gaussian because they are samples drawn from a fi-
nite set, we note that sub-Gaussianity parameter here
would be

�
0
i =

1

2
(maxDi �minDi) .

Note that �0
i could potentially scale with n. In fact in

Example 1 it scales as ⇥(n). However, we get around
this by assuming that Di,(j) are �-sub-Gaussian for
some constant � independent of n. We justify this
by empirical observations on datasets such as that of
Example 2. Further note that while practically im-
plementing the algorithm, estimating �

0
i would require

us to estimate the maximum distance of the ensem-
ble. This problem seems to be as hard as the medoid
problem.

2.2 Connection with Best-Arm Problem

For points whose average distance is close to that of
the medoid, we need an accurate estimate of their av-
erage distance, and for points whose average distance
is far away, coarse estimates su�ce. Thus the problem
reduces to adaptively choosing the number of distance
evaluations for each point to ensure that on one hand,
we have a good enough estimate of the average dis-
tance to compute the true medoid, while on the other
hand, we minimise the total number of distance eval-
uations.

This problem has been addressed as the best-arm iden-
tification problem in the multi-armed bandit (MAB)
literature (see the review article of Jamieson and
Nowak [2014] for instance). In a typical setting, we
have n arms. At the time t = 0, 1, · · · , we decide to
pull an arm At 2 [n], and receive a reward Rt with
E[Rt] = µAt . The goal is to identify the arm with the
largest expected reward with high probability while
pulling as few arms as possible.

The medoid problem can be formulated as a best-arm
problem as follows: Let each point in the ensemble be
an arm and let the average distance µi be the loss of
the i-th arm. Medoid corresponds to the arm with
the smallest loss, i.e best-arm. At each iteration t,
pulling arm i is equivalent of sampling (with replace-
ment) from Di with expected value µi. As stated pre-
viosuly, the goal is to find the best arm (medoid) with
as few pulls (distance computations) as possible.

3X is a �-sub-Gaussian if P (X > t)  2e�
t2

�2 .

3 ALGORITHM

We have n points x1, · · · , xn. Recall that the average
distance for point i is µi =

1
n�1

P
j 6=i di,j . At iteration

t of the algorithm, we evaluate a distance Dt to point
At 2 [n]. Let Ti(t) be the number of distances of
point i evaluated up to time t. We use a variant of
the Upper Confidence Bound (UCB) [Lai and Robbins,
1985] algorithm to sample distance of a point i with
another point chosen uniformly at random.

We compute the empirical mean and use it as an esti-
mate of µi at time t, in the initial stages of the algo-
rithm. More concretely when Ti(t) < n,

µ̂i(t) ,
1

Ti(t)

X

1⌧t,A⌧=i

D⌧ .

Next we recall from Section 2 that the sampled dis-
tances are independent and �-sub-Gaussian (as points
are sampled with replacement). Thus for all i, for
all � 2 (0, 1), with probability at least 1 � �, µi 2
[µ̂i(t)� Ci(t), µ̂i(t) + Ci(t)], where

Ci(t) =

s
2�2 log 2

�

Ti(t)
. (1)

When Ti(t) � n, we compute the exact average dis-
tance of point i and set the confidence interval to zero.

Algorithm 1 describes the Med-dit algorithm.

Theorem 1. For i 2 [n], let �i = µi � µ
⇤. If we pick

� = 2
n3 in Algorithm 1, then with probability 1� o(1),

it returns the true medoid with the number of distance
evaluations M such that,

M 
X

i2[n]


2n ^

✓
24�2

�2
i

log n

◆�
. (2)

Note that the term in the sum corresponding to i
⇤ is

2n even though �i⇤ is zero and that x^y = min(x, y).

The proof of theorem 1 is a simple adapatation of the
fairly standard proof of the number of pulls needed by
the UCB algorithm and is thus relegated to Appendix
3. We assume that � is known in the proof, whereas
we estimate them in the empirical evaluations. See
Section 4 for details.

If �i
� is ⇥(1), then Theorem 1 gives that Med-dit

takes O(n log n) distance evaluations. In addition, if
one assumed a Gaussian prior on the average distance
of points (as one would expect from Figure 3), then
Med-dit would also take O(n log n) distance evalua-
tions in expectation over the prior. See Appendix 2.

If we use the same assumption as TOP-RANK, i.e. the
µi are i.i.d. Uniform [c0, c1], then the number of dis-

tance evaluations needed by Med-dit is O(n
3
2 log

1
2 n),
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Algorithm 1 Med-dit

1: Evaluate distances of each point to a randomly
chosen point and build a (1��)-confidence interval
for the mean distance of each point i: [µ̂i(1) �
Ci(1), µ̂i(1) + Ci(1)].

2: while true do

3: At iteration t, pick point At that minimises
µ̂i(t� 1)� Ci(t� 1).

4: if distances of point At are evaluated less than
n� 1 times then

5: evaluate the distance of At to a randomly
picked point and update the confidence inter-
val of At.

6: else

7: Set µ̂i(t) to be the empirical mean of distances
of point At by computing its distance to all
(n� 1) other points and set CAt(t) = 0.

8: end if

9: if there exists a point xi⇤ such that 8i 6= i
⇤,

µ̂i⇤(t) + Ci⇤(t) < µ̂i(t)� Ci(t) then
10: return xi⇤ .
11: end if

12: end while

compared to O(n
5
3 log

4
3 n) for TOP-RANK. Under these

assumptions RAND takes O(n2) distance evaluations to
return the true medoid.

Remark 1. With a small modification to Med-dit,
the sub-Gaussian assumption in Section 2 can be fur-
ther relaxed to a finite variance assumption [Bubeck
et al., 2013]. One the other hand, one could theoret-
ically adapt Med-dit to other best-arm algorithms to
find the medoid with O(n log log n) distance computa-
tions at the sacrifice of a large constant [Karnin et al.,
2013]. Refer to Appendix 4 for details.

4 EMPIRICAL RESULTS

We empirically evaluate the performance of Med-dit
on two real-world large-scale high-dimensional
datasets: the Netflix-prize dataset by Bennett
et al. [2007], and 10x Single Cell RNA-Seq dataset
[10xGenomics, 2017].

We picked these large datasets because they have
sparse high-dimensional feature vectors, and are at the
throes of active e↵orts to cluster using non-Euclidean
distances. In both these datasets, we use 1000 ran-
domly chosen points to estimate the sub-Gaussianity
parameter by cross-validation. We set � = 1e-3.

Running trimed and TOPRANK was computationally
prohibitive due to the large size and high dimension-
ality (⇠ 20, 000) of the above two datasets. There-
fore, we compare Med-dit only to RAND. We also ran

Figure 3: The distribution of mean distances of all the
points in the 20, 000-cell RNA-Seq dataset.

Med-dit on datasets tested in Newling and Fleuret
[2017] to compare it to trimed and TOPRANK.

4.1 Single Cell RNA-Seq

Rapid advances in sequencing technology has enabled
us to sequence DNA/RNA at a cell-by-cell basis and
the single cell RNA-Seq datasets can contain up to a
million cells [10xGenomics, 2017, Klein et al., 2015,
Macosko et al., 2015, Zheng et al., 2017].

This technology involves sequencing an ensemble of
single cells from a tissue, and obtaining the gene ex-
pressions corresponding to each cell. These gene ex-
pressions are subsequently used to cluster these cells in
order to discover subclasses of cells which would have
been hard to physically isolate and study separately.
This technology therefore allows biologists to infer the
diversity in a given tissue.

We note that tens of thousands gene expressions are
measured in each cell, and million of cells are se-
quenced in each dataset. Therefore single cell RNA-
Seq has presented us with a very important large-scale
clustering problem with high dimensional data [Zheng
et al., 2017]. Moreover, the distance metric of interest
here would be `1 distance as the features of each point
are probability distribution, Euclidean (or squared eu-
clidean) distances do not capture the subtleties as dis-
cussed in Batu et al. [2000], Ntranos et al. [2016]. Fur-
ther, very few genes are expressed by most cells and
the data is thus sparse.

4.1.1 10xGenomics Mice Dataset

We test the performance of Med-dit on the single cell
RNA-Seq dataset 10xGenomics [2017]. This dataset
from 10xGenomics consists of 27, 998 genes-expression
of 1.3 million neurons cells from the cortex, hippocam-
pus, and subventricular zone of a mouse brain. These
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Figure 4: In the left panel, we show the number of points under consideration at di↵erent iterations in Med-dit.
We note that though the number of points under consideration show a decreasing trend, they do not decrease
monotonically. In the right panel, we show the distribution of the true distances among the arms that are
under consideration at various snapshots of the algorithm. We note that both the mean and the variance of the
distributions keeps decreasing. The last snapshot shows only the distance of the point declared a medoid.

are clustered into 60 clusters. Around 93% of the gene
expressions in this dataset are zero.

We test Med-dit on subsets of this dataset of two sizes:

• small dataset - 20, 000 cells (randomly chosen):
We use this as we can compute the true medoid on
this dataset by brute force and thus can compare
the performance of Med-dit and RAND.

• large dataset - 109, 140 cells (cluster 1) is the
largest cluster in this dataset. We use the most
commonly returned point as the true medoid for
comparision. We note that this point is the same
for both Med-dit and RAND, and has the small-
est distance among the top 100 points returned in
1000 trials of both.

Performance Evaluation : We compare the per-
formance of RAND and Med-dit in Figures 1 and 8 on
the large and the small dataset respectively. We note
that in both cases, RAND needs 7-10 times more dis-
tance evaluations to achieve 2% error rate than what
Med-dit stops at (without an error in 1000 trials).

On the 109, 140 cell dataset, we note that Med-dit
stopped within 140 distance evaluations per arm in
each of the 1000 trials (with 120 distance evaluations
per arm on average) and never returned the wrong
answer. RAND needs around 700 distance evaluations
per point to obtain 2% error rate. The 20k user dataset
is discussed in Appendix 1.

4.2 Recommendation Systems

With the explosion of e-commerce, recommending
products to users has been an important avenue. Re-

search into this took o↵ with Netflix releasing the
Netflix-prize dataset [Bennett et al., 2007].

Usually in the datasets involved here, we have either
rating given by users to di↵erent products (movies,
books, etc), or the items bought by di↵erent users.
The task at hand is to recommend products to a user
based on behaviour of similar users. Thus a common
approach is to cluster similar users and to use trends
in a cluster to recommend products.

We note that in such datasets, we typically have the
behaviour of millions of users and tens of thousands
of items. Thus recommendation systems present us
with an important large-scale clustering problem in
high dimensions [Daruru et al., 2009]. Further, most
users buy (or rate) very few items on the inventory
and the data is thus sparse. Moreover, the number of
items bought (or rated) by users vary significantly and
hence distance metrics that take this into account, like
cosine distance and Jaccard distance, are of interest
while clustering as discussed in Leskovec et al. [2014,
Chapter 9].

4.2.1 Netflix-prize Dataset

We test the performance of Med-dit on the Netflix-
prize dataset of Bennett et al. [2007]. This dataset
from Netflix consists of ratings of 17, 769 movies by
480, 000 Netflix users. Only 0.21% of the entries in the
matrix are non-zero. As discussed in Leskovec et al.
[2014, Chapter 9], cosine distance is a popular metric
considered here.

Similar to Section 4.1.1, we use a small and a large
subset of the dataset of size 20, 000 and size 100, 000
respectively picked at random. For the former we com-
pute the true medoid by brute force, while for the lat-
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Figure 5: Large Netflix-prize dataset: The y-axis
shows the probability that the estimated medoid does
not correspond to the true medoid as a function of
the number of pulls per arm. We note that Med-dit
has a stopping condition while RAND does not. How-
ever we ignore the stopping condition for Med-dit
here. Med-dit stops after 500 distance evaluations per
point with 1% probability of error, while RAND takes
around 500 distance evaluations to reach a 2% prob-
ability of error. The computation of the true medoid
here is computationally prohibitive and for compari-
sion we use the most commonly returned point as the
true medoid (which was same for both Med-dit and
RAND).

ter we use the most commonly returned point as the
true medoid for comparision. We note that this point
is the same for both Med-dit and RAND, and has the
smallest distance among the top 100 points returned
in 1000 trials of both.

Performance Evaluation: On the 100, 000 users on
Netflix-prize dataset (Figure 5), we note that Med-dit
stopped within 150 distance evaluations per arm in
each of the 1000 trials (with 120 distance evaluations
per arm on average) and returned the wrong answer
only once. RAND needs around 500 distance evalua-
tions per point to obtain 2% error rate. The 20k user
dataset is discussed in Appendix 1.

4.3 Performance on Previous Datasets

We show the performance of Med-dit on datasets
used for performance evaluation in prior works such as
Newling and Fleuret [2017] — BIRCH1, BIRCH2, BIRCH3
from Zhang et al. [1997]; Europe from Fränti et al.
[2014]; U-Sensor and D-Sensor from Newling and
Fleuret [2017]; Eur-rail from Meuser [2016]; Road
network of Pennsylvania (Pen-road) from Leskovec
and Krevl [2014]; Gnutella from Ripeanu et al. [2002];

Dataset n, d TR tm meddit
(Psuccess)

Birch 1 100k, 2 58k 2181 1436(.99)
Birch 2 100k, 2 66k 2195 2140(1.0)
Birch 3 100k, 2 61k 1495 1737(1.0)
Europe 160k, 2 176k 2862 3514(1.0)
U-sensor 100k,G 8314 1372 177(.64)
D-sensor 100k,DG 3659 862 205(.74)
Euro-rail 46k,G 35k 539 142(.96)
Pen-road 1M,G 216k 2633 120(.70)
Gnutella 6.3k,G 7043 6328 83(.99)
MNIST 6.7k, 784 7472 6514 91(1.0)

Table 1: (d = {G: graph, DG: digraph }, TR: TOPRANK,
tm: trimed) This table shows the performance on real-
world datasets picked from Newling and Fleuret [2017].
We note that the performance of Med-dit is not as
good as trimed in low-dimensional datasets. For high-
dimensional datasets Med-dit performs much better.

MNIST from LeCun [1998]— in Table 1.

The number of distance evaluations for TOPRANK and
trimed use the implementation of Newling [2017]. The
number of distance evaluations for Med-dit is com-
puted by averaging over 100 trials. The probability of
success of Med-dit is also calculated over them and
reported.

We note that Med-dit has quite low probability of
success on graph datasets (like U-Sensor , D-Sensor
and Pen-road), worse than that of trimed. This is
due to the fact that the sub-Gaussianity assumption
is violated in these datasets. On datasets of points in
low-dimensional metric spaces (like Europe and the
three BIRCH datasets), the performance of Med-dit
and trimed are comparable. On datasets of points in
high-dimensional metric spaces (like MNIST), Med-dit
performs much better. We conjecture that this is due
to the fact the distances in high dimensions are av-
erage of functions (over each dimension) and hence
have Gaussian-like behaviour due to the Central Limit
Theorem (as well as the delta method [Van der Vaart,
1998, Chapter 3]).

4.4 Empirical Scaling of number of distance

evaluations

We subsampled the 100k single-cell RNA-Seq datasets
and computed the number of distance evaluations
Med-dit needed to compute the medoids on these. As
seen in Figure 6, the scaling here is almost linear.
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Figure 6: This shows the number of distance eval-
uations (shown in millions) for various random sub-
samplings of points from the 100, 000 single cell RNA-
Seq dataset over 30 trials for each sub-sampling. The
scaling shows a reasonable linear fit.

4.5 Inner workings of Med-dit

Empirical running time: We computed the true
mean distance µi, and variance �, for all the points in
the small dataset by brute force. Figure 3 shows the
histogram of µi’s. Using � = 1e-3 in Theorem 1, the
theoretical average number of distance evaluations is
266. Empirically over 1000 experiments, the average
number of distance computations is 80. This suggests
that the theoretical analysis captures the essence of
the algorithm.

Progress of Med-dit: We see that at any iteration
of Med-dit, only the points whose lower confidence in-
terval are smaller than the smallest upper confidence
interval among all points have their distances evalu-
ated. At any iteration, we say that such points are
under consideration. We note that a point that goes
out of consideration can be under consideration at a
later iteration (this happens if the smallest upper con-
fidence interval increases). We illustrate the fraction of
points under consideration at di↵erent iterations (in-
dexed by the number of distance evaluations per point)
in the left panel of Figure 4. We pick 10 snapshots of
the algorithm and illustrate the true distance distribu-
tions of all points under consideration at that epoch
in the right panel of Figure 4. We note that both the
mean and the standard deviation of these distributions
decrease as the algorithm progresses.4

Confidence intervals at stopping time: Med-dit
seems to compute the mean distance of a few points ex-
actly. These are usually points with the mean distance

4When the number of points under consideration is
more than 2000, we draw the distribution using the true
distances of 200 random samples.

Figure 7: 99.99%-Confidence Intervals of the 150
points with smallest estimated mean distance in the
20, 000 cell dataset at the termination of Med-dit.
The true means are shown by the orange line, while
the estimated means are shown by the pink line. We
note that the distances of 9 points are computed to all
other points. We also note that mean of the medoid is
less than the 99.99%-lower confidence bound of all the
other points.

close to that of the medoid. The points whose mean
distances are farther away from that of the medoid
have fewer distances evaluated to have the confidence
intervals rule them out as the medoid. The 99.99%
confidence interval of the top 150 points in a run of the
experiment are shown in Figure 7 for the 20, 000 cell
RNA-Seq dataset. This allows the algorithm to save
on distance computations while returning the correct
answer.

4.6 Practice

Speed-accuracy tradeo↵: Setting the value of � be-
tween 0.01 to 0.1 will result in smaller confidence in-
tervals around the estimates µ̂i, which will ergo reduce
the number of distance evaluations. One could also run
Med-dit for a fixed number of iterations and return the
point with the smallest mean estimate. Both meth-
ods improve the running time at the cost of accuracy.
Practically, the first method has a better trade-o↵ be-
tween accuracy and running time whereas the second
method has a deterministic stopping time.

Computing �: Overestimating the value of �

(likewise confidence intervals) increases running time
whereas underestimating � decreases the accuracy. In
practice, �i can be estimated without any additional
computational overhead by maintaining a (running)
estimate of the mean and the second moment for ev-
ery arm i.
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