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1 More samples from the model

We provide more samples from the model on figures 2
and 3.

2 Model architecture

In order to reduce the number of trainable parameters,
we shared some functionality across different parts of our
model. In particular, we set functions fG = fR to be equal
and also completely shared prototype extractors: ψG =
ψR = ψP . As we mentioned, the generative part and
the recognition model also shared the recurrent controller
used in the full context matching procedure, but the prior
had its own controller. All controllers were implemented
as GRU (Chung et al., 2015) maintaining 200-dimensional
hidden state.

Feature extractors g· were also identical. Each function f
or g used in our model is simply an affine transformation of
feature encoder’s output (and a hiddent state of a recurrent
controller in the case of full context matching) to a 200-
dimensional space followed by a non-linearity.

By default, we used a parametric rectified linear function
as a non-linearity everywhere where applicable.

2.1 Conditional generator

The conditional generator network producing parameters
for p(x|z,X,θ) has concatenation of z and the output of
the matching operation [r, h] as input which is transformed
to 3 × 3 × 32 tensor and then passed through 3 residual
blocks of transposed convolutions. Each block has the fol-
lowing form:

h = conv1(x),

y = f(conv2(h) + h) + pool(scale(x)),

where f is a non-linearity which in our architecture is al-
ways parametric rectified linear function (He et al., 2015).

The block is parametrized by size of filters used in convo-
lutions conv1 and conv2, shared number of filters F and
stride S.

• scale is another convolution with 1 × 1 filters and the
shared stride S.

• In all other convolutions number of filters is the same
and equals F .

• conv1 and pool have also stride S.

• conv2 preserve size of the input by padding and has
stride 1.

Blocks used in our paper have the following parameters
(W1 ×H1,W2 ×H2, F, S):

1. (2× 2, 2× 2, 32, 2)

2. (3× 3, 3× 3, 16, 2)

3. (4× 4, 3× 3, 16, 2)

Then log-probabilities for binary pixels were obtained by
summing the result of these convolutions along the channel
dimension.

2.2 Feature encoder ψ

Function ψ has an architecture which is symmetric from
the generator network. The only difference is that the scale
scale operation is replaced by bilinear upscaling.

The residual blocks for feature encoder has following pa-
rameters:

1. (4× 4, 3× 3, 16, 2)

2. (3× 3, 3× 3, 16, 2)

3. (2× 2, 2× 2, 32, 2)

The result is a tensor of 3× 3× 32 = 288 dimensions.

3 Transfer to MNIST

In this experiment we test the ability of generative match-
ing networks to adapt not just to new concepts, but also to
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a new domain. Since we trained our models on 28 × 28
resolution for Omniglot it should be possible to apply them
on MNIST dataset as well. We used the test part of MNIST
to which we applied a single random binarization.

Table 1 contains estimated predictive likelihood for differ-
ent models. Qualitative results from the evaluation on Om-
niglot remain the same. Although transfer to a new domain
caused significant drop in performance for all of the mod-
els, one may see that generative matching networks still
demonstrate the ability to adapt to conditioning data. At the
same time, average matching does not seem to efficiently
re-use the conditioned data in such transfer task since rel-
ative improvements in expected conditional log-likelihood
are rather small. Apparently, the model trained on a one-
class datasets also learned highly dataset-dependent fea-
tures as it actually performed even worse than the model
with Ctrain = 2.

We also provide conditional samples on figure 1. Both vi-
sual quality of samples and test log-likelihoods are signifi-
cantly worse comparing to Omniglot which can be caused
by a visual difference of the MNIST digits from Omniglot
characters. The images are bolder and less regular due to
binarization. Edwards & Storkey (2016) suggest that the
quality of transfer may be improved by augmentation of the
training data, however for the sake of experimental simplic-
ity and reproducibility we resisted from any augmentation.

4 Evaluation of the neural statistician model

The neural statistician model falls into the category of mod-
els with global latent variables which we describe in section
2.2. The conditional likelihood for this model has the fol-
lowing form:

p(x|X) =

∫
p(α|X)

∫
p(z|α)p(x|α, z)dzdα. (1)

This quantity is hard to compute since it consists of an
expectation with respect to the true posterior over global
variable α. In our evaluation we have tried three different
strategies for computing the above-mentioned integral.

First, we used self-normalizing importance sampling to di-
rectly estimate p(x|X,θ) as

p̂(x|X,θ) =
∑S

s=1 wsp(x, z
(s)|α(s),θ)∑S

s=1 ws

,

ws =
p(α(s),X,Z(s)|θ)

q(α(s)|X,φ)q(Z(s), z(s)|X,x,α(s),φ)
,

with samples α(s) and z(s) obtained from the recognition
model. We observed somewhat contradictory results such
as non-monotonic dependency of the estimate on the size of
conditioning dataset. The diagnostic of the effective sam-

ple size suggested that the recognition model is not well
suited as proposal for the task.

Another strategy was to sequentially estimate p(X<t,θ)
and then use the equation

p(xt|X<t,θ) =
p(xt,X<t|θ)
p(X<t|θ)

,

which appeared to as unreliable as the previous strategy.

Finally, we decided to use the approximate posterior
q(α|X) in equation (1) that was learned together with the
model instead of the exact one. Practically, one can almost
never access the true posterior and when using the model
would rather resort to the recognition model. Hence, the
resulting approximate predictive distribution and the cor-
responding estimate is aligned with practical usage of the
model and is often considered in the literature (Snelson &
Ghahramani, 2005; Jaakkola & Jordan, 2000). Fortunately,
the approximate posterior is easy to sample from by con-
struction, being a multivariate Normal distribution. The fi-
nal estimate was computed as:

p̂(x|X,θ) =
S∑

s=1

wsp(x, z
(s)|α(s),θ)

S
,

ws =
p(z(s)|α(s),θ)

q(z(s)|x,α(s),φ)
,

where samples are, again, obtained from the recognition
model.
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(a) GMN (b) GMN, no pseudo-input (c) GMN, no attention, no pseudo-input

Figure 1: Conditionally generated samples on MNIST. Models were trained on the train part of Omniglot. Format of the
figure is similar to fig. 2 in the main paper.

Figure 2: Additional conditionally-generated samples from the GMN, no pseudo-inputs used.
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Figure 3: Additional conditionally-generated samples from the GMN, one pseudo-input used
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Table 1: Conditional negative log-likelihoods for the test part of MNIST. Models were trained on the train part of Omniglot.

Number of conditioning examples
Model Ctest 0 1 2 3 4 5 10 19

GMN, Ctrain = 2 1 126.7 121.1 118.4 117.6 117.1 117.1 117.1 118.5
GMN, Ctrain = 2 2 126.2 123.1 121.3 120.1 119.4 118.9 118.3 119.6
GMN, Ctrain = 2, no pseudo-input 1 135.1 120.9 117.5 115.7 114.4 111.7 109.8
GMN, Ctrain = 2, no pseudo-input 2 123.1 121.9 119.4 118.8 115.2 113.2
GMN, Ctrain = 1, avg 1 131.5 126.5 123.3 121.9 121.0 120.2 118.6 117.5
GMN, Ctrain = 2, avg 2 126.2 122.8 121.0 119.9 118.9 118.7 117.8 116.8
GMN, Ctrain = 1, avg, no pseudo-input 1 132.1 126.9 125.0 124.8 123.9 121.7 120.9
GMN, Ctrain = 2, avg, no pseudo-input 2 118.4 117.9 117.4 117.1 116.6 115.8
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Bengio, Yoshua. Gated feedback recurrent neural net-
works. In Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML’15), 2015.

Edwards, Harrison and Storkey, Amos. Towards a neural
statistician. arXiv preprint arXiv:1606.02185, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pp. 1026–1034, 2015.

Jaakkola, Tommi S and Jordan, Michael I. Bayesian param-
eter estimation via variational methods. Statistics and
Computing, 10(1):25–37, 2000.

Snelson, Edward and Ghahramani, Zoubin. Compact ap-
proximations to bayesian predictive distributions. In
Proceedings of the 22nd international conference on
Machine learning, pp. 840–847. ACM, 2005.


	More samples from the model
	Model architecture
	Conditional generator
	Feature encoder 

	Transfer to MNIST
	Evaluation of the neural statistician model

