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Abstract

The ability to capture Long Range Dependence
(LRD) in a stochastic process is of prime im-
portance in the context of predictive models.
A sequential model with a longer-term mem-
ory is better able contextualize recent observa-
tions. In this article, we apply the theory of LRD
stochastic processes to modern recurrent archi-
tectures, such as LSTMs and GRUs, and prove
they do not provide LRD under assumptions suf-
ficient for gradients to vanish. Motivated by
an information-theoretic analysis, we provide a
modified recurrent neural architecture that miti-
gates the issue of faulty memory through redun-
dancy while keeping the compute time constant.
Experimental results on a synthetic copy task,
the Youtube-8m video classification task and a
recommender system show that we enable better
memorization and longer-term memory.

Introduction

Recurrent Neural Networks (RNNSs) [1] were introduced as
a means to apply neural modeling to sequences in an at-
tempt to benefit from their expressiveness and their ease of
use as black-box models. In applications, particular em-
phasis has been put on modeling sequences of symbols
for Natural Language Processing [2]. To understand lan-
guages, linear modeling is challenged by the non-linearity
of syntactic dynamics, the need to infer a state in a discrete
state space and the appeal of models whose memory can be
human-like [3]. Recurrent Neural Networks are parametric
non-linear models defined by a recurrent equation

[Yig1, Mia])" = @g (Xi, My).

As we show in the upcoming analysis, the prescription of a
bounded state (M) in RNNs to enforce stability is problem-
atic. Squashing non-linear functions destroy information
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as they attempt to propagate memory through time. Mod-
ern popular architectures such as LSTMs [4] or GRUs [5]
try to correct the issue by instantiating a separate memory
bank whose read/write patterns are functions of the previ-
ous memory state and the latest observation. We show that
the use of differentiable squashing functions in the form of
sigmoid layers as gates, in order to make the read/write be-
havior of the RNN learnable, leads to leaky gates. In partic-
ular, we prove that such gates constantly erase information
under reasonable assumptions on the input process.

After having delineated this curse of short memory in
LSTMs and GRUs, under common assumptions for RNNs,
we devise a computationally efficient strategy to make the
memory bank less likely to forget by a simple mechanism:
enforcing redundancy. We present the corresponding fac-
torization technique to expand the size of the memory of
RNNs.  The resulting factorized RNNs feature advanta-
geous properties in terms of time and memory complexity.
As we factorize our architecture we provide a larger mem-
ory space without the need for more network parameters or
computation as is the case with dense unstructured larger
RNNes.

Contributions and organization of the paper

1. Theoretical limitations of classic RNNs: A novel
analysis of LSTMs and GRUs as dynamical systems
is presented in Section 1, giving proofs of their inabil-
ity to provide a LRD memory under assumptions that
were proven sufficient in [6] for gradients to vanish.

2. New modeling insights: As we seek to render faulty
memorization mechanisms less likely to forget, a fac-
torized architecture providing extra memory capacity
in a redundant manner is presented in Section 2.

3. Experimental evidence: A thorough experimental
study shows in Section 3 on different tasks that factor-
ization provide better performance thanks to a better
ability to memorize.

Related work

The argument of the present paper relates work concerned
with the difficulty of training RNNs to the statistical no-
tions of Long and Short Range Dependence. Most of the
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work on long memory and RNNs focuses on the difficul-
ties arising during training [7, 8, 4, 6, 9]. To train a recur-
rent neural network we indeed rely on Back-Propagation-
Through-Time [7, 8, 4] which unfolds the recurrent cell
along K time-steps where K is for instance the length T’
of a sequence of interest. This typically creates O(K)
non-linearities of the sigmoid or hyperbolic tangent family
along the gradient propagation path which are well known
to cause vanishing gradient issues [7]. Such squashing op-
erations have been designed to enable Long and Short Term
Memory (LSTM) [4] as they maintain the state of the RNN
bounded thereby preventing state explosion. Constraining
the memory to belong to [—1, 1] guarantees numerical sta-
bility but jeopardizes gradient propagation by adding satu-
rating functions. The difficulty of learning LRD in recur-
rent models has been connected in [6] to some properties of
bifurcations in non-linear system theory [10, 11]. The cur-
rent paper draws connection between vanishing gradients
and the absence of Long Range Dependence [12].

1 LONG RANGE DEPENDENCE

The current section delves into the issues created by the
presence of bounded non-linearities in RNNs. We first re-
call the pre-existing analysis of the impact of saturation on
gradient propagation prior to stepping away from this ap-
proach and use stochastic process theory.

1.1 Beyond the issue of vanishing gradients

In order to guarantee stability of the RNN, the mainstream
solution has been to squash the generated candidate so that
it remains in a bounded domain. Such a blunt way of guar-
anteeing stability first led to the design of RNNs described
by dynamics [1]

[YA;Jrl, Mt+1]T = tanh(AXtH + BMt) (1)

where the input X;; € R% | the predictions fft € R,
the candidates (state) M, € R*™") and the learned pa-

rameter matrices A and B are respectively in R%+dim(h).di
and Rdo-i-dim(h),h.

1.1.1 Tension between memory and stability in
Recurrent Neural Networks

In the linear model case, constraints can be set on the fam-
ily of operators {®y|6 € O} in order to guarantee that the
model will not become unstable and explode as it reads
a sequence of inputs (z1,...,2x7). The strategy applied
to the first Recurrent Neural Networks relies on a careful
choice of the non-linearities within ® rather than imposing
constraints on the parameter domain ©. Then hyperbolic
tangent function in (1) bounds the state and therefore guar-
antees stability.

Here we can notice the shift in the way stability is guar-
anteed from linear models to RNNs. The stability induc-
ing design choice is therefore very blunt and comes with
a series of drawbacks that make learning Long Range De-
pendence challenging and may create issues when trying to
make predictions in an unbounded domain such as R

1.1.2 Bounded non-linearities

Squashing states with a function such as tanh comes at
the cost of making gradient back-propagation very difficult
over long sequences of inputs.

The vanishing gradient issue in RNNs has been highlighted
very early as their main shortcoming as it hinders their abil-
ity to learn long term dependencies [3]. If we apply Back-
Propagation-Through-Time to the first generation RNN in
Eq. (1) we find indeed with an additive loss function

Nt
1 d .
Lo = ﬁvﬂ E E (Vi1 — Vi) ()

i=1 t=t?

that its gradient involves long multiplication chains as:

WZT: {10y} = szDll(Y@,Yt)x
t=1

t=1

t—1 s
(Z [ D2®o(Xri1, M) Vo®o(Xos1, Ms)> NG

s=0r=1

where the many multiplications by tanh’(AX, 1+ BY;) x
B between the output of interest at time ¢ and the source
input at time s are likely to vanish in magnitude.

Seeking stability of the RNN as a dynamical system has led
to the impossible conciliation of the incentive to bound the
state for stability and the need for non-vanishing gradient to
learn. One solution in more modern architectures consists
of using a separate memory to keep track of the context.

1.1.3 Studying RNNs as dynamical systems

The remainder of the theoretical study proves that the sep-
arate memorization space modern RNNs (e.g. GRU and
LSTM) allocate to materialize a latent state is not LRD
under conditions that guaranteeing gradients are vanishing
because of the presence of saturating read/write learnable
gates. We give guarantees on RNN as a dynamical system
rather than analyze its training procedure in order to delin-
eate clear conclusions on its ability to memorize.

We choose to study whether the family of parametric mod-
els we consider can provide LRD to the candidate vector
which contextualizes their predictions. The theory we con-
sider is concerned with linear systems [13], non-linear sys-
tems [14] and recent developments in LRD [12, 15, 16].
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1.2 Dynamical systems and Long Range Dependence

We adopt the definition of a Short Range Dependent (SRD)
multivariate process given in [12]. The definition corre-
sponds to the assumptions of Short Range Dependences
needed in most of standard proofs of convergence for sec-
ond order estimation for stationary processes [13].

Definition 1.1 SRD Multivariate process: A process is
SRD if and only if there exists M € R such that

3t € N, Z |Cor (X4, Xewn)lly, < M.
heN

In the present paper “Cor” stands for correlation. In the sec-
ond order stationary setting the definition trivially reduces
t0 D pen [ICor (Xo, Xn )|, < 400 as Cor (Xy, Xi1p,) only
depends on h. We do not make such assumption in the fol-
lowing and we will indicate under which stationarity con-
ditions the properties we highlight hold.

Lemma 1.1 Short Range Dependent recursion: Consider
a stochastic process (y;)ien in R with E(y,) < +oo such
that

Yeir1 = Ay + €

where Vt € N, Vs > t, E(ysel) = 0. If there exists o > 0
so that the spectral radii of the operators {Ai|t € N} are
uniformly bounded by 1 — « then the process (y) is SRD.

Proof 1.1 One can write

t t
Yip1 = (H AS> Yo + Z (H Ah> €s, then E [yt_,_lyo}
s=0

s=0

_ (f[o A5> E [yoys | + ; (hl:[ Ah> E [e] -

Then by using the fact that the Frobenius norm is algebraic
with respect to the matrix multiplication operator and the
assumption Vs > t, E(yel) = 0,

s=0

2 sl < (H " ||2> 12 e,

The assumption on the spectral radius of A implies that
[0 llAsll, < (1 — @)* which concludes the proof. B

1.3 Analysis of LSTM as a dynamical system

Let us remind the reader of the dynamical equations defin-
ing the LSTM [4] RNN with input (z;) and output (h;):

Forget gate: ft :J(Wg[a:t + W,{ht,1 + bf) )

Input gate: it :U(W;xt + Wihi—1 + bi) 5)
Candidate: ¢ =tanh(Wexe + Wrhe—1 +b)  (6)
Context update: =ft ©®C¢ + it O cr—1 (@)
Output gate: o =0 (Wize + Wihi—1 +b°%) 8)
Output: ht =0 © tanh(ct) 9)

where z; € R, hy € R ¢, € R", Wy € R4, W), €
Rdim(h),d’ be Rh, ft c Rdim(h), i € Rdim(h)’ = Rdim(h).

1.4 Analysis of GRU as a dynamical system:

Let us remind the reader of the dynamical equations defining the
GRU [5] RNN with input (z;) and output (h;):

Read gate: re =o(Wyxe + Wihi—1+b") (10)
Update gate: uy =c(Wize + Withe—1 + b") (11)
Candidate: he =tanh(W,r: © @ + Wihe +0)  (12)

Context update:  hy =(1 — w) @ he—1 + ur © hy (13)

where z; € R?, € Rdlm(h) W, € Rdlm(h)d Wh 6
Rdzm(h) dim(h) b e Rdzm(h)’ re € Rdzm(h) u € Rdzm
While the dimension of the input is d, the memory and output
have dimension h.

1.4.1 Sigmoid gates and LRD

Lemma 1.2 Sigmoid gate induces short memory: If the oper-
ators W, € R4 W, in RE™).dim(h) ond the bias vector
b € RE™M take finite values and the input processes (x+) and
(ht) are bounded then there exists ag > 0 such that

o (W + Wik + )l < (1 - ay).
Proof 1.2 The property is a direct consequence of the definition

of the sigmoid function o and the uniform boundedness of the
process Wyxe + Wrhe +0). B

The lemma above, combined with lemma 1.1 implies immediately
that the presence of gated re-memorization mechanisms in the
context update equations of the LSTM network (7) and the GRU
network (13) only enables SRD. Therefore we need to rely on the
tanh based candidate generation mechanism in the LSTM (6) and
the GRU (12) to enable LRD memory.

1.4.2 Candidate generation in GRU and LSTM and
LRD

We use theoretical arguments to prove in the following that un-
der reasonable assumptions LRD cannot occur under the condi-
tion presented in [6] as sufficient for gradients to vanish. The
proofs only complement pre-existing literature about how basic
tanh based RNNs have difficulties learning LRD patterns.

The following proposition furthers the attempt to relate train time
misbehavior of RNNs with the properties of the corresponding
dynamical system presented in [6]. The work therein explains
how some bifurcations between attraction basins of chaotic at-
tractors [11, 10] of a tanh RNN that were unraveled in [17] can
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be related to training time exploding gradients. Such study was
limited to the uni-variate setting. The work in [6] also gives a
sufficient conditions at training time on the Jacobian of the RNN
to create vanishing gradient issues. Such are the sufficient condi-
tions that were given for multi-variate RNNs:

Proposition 1.1 Sufficient conditions for gradients to vanish [6]:
If the spectral radius of Wy, is < 1 then gradient vanish in back-
propagation through time.

We complete the work relating sensitivity to inputs and memory
in a more general setting with the following proposition.

Proposition 1.2 Relating vanishing gradient to SRD: If the spec-
tral radius of Wi, is < 1 and the series (h¢) is of constant vari-
ance then the RNN is SRD.

Proof 1.3 Let us denote F; the mapping

(ho,...,ht,l?o,...,.’ri) — ht+1 = F; (ho,. . .,hi,xo,...,.’bt)
is such that the partial Jacobian Dy, F; has a spectral radius
uniformly < \' where A < 1 with the assumption that the spectral
radius of Wi, is < 1. (a proof can indeed quickly be given by
induction as in [6]). Let us then write E[hoh¢11] as

/ hoE[F; (ho, ... he,xo, ..., a1) |ho) " dpo
ho€B°° (1)

where o is the probability distribution of ho. We can devise
a function u*(ho,...,he,xo, ..., x¢) such that Elhohit1] =

ho€B° (1)

hoElhe|ho]” E[Dhg Fy(u* (ho, . . ., he, @0, . . ., x¢))|ho] " dpo
and with the bound on the spectral radius of Dy, F; we conclude

the proof. B

Theorem 1.1 Short range dependent context: Under the assump-
tions of propositions 1.1, 1.2 and 1.3, the context of a GRU or
LSTM is SRD if its variance is constant through time under con-
ditions that guarantee vanishing gradients.

Proof 1.4 The theorem is a direct consequence of the application
of lemma 1.1 after proposition 1.3. B

The theorem above show that the dynamics defining LSTM and
GRU networks with vanishing gradients only lead to the calcu-
lation of a SRD context under the assumption that the operators
involved are full rank, that the series of inputs are not entirely de-
terministic given the filtration associated with the context and the
context has constant variance. Any feed-forward post-processing
pipeline is likely to be indeed be hampered if the variance struc-
ture of (h¢) change through time.

The theorems above establish a link between vanishing gradients
and Short Range Dependence. As in [6] we manage to relate sen-
sitivity analysis of RNNs with their memory as dynamical sys-
tems. A difference though is that we conduct our analysis entirely
in the multi-variate setting.

1.4.3 Information theoretical insights for longer
memory

Let us delve into the issues of Short Range Dependence follow-
ing an information theoretical approach in order to identify how

information is memorized in the network. The following propo-
sition shows that the candidate generation we consider can only
lead to memorizing inputs in a bounded space perturbed by a non-
vanishing amount of noise.

Proposition 1.3 Decomposition of candidate generation: As-
sume the input process (x) is bounded and that there exists 3 > 0
suchthatVt € N, ||z||, > B. Assume also that there exists v > 0
such that ¥Vt € N, Var(z|hs<¢) > 7. If the d x d matrices W,
and Wy, are full rank then there exists a function ¢y : R? — R?
and a stochastic process () with such that Vs > t, E(hzel ) = 0,
Var[ehs<i] > v2 > 0and

tanh(Wye + Whhe +b) = ¢e(he) + €.

The assumption we make on the infinite norm of the input process
stems from the fact that most successful applications of RNNs in
Natural Language Processing [18], automated translation [3, 19]
or recommendation rely on an embedding to represent input data.
In such a setting, all inputs (z:) belong to a finite dictionary of
learned vectorial representations. Learning such representations
with SGD leads to non zero encoding vectorial representations
(on all coordinates).

The assumptions we make about the rank of the learned linear
operators stem from the practical setting of the use of such models
after training by Stochastic Gradient Descent (SGD). In such a
setting, the accumulation of noisy gradient updates prevents rank
deficiency in W, and W4,.

Finally, the assumption on the conditional variance of the input
process given the state means that we consider a non-degenerate
innovation process is entailed in the input. In other words, we
consider that new inputs cannot be exactly predicted by a series
of previous states. The assumption is natural as if the input could
be linearly predicted by the state observing them would not bring
novel information in the RNN.

Proof 1.5 With the assumption on the rank of Wy, there exists
B > 0suchthatVt € N, Vi € 1...d, |(Whrhe):| > B'. Using
the theorem of intermediary values, one can therefore write

tanh(Wyx: + Wihe + b)
= tanh(Whhs + b) 4+ (1 — tanh?)(u*) © (Waz:)
= tanh(Wrhs + b) + g¢(ht) + €.
where
Viel...d,u; € (Whhe+b)s, Wrhe + Waxe +b)s),
gt(hi) = E [(1 — tanh?)(u;) © (Waat)|hs<t] and

€t = (1 — tanh2)(u2‘) ©
E [(1 - tanh®)(u;) © (Wami)|hs<t].

By definition of €, E [et|hs<i] = O therefore, Vs < t, Ele hs] =
0.

(Waze)  —

By uniform boundedness of Wyxt + b and Wyxy + Wrhe + b,
there exists ' > 0 such that min;—__q |(1 — tanh?)(u});| > ~'
and as Var[zi|hs<q] > v with the fact that W, is full rank, we
conclude the proof. B

Such a proposition shows that as the RNN puts novel information
into its memory, a non-vanishing amount of noise impacts all the
channels of the memory bank.

Information theory helped [20] characterize the capacity per neu-
ral unit of some RNNs. We now employ some information the-
oretical insights to understand more formally the influence of the
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number of channels we employ H on the mutual information be-
tween hy and hy41:

I(hiv1, he) = H(higa) + H(he) — H(heg1, he)

where H denotes the entropy of random variable [21, 22]. Let us
remind the reader of a more general statement made in [23] on the
impact of additive Gaussian noise in the multivariate setting.

Theorem 1.2 Additive Gaussian noise and mutual informa-
tion [23, 24]: Consider two random variables X and Y in RY
linearly related by

Y=9WX +e¢

where € ~ N (0, %),

I(X,Y) = % log (1 + nZ’l/2WTWE’1/2) .

The theorem may be immediately used to prove the following:

Proposition 1.4 Mutual information with Gaussian noise model
in RNN: Assuming that ©, ~ N(0,diag(c,...,0)), Wy is full
rank with dim(h) representation dimensions

)

[

[(hm tanh(Wml’t + Wrhe + b)) =

_ dim(h) log(1 +
2

Proof 1.6 Let us start by using the fact mutual information is in-

variant under reparametrization by diffeomorphisms [25]. There-

fore, I(ht,tanh(Wyxe + Wrhe + b)) = I(Whhe, Waze +

Whhe), and a direct application of 1.2 concludes the proof.

In order to provide a amount of memory in the corresponding
noisy encoding setting, we therefore choose to increase the num-
ber of memory channels. The following section shows how a re-
dundant recurrent architecture leads to the formation of a higher
numbers of encoding channels while keeping the number of pa-
rameters of stacked RNNs unchanged. In particular, Theorem 1.1,
Proposition 1.3 and 1.4 provide new theoretical insights on LRD
in RNNs.

2 FACTORIZED RECURRENT
ARCHIECTURES

The previous section highlighted the shortcomings of popular
RNNs relying on saturating candidate generation and gating
mechanisms. In particular, the memory appears to leak at each
time step the RNN is applied. We now develop a strategy to miti-
gate the issue.

2.1 Modeling challenges

The need for larger memory: One way to render the mem-
ory more LRD consists rather trivially in extending it. By allow-
ing for more dimensions to represent a memorized past event, it
is more likely that information will be preserved over longer pe-
riods of time. In a RNN featuring a candidate generation W), as
in a LSTM or GRU one issue though is the quick rate at which
the number of parameters and the computational burden increases
with respect to the dimension of the memory. The corresponding
rate is indeed quadratic in the size of the memory space. There-
fore, we may want to find a strategy to obtain a larger memory
without adding too many parameters.

Tight computational constraints: As recurrent models are
served in applications involving latency-sensitive predictions such
as recommender systems, we are looking for a solution that keeps
the compute time of the network we consider mostly unchanged.

2.2 Block diagonal RNNs

Combining the insights above, we understand a larger memory
with compartmented gates is suitable to mitigate the issue of non
LRD contextualization. Such is the architectural modification we
bring to the LSTM and GRU architectures we consider. In the
present paper, we refer to the resulting RNNs as “factorized” re-
current neural networks [26]. While our approach is driven by
theory we relate it to similar modifications given to LSTMs with
large numbers of parameters to speed up their serving in [26].
In the present paper our insight and aim are different. Instead
of seeking a strategy to accelerate a network without excessive
degradation of its performance we want to enable longer term
memory.

We show in the last experimental section that we indeed manage
to improve performance, thanks to better memorization abilities,
with an equal number of parameters. Furthermore, we give a dif-
ferent interpretation of the factorization procedure as providing
another degree of freedom in the specification of the neural ar-
chitecture that decouples the size of the memory bank from the
capacity of the parametrized layers.

2.2.1 Specification of architecture

Let us specify the factorized LSTM and GRU architectures for-
mally. Let g be an even divider of the output dimension A and
the input dimension d. A “factorized” architecture imposes a g-
block-diagonal structure to all the linear operators involved in the
RNN. Imposing such structure is equivalent to dividing the in-
put and output spaces into g sub-spaces of equal dimensions and
instantiating a RNN on each of the sub-space. Consider inputs
X € R? and outputs f/t_H € R4, The inputs are divided into
g separate Y;-dimensional vectors { X{|i = 1...g} which yields
g outputs and states {ﬁﬁrl, Mi,li=1.. .g} — each of 4/4 di-
mensions — as one applies g mappings with distinct parameter sets
{9’|i =1... g}. Prior to concatenating the g outputs of 4/g di-

mensions each, one can write factorized recurrent block-diagonal
architecture as follows:

Vie{l...g}, Vi, M) =& (ththz) .14

2.2.2 Manipulating memory and learning capacity
independently

Grouped LSTMs have been introduced primarily to obtain faster,
less memory-demanding recurrent neural networks. One issue
with a recurrent neural network with d-dimensional inputs and
dim(h)-dimensional contexts is that the number of parameters
grows as O(((d+dim(h))xdim(h)) while requiring a dense ma-
trix multiply requiring O (((d+dim(h)) x dim(h)) add/multiply
operations. A grouped recurrent network is obtained by impos-
ing a block-diagonal structure to the dense linear operators used
within the network. If g groups are used, the number of parame-
ters and add/multiply operations is divided by g. That is, with g
groups we have O(g x ((d + dim(h)) x dim(h))/g*) compute
and memory complexity.

We further improve the performance of the “factorized” architec-
ture’s memory in contexts where regime switches are expected.
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2.2.3 Block diagonal context switching RNN

As we consider an architecture splitting the input and output
spaces and unrolling a RNN on each subspace prior to concate-
nating the outputs, we can think of each subspace as dedicated to
a particular modality of the input. Such a feature is particularly
appealing in the setting of context-switching sequences.

As a user browses the web for instance, they are most likely go-
ing through different behavioral models. Professional browsing,
leisure related browsing, news related browsing, purchase related
browsing can be thought as such different modalities. When try-
ing to predict the next page a user will browse in order to serve an
appropriate modification, it may be worthwhile switching context
between multiple small models, each of which is a specialist in a
particular modality.

One of the advantages of the factorization, which we actually use
for our recommendation system numerical experiment, is that en-
abling such context switching is immediate. We instantiate an
auxiliary RNN with g outputs. The outputs are normalized and
applied as a mask to the g input subspaces and/or g output sub-
spaces. Such a scheme merges the mixture of expert factorization
presented in [27] while contextualizing the switching between ex-
perts as the dispatching auxiliary network is itself recurrent. It is
noteworthy that such an extension comes at a small computational
cost as g is typically small as compared to d and h. We illustrate
the architecture in Figure 5.

3 NUMERICAL EXPERIMENTS

The previous section described how out theoretical study in-
formed our design decisions in order to enable longer memory in
the RNNs we consider. We now gather empirical evidence show-
ing factorization improves the memory of GRUs and LSTMs.

3.1 Experiments on synthetic data

The first experiment we consider is designed to challenge the
ability of RNNs to remember their first input. Inspired by the
copy task in [28] we task our RNNs with reading a uniformly
distributed random input binary pattern of 6 symbols in {0,1}®
and repeating it. That is, the alphabet we consider has 256 pos-
sible letters and a word consists of 6 characters. For 4 repeats,
given an input sequence (word, 0,0, 0, 0) the RNN has to output
(word, word, word, word, word). All samples generated for a
batch are new and therefore there is no train-set/test-set split.

In order to demonstrate a differential in the ability to memorize
between our baseline models and their factorized counter-parts
we progressively increase the number of times the first word is
to be repeated. The model we consider has one hidden layer as
we stack two RNNs one on top of another, which is standard
in RNNs as they are applied to tasks such as automated trans-
lation [29] or speech recognition [30]. We train the networks with
RMSProp [31] with minimal hyper-parameter tuning.

The results presented in Figures 1, 2 and 3 demonstrate that the
factorized architectures offers better performance in copy task in-
volving long term memory than the baselines we consider. Al-
though the memory space is larger, the compute and memory bur-
dens are identical to the baseline.

3.2 Youtube video classification

Now that we have demonstrated the better performance factorized
architectures provide on the LRD synthetic copy-task, let us focus

LSTM Loss

i

—— 4 repeats baseline
—— 4 repeats 4-factorized
m —— 8 repeats baseline
—— 8 repeats 4-factorized
—— 16 repeats baseline
. —— 16 repeats 4-factorized
32 repeats baseline
250000 {1 ‘“~s—————— —— 32 repeats 4-factorized

2250000
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1750000 -

1500000 A
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Figure 1: The cross-entropy losses of LSTM (top), GRU
(bottom) is smaller when they are factorized to allow for
a larger memory space at equal number of parameters. We
can appreciate how the gap widens as the number of repeats
increases from 4, to 8, 16, and finally 32.

Standard 2-layer stacked LSTM
—,—,,., e
4 factorized 2-layer stacked LSTM
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Figure 2: As we ask to copy an initial random symbol 4, 8,
16 and 32 times, our 4 factorized LSTM performs better on
the LRD copy task than a its standard counterpart with the
sample number of parameters and computations.

Standard 2-layer stacked GRU
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4 factorized 2-layer stacked GRU
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Figure 3: As we ask to copy an initial random symbol 4, 8,
16 and 32 times, our 4 factorized GRU performs better on
the GRU copy task than a its standard counterpart with the
sample number of parameters and computations.
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Model Hit@l1 Perr

Baseline LSTM [32] 0.645 0.573
4-Factorized LSTM small  0.719  0.604
4-Factorized LSTM big 0.809 0.641

Table 1: Test performance on the Youtube-8m classifica-
tion experiment. Hit @ 1 rate and Precision at equal re-
call. The small 4-Factorized as 4 times as few parameters
than the baseline and the same amount of memory. The big
4-Factorized has the same number of parameters than the
baseline and a larger memory.

on a real world example LRD very high dimensional sequence
classification experiment: the Youtube-8m challenge [32].

The Youtube-8m dataset is a massive dataset of pre-featurized
videos frames [32] which leaves researchers with the task of
building architectures that leverage the temporal structure of the
featurized input. This enables the 2-layer LSTM presented in [32]
to achieve state of the art results in terms of video classifications.
We compare the 2-layer baseline with a factorized architecture
where g = 8. In this section we try two alternate versions of the
factorized architecture: one version uses block diagonal operators
of the same size with 8 blocks thereby decreasing the number of
parameters and amount of computations needed by a factor of 8, a
second version corresponds to the normal factorized architecture
we propose where the number of parameters and computations
is the same as the baseline but the memory space is 8 times as
big. We use ADAM [33] for training with the very same hyper-
parameters that were employed to establish the baseline in [32].

As revealed by Figure 4 and Table 2, the factorization we propose
offers substantial gains of performance. Classifying a video se-
quence is indeed a LRD as frames located at the beginning of the
video inform the classification decision.

3.3 Latency sensitive recommendations

Neural recommender systems attempt at foreseeing the interest
of users under extreme constraints of latency and scale. Recent
examples of RNN networks employed to serve recommendations
can be found in [34] and in [35] where they provide cutting edge
performance. In order to identify the preferences of a given user
based on their history, one may need to reach for information lo-
cated far back into the past to predict the next items for which
there should be an impression. Guessing the next item that the
user consumes is considered the correct answer. Such a problem
setting is indeed common in collaborative filtering [36, 37] rec-
ommendations.

3.3.1 Baseline

The baseline model at the core of the work aims at providing
recommendations to users accessing a browsing page where im-
pressions are displayed and having previously used the website
with the same personal account. The model of interest is a
neural sequential predictor mapping a sequence of observations
(t(1), X (1))...(t(T), X(T)) to a predicted item £. Here each
observation X (¢) is multivariate, it typically entails a consumed
item ID £(t), a page id p(t) and some metadata such as the times-
tamp ¢ corresponding to the instant consumption started. The cur-
rent model relies on a Recurrent Neural Network (RNN) to read
through the sequence of past observations and predict the ID of
the next item to be consumed by the user. A block diagram illus-
trates the architecture in Figure 5.
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Figure 4: On the youtube 8m classification factorized ar-
chitectures provide a substantial gain of classification ac-
curacy as compared to their unstructured counterparts. We
notice here that even a factorized architecture with fewer
parameters than the baseline performs better.
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Figure 5: Architecture of the neural recommender we con-
sider. We factorize the GRU at the core of model as in (14).

Valuable information for the current prediction is present in old
observations thereby requiring our model to be LRD in order to
improve the experience of users by providing more accurate rec-
ommendations. Such a feature is expected for a problem attempt-
ing to predict the behavior of a human as one of most salient char-
acteristics of our species is to keep memory of events through
months, years and decades.

3.3.2 Experimental setting

The input fed into the recurrent network of interest consists of a
timestamped collection (item id, page id, t). The sequences are
truncated to 500 items. The item vocabulary comprises of 2M
most popular items of the last 48 hours. We present here results
obtained on a dataset where only about 700 000 pages are present
that correspond to most popular pages. Only data from the last
7 days is used for training and only from the last 2 days for test-
ing. The train/test split is 10/90%. The test set does not overlap
with the train set and corresponds to the last temporal slice of the
dataset. The neural network predicts, for a sample N of negatives,
the probability that they are chosen as classically a negative sam-
pling loss is employed in order to leverage observations belonging
to a very large vocabulary [38]. Adagrad is used as an optimiza-
tion procedure as other optimizers have lead to serious divergence

Model MAP@20
Baseline 0.117
Factorized model 0.122
Context switching model 0.126

Table 2: Performance of baseline, factorized and context
switching architectures on the recommendation task. It is
noteworthy that in this experiment the number of parame-
ters of the fully connected layers located after the GRU at
the core of network is higher after factorization.

issues. The loss being minimized is

Z w; X CrossEntropy(SampledSoftmax(£(¢ + 1)))

l€Labels

where the SampledSoftmax [38] uses 20000 randomly sampled
negatives and wy is the weight of each label.

The Mean-average-precision-at-20 (MAP@20) is the main per-
formance metric we monitor. As training time is critical in order
to prevent model staleness, we compare the MAP @20 of compet-
ing architectures as they reach 5 million steps of optimization.

3.3.3 Context switching versus redundant memory:
an ablation study

In the setting of item recommendations we choose to employ
the context switching extension introduced in 2.2.3. As the re-
sults presented in Table 2 demonstrate factorizing the recurrent
model at the core of the recommender is key to improve predic-
tive performance on long sequences of browsing activity. Adding
a context-switching mechanism to the factorization in order to ac-
count for the fundamental multimodality of browsing further im-
proves predictive performance.

Conclusion

Our theoretical study showed that under reasonable assumptions
RNNs such as GRUs and LSTMs with spectral radii leading to
vanishing gradients also lead to short range dependency. Moti-
vated by these propositions and theorems, we proposed an ad-
vantageous architectural modification to the networks to enable
longer memory. Numerical experiments on a diverse set of tasks
show that expanding the number of channels of the RNN’s mem-
ory, while not increasing the memory or computational complex-
ity, provided better results on LRD copy, classification and pre-
diction tasks. Employing temporal dilations as a means to create
provably LRD architectures for sequential learning is the topic of
our current work.
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