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Abstract

The postulate of independence of cause and
mechanism (ICM) has recently led to sev-
eral new causal discovery algorithms. The
interpretation of independence and the way
it is utilized, however, varies across these
methods. Our aim in this paper is to pro-
pose a group theoretic framework for ICM
to unify and generalize these approaches.
In our setting, the cause-mechanism rela-
tionship is assessed by perturbing it with
random group transformations. We show
that the group theoretic view encompasses
previous ICM approaches and provides a
very general tool to study the structure
of data generating mechanisms with direct
applications to machine learning.

1 INTRODUCTION

Inferring causal relationships from empirical data
is a challenging problem with major applications.
While the problem of inferring such relations be-
tween arbitrarily many random variables (RVs) has
been extensively addressed via conditional statisti-
cal independences in graphical models (Spirtes et al.}
2000; [Pearl] 2000), there are important limitations
of this framework, such as the impossibility to infer
the direction of causation in a graph with only two
observed variables. This has motivated the search
for new perspectives on causal inference. A ma-
jor contribution to this line of research is to exploit
a postulate of Independence of Cause and Mecha-
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nism (ICM) (Janzing and Scholkopf] [2010; Lemeire
and Janzing, 2012 |Scholkopt et al., 2012)), which
assumes that causes and mechanisms are chosen
independently by Nature and thus P(cause) and
P(effect|cause) do not contain information about
each other. This absence of shared information can
be formulated rigorously using algorithmic indepen-
dence (Janzing and Scholkopf, 2010; |Lemeire and
Janzing), [2012)), but also has implications in other
contexts such as semi-supervised learning (Scholkopf]
et al., [2012; [Peters et al., |2017). The main use of
ICM postulates has been the development of sev-
eral causal inference algorithms for cause-effect pairs
(Janzing et al., 2010; Zscheischler et al.| [2011; Da-
niusis et al) [2010; |Janzing et al., |2012; Shajarisales
et all 2015; |Sgouritsa et all 2015); however, results
in [Scholkopt et al| (2012)) also suggest it can be ex-
ploited in broader settings, providing guiding prin-
ciples for the study of learning algorithms. Each of
these methods addresses the causal inference prob-
lem with specific models, and are thus usable only
for a restricted set of applications. Principled ways
to generalize them to address new problems are yet
unknown. In particular, it is unclear how the no-
tion of “independence” should be defined for a given
domain, and how it could impact the results. One
conceptual difficulty of the ICM-based approaches is
that independence is assessed between two objects of
different nature: the input (or cause) and the mech-
anism; moreover, the appropriate notion is not the
usual statistical independence of RVs.

In this paper, we suggest that a group theoretic
framework can unify ICM-based approaches and
provide useful tools to study generative models in
general. This involves defining a group of generic
transformations that perturb the relationship be-
tween mechanisms and causes, as well as an ap-
propriate contrast function to assess the generic-
ity of the cause-mechanism relationship. We show
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that this framework encompasses previous ICM ap-
proaches (Janzing et al., [2010; |Daniusis et al.l2010)).
In addition, while previous methods based on ICM
were focused on cause-effect pairs (addressing which
of the variables is the cause and which is the effect),
the present paper shows ICM can be exploited for
inferring latent variable generative models.

2 EXAMPLE IN VISION

2.1 Occlusion and illusory contours

In this section, we introduce the fundamental prop-
erties of our group theoretic perspective by study-
ing a simplified version of a basic inference prob-
lem for visual perception: the identification of par-
tially occluded objects. In two dimensional natu-
ralistic visual scenes, an object can partially mask
other objects standing behind it in the scene. This
phenomenon is usually well addressed by the human
visual system, but remains a major challenge for ro-
bust object detection in computer vision. Interest-
ingly, even humans can be misled on this task by
visual illusions. This is the case of the well know
Kanizsa’s triangle shown in Fig. [Ta] In this figure,
an illusory contour emerges from the precise align-
ment between the edges of the Pac-Man-shaped in-
ducers, instigating the completion of each aligned
segment pair into a larger edge and forming the illu-
sion of a white triangle occluding three black disks.
One way to describe the specificity of such figure
is thus to count the number of lines carrying the
straight edges of the three Pac-Man shapes in the
figure: there are only three lines, which is atypically
(or suspiciously) small for a figure made of three ob-
jects totaling six straight edges. The idea that a
configuration is ”"atypical” lies at the heart of our
causal inference framework, and we can indeed use
the latter to address such scene understanding tasks
as follows.

2.2 Formulation of the causal inference
problem

We state the following scene understanding problem:
two polygonal objects (with different colors) appear
in a visual scene, occluding each other, and we want
to infer which object partially occludes the other
one. An example of such scene is represented on
Fig. for which the most straightforward interpre-
tation is that a red triangle stands in front of a yellow
square. However, one could imagine on the contrary
that a yellow object is in the foreground and occludes
a red one, for instance by picking the objects shown

(d) (f)

Figure 1: (a) Kanizsa’s triangle. (b) Scene of a yel-
low square occluded by a red triangle. (c¢) Exam-
ple of objects leading to the same scene as (b) but
where red occludes yellow (dashed segments link su-
perimposed points). (d) Generative model for (b).
(e) New scene resulting from an arbitrary rotation
of the yellow object in (b). Dashed lines indicate
straight lines carrying the edges of the objects. (f)
Same as (e) for the case presented in (b). See text
for explanations.

in Fig. Such configuration is however intuitively
unlikely if the precise positions and orientations of
both objects are not carefully adjusted to lead to
the scene shown in Fig. with the specific pur-
pose to give the “illusion” that a yellow square is
occluded. Such considerations have led vision scien-
tists to formulate a generic viewpoint assumption in
order to perform inference (Freeman| 1994). Such
scene understanding problem can be considered as a
causal inference problem, as it amounts to inferring
a property of the generating mechanism (the objects
and their configuration) that leads to an observation
(the visual scene).

A generative model of the visual scene (see Fig.
for an illustration) may consist in the following
mechanism: from a large collection of polygons, a
first object O; is selected and put in the scene S
at position p; with orientation #;. Then a second
object Os is selected from the collection and put in
front of the first at position po and orientation 6.
Leading to the Structural Equation Model (SEM)H

Si= Mp,,61,p2,02 (017 02)

lsee next section for a presentation of this concept
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where m denotes the object positioning mechanism.
Under this generative model, we can either assign
the red object R or the yellow one Y to the fore-
ground, leading to (O1,03) = (Y, R) or (O1,02) =
(R,Y) respectively. In order to determine which
configuration is more likely, we resort to an ICM pos-
tulate. The cause being parametrized by the shape
of the objects, and the mechanism by a set of po-
sitions and orientations, we assume that these last
parameters are picked independently from the first
ones. As a consequence, if we apply a random rota-
tion to one of the objects, we expect that for most
cases, some global properties of the image will be
preserved, such that the original scene can be quali-
fied as “typical”. In this specific case, the number of
lines C'(S) in the scene S is a simple global property
of the scene that can be exploited.

Indeed, if we apply now a random rotation of angle ¢
to Y, r4, under the hypothesis that R is in front, we
obtain a modified scene S’¢ = Mypy 0y pr.or(TeY, R)
(illustrated in Fig. that is similar to the original
figure in the sense that the total number of lines
carrying objects’ edges is 7 in both cases (one for
each side of each object). We thus can write

C(Ss) = C(9),

that we call a genericity equation, stating that the
arrangement in S is generic. On the contrary, under
the hypothesis that Y is in front, we typically get
a configuration 5'(’25 = Mypp 0r.py,0y (R, T¢Y) like the
one in Fig. with a larger number of lines in the
scene. Indeed, for almost all choices of ¢

C(S,) = C(S) +2,

and therefore the model with (O1,03) = (R,Y) is
atypical, as witnessed by the lack of invariance of
C values, and thus less likely than the model with
(01,02) = (Y, R) to explain the scene.

To summarize this experiment, if we assume the red
object is in front, the number of straight lines is
“typical” or generic since an arbitrary rotation of
one object will typically lead to the same number
of edges. On the contrary, if we assume the yellow
object is in front, the number of lines is suspiciously
low with respect to what it becomes when modifying
the generative model with an arbitrary rotation. We
introduced in this example the key elements of our
framework: 1/ a generative model of the observed
data, 2/ a group of generic transformations (here
rotations) that can be applied to the model to simu-
late "typical” configurations of the generative model
and 3/ a contrast (here the number of lines in the

scene) that can be evaluated on both the observed
data and in typical configurations of the model. In-
variance of the contrast to generic transformations
then indicates observations are typical. All these el-
ements will be used for defining a general framework
for causal inference in section [3

3 GENERAL FRAMEWORK

3.1 Background and related work

Many machine learning approaches rely on statisti-
cal models in order to approximate observed data,
ranging from PCA to the recently introduced Gen-
erative Adversarial Networks (GANs) (Goodfellow
et all [2014). In order for these models to serve
their purpose, they have to represent the observa-
tions as faithfully as possible. Such property can
be evaluated in a purely statistical sense by testing
whether the probability distribution of the model is
as close as possible to the empirical distribution of
the data (taking into account that such procedure
should be properly designed to avoid overfitting).
In contrast, enforcing the model to be causal goes
beyond this statistical criterion by imposing that
the fitted model should to some extent capture the
structure of the true data generating process. Con-
cepts pertaining to causality are well formulated us-
ing Structural Equation Models (SEMs), which de-
scribe the relationship between different variables
(observed or hidden) as a set of structural equations,
each of them taking the form E|

Vi = fk(Uh T 7Un)'

Such equations represent more than algebraic de-
pendencies between the variables, as indicated by
the asymmetry of the “:=" symbol, and suggests
that the left-hand side variable is generated based on
the right-hand side variables. Broadly construed, it
means that this relation would still hold if an exter-
nal agent were to intervene on right-hand side vari-
ables (the so called do-operator), and that we can
formulate counterfactuals : “what would have hap-
pened if one right-hand side variable had been differ-
ent” (see|Pearl (2000) for an overview). As a conse-
quence, a properly inferred causal generative model
based on SEMs offers more robustness to changes
in the environment than purely statistical models.
Such property is exploited in relation to transfer

2each right-hand-side variables may refer to either en-
dogenous variables (i.e. a factor influenced by other vari-
ables in the model) or exogenous variables (determined
by factors outside of the system)
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Figure 2: (a) Principle of the group theoretic frame-
work: a generic transformation ¢ is introduced be-
tween the cause x and the mechanism m. (b) In-
troduction of the concept of attribute to describe a
structural causal model.

leaning, addressing covariate-shift or changes in the
input distribution (Zhang et al., [2013] [2015} Peters
et al. |2016; |Bareinboim and Pearl, [2016; Rojas-
Carulla et al., |2015)), and makes causal generative
models highly relevant in machine learning.

In section [2, we have shown how to virtually probe
SEMs by a counterfactual reasoning which could be
stated as: “what would happen if we were to ap-
ply a generic transformation to a given variable or
mechanism of the SCM”. This virtual intervention
is represented in Fig. Ra] for a SCM with a single
cause and mechanism. The applied transformation
is generic in the sense that it is sampled at random
from a large set of transformations that turns a vari-
able/mechanism into another one that is as likely to
occur in a similar scenario. The outcome of this vir-
tual intervention is tested by quantifying whether
the counterfactual outcome is qualitatively different
from the observed outcome for most generic trans-
formations.

In our framework, the set of generic transformations
is chosen to be a (compact) group. While readers
can refer to appendix A for the relevant definitions
regarding group theory, they may just assume the
compact group is a set of invertible transformations
applied to causes and equipped with a “uniform”
probability measure. The choice of this particular
structure is motivated by the fact that group ac-
tions combine well with a general structural equa-
tion framework.

Several points are worth mentioning about the gen-
erality of our setting. First causes and effects do not
need to be objects of the same kind, and the cause-
effect relation may be deterministic (as in or prob-
abilistic. In addition, we do not assume invertibility
of this relation. Finally, although confounding can
in principle be addressed in ICM-based frameworks
(e.g. see [Zscheischler et al.| (2011)), it will not be
investigated in this contribution.

3.2 Formal definition

Each SEM variable is characterized by a quantity
that we call attribute. The covariance matrix is
an example of an attribute for a multivariate ran-
dom variableﬂ Given an effect generated by a cause
through a mechanism as described in Fig. [2b] we
measure attributes of cause and effect using func-
tions A and A’ with codomain A and A’ respectively.
To allow a less formal presentation, we will abusively
consider the mechanism m as acting directly on the
attribute space A, and z and y will indicate indis-
tinctly the cause and effect or their attribute.

Applying the ICM framework requires assessing
genericity of the relationship between input and
mechanism quantitatively. For that we define two
objects: (1) the generic group G is a compact topo-
logical group that acts on A, thus equipped with a
unique Haar probability measure ug (see appendix
A), (2) the contrasfl] C is a real valued function
with domain A’. The contrast and generic group
introduced in such a way allow to compute the ex-
pected value when randomly ”breaking” the cause-
mechanism relationship using generic transforma-
tions according to the following definition.

Definition 1 Given a contrast C, the FExpected
Generic Contrast (EGC) of a cause mechanism pair
(x,m) is defined as:

(Chma = EgnpgC(mygz) . (1)
We say that the relation between m and x is G-
generic under C, whenever

C(mz) = (Chm.q (2)

)

holds approzimately.

We call eq. the genericity equation. Note that
this equation is used to express an idealized ICM
postulate (hence the term “holds approximately”)
that is not meant to be satisfied exactly in prac-
tice but justified by assuming, in appropriate con-
texts, that the value of C'(mz) concentrates around
its mean (see (Janzing et all 2010) for an exam-
ple). Genericity can be formulated more rigorously
as a statistical test, assessing the null hypothesis: “is
C(max) likely to be sampled from the generic distribu-
tion Dy, » generated by C(mgx), g ~ pg ?” (Zscheis-
chler et al.| [2011)).

3typically the attribute of a random variable will be
a function of its probability distribution

4the term contrast refers to the field of Independent
Component Analysis, where such function is used as a
proxy to quantify independence
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Figure 3: (a) Generative model including distribu-
tions over causes and mechanisms. (b) Causal struc-
ture of a latent generative model.

(a)

3.3 Invariant generative models

There is an interesting probabilistic interpretation of
the concept of genericity. If we are given a generative
model such that the cause z is a single sample drawn
from a meta—distributiorﬂ Px (see Fig. . To esti-
mate genericity irrespective of the possible values of
x, we consider the genericity ratio C(ma)/{(C)m. o
this quantity should be close to one with high prob-
ability in order to satisfy ICM assumptions. As-
sume Py is a G-invariant distribution, under mild
assumptions (Wijsman, |1967) = can be parametrized
as ¢ = gZ where g is a sample from a pg-distributed
variable GG, and Z is a sample from anther RV inde-
pendent of G. Then (see appendix B for details)

e R el LR

This tells us that the postulate of genericity is valid
at least “on average” for the generative model. On
the contrary, if this average would be different from
1 as it may happen for a non-invariant Py, the pos-
tulate is unlikely be valid for individual examples.
As represented on Fig. the same reasoning can
be applied when sampling the mechanism from an
invariant distribution.

It is noteworthy that, although meta-distributions
could be considered as priors, we do not need to
explicitly formulate this prior. This is important
as most parameters live in unbounded domains, for
which non-informative proper priors do not exist,
and Bayesian techniques would be sensitive to the
choice of such prior, in contrast to our approach.

4 REINTERPRETING PAIRWISE
CAUSAL INFERENCE

We show in this section that the group invariance
framework encompasses previous causal inference

Smeta-distributions have some similarities with the
approach of [Lopez-Paz et al.| (2015))

methods that have been proposed in the literature
to solve the pairwise case: given two observables X
and Y, can we decide between the alternatives “X
causes Y or “Y causes X7

4.1 The Trace Method

We consider the case of X and Y n- and I[-
dimensional RVs, respectively, causally related by
the noisy linear structural equation

Y =MX+E, (4)

where M is an [ X n structure matrix and E is a
multivariate additive noise term independent of X.

If we take the output covariance Yy as attribute, the
normalized trace 7(Xy) = tr(Xy)/l as a contrast,
and use generic matrices U distributed according to
the Haar measure over the group SO(n): pgoem),
the EGC writes

<C>M7X = EUN#so(n)Tl(MUEXUTMT +3¥g).

This quantity can be evaluated using the following
result (see appendix B for a proof).

Proposition 2 Let U be a random matriz drawn
from SO(n) according to ji5o(n) and let A and B be
two symmetric matrices in My ,(R) = R ™. Then

Evmpsoem, t (UTAUB) = L tr(A) tr(B). (5)

This leads to (C),, x = Tn(Ex)T(MMT) + 7 (ZE),
where Y i denotes the noise covariance. Then the
genericity equation (C),, y = C(Zy) writes

n(MExMT) =7, (Ex)n(MMT), (6)

which is exactly the Trace Condition postulate used
in the Trace Method (Janzing et al., |2010).

4.2 Automorphisms on the unit interval

Another example of ICM based causal inference ad-
dresses the case where the cause, a random vari-
able X on the unit interval, is mapped to the effect
by an invertible C! function m. Using the density
of Y (py) as its attribute, the differential entropy
H(Y) as a contrast, and modulo 1 translations of
the unit interval (g, ), —parametrized by a shift vari-
able 7 € [0, 1]- as the generic group (the associ-
ated Haar measure being the Lebesgue measure), the
EGC writes

1
(Chx = / H(mo g, (X))dr
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This easily leads to

(O = 1)+ [ 1og] 200

and the genericity equation (C),, = H(Y') can be
rewritten

/” dm
log
0

1
@ px(@r = [ 1o

which corresponds exactly to the orthogonality pos-
tulate exploited in Information Geometric Causal In-
ference (IGCI) (Daniusis et al., [2010; |Janzing et al.,
2012).

4.3 Linear Non-Gaussian Additive Noise
Models (LINGAM)

While we showed in previous sections that several
ICM-based approaches fit in our group theoretic
framework, it can also be related to other causal
inference methods such as LINGAM (Shimizu et al.,
2006)), which relies on the assumption that the ad-
ditive noise of a causal mechanism is independent
from its input. Assume the cause X is a real ran-
dom variable with zero mean, and Y is generated
from X through a linear additive noise model, i.e.,

X =Y :=aX +e¢, 9)

where o € R* and € is a zero mean i.i.d noise ran-
dom variable. Let x, € and y be the correspond-
ing N-tuples of i.i.d. samples drawn from the joint
distribution P(X,¢,Y), they follow the structural
equation y = mq X with deterministic mechanism

Mae: X~ ax+e€.

Using the empirical estimate of the third order cu-
mulant of a centered RV, C(y) = y3, as a contrast
(where the bar indicates the empirical average over
the samples), and the symmetric group S(NV) of all
permutations of N-tuples as generic group, then the

EGC writes
<C>x7ma,e = ]EQNHS(N) (Ma,e 0 g(x))3. (10)

Considered as a function of both g and X, g(x) be-
haves like a N-tuple x’ sampled from X’, an inde-
pendent copy of X. Using the law of large numbers,
for large N we thus get approximately

<C(>x,ma,E ~ EX’Ee(aX/ + 6)3 ’ (11)

where X’ and e are independent. Because the cu-
mulant of a sum of independent variables is the sum
of individual cumulants, we get

(Chxime,. = a’C(x) +C(e), (12)

and the corresponding genericity equation
C(y) = a*C(x) + C(e). (13)

This relates to the cumulant-based approach of
Hyvarinen and Smith| (2013) to infer the causal di-
rection in LINGAM models. As shown in appendix
B, the use of the cumulant relies on the fact that
the genericity equation will be valid for the forward
model (because the additive noise is independent
from X), while it is violated in the backward direc-
tion (additive noise becomes dependent), provided
X is skewed (EX® # 0). Overall, this example
illustrates the idea that LINGAM models can be
framed as a group theoretic approach in the limit
of large samples, because stating statistical inde-
pendence between the additive noise and the cause
amounts to have the model insensitive to random
permutations of the samples of the cause.

5 UNSUPERVISED LEARNING

5.1 Causal generative models

Classically generative models aim at modeling the
probability distribution of observations. However,
we often expect such model to capture information
about the true generative process, in order to bet-
ter understand its underlying mechanisms. Take for
example the case of clustering using Gaussian mix-
ture models: when experimental scientists cluster a
dataset, they expect that the resulting clusters re-
flect a reliable structure that will be robust to mod-
erate changes of experimental parameters, such that
the results can be replicated. Such required prop-
erty, although not explicitly stated, puts the clus-
tering task in a causal inference perspective. Like
for any causal inference problem, finding plausible
causal generative models will require assumptions
on the data generating mechanism. We can thus
try to exploit the ICM postulate to learn the struc-
ture of generative models from a causal perspective.
As suggested in (Scholkopf et al.l 2012)), many real
world datasets have an intuitive underlying causal
structure that we may exploit to improve learning
algorithms. For instance, in a character recognition
datasets such as MNIST, the character that a human
intents to write is a cause for the observed hand-
written character image.

In this section, we assume the setting of Fig. in
which observations are generated by composing la-
tent variables and partially unknown mechanisms,
and we formulate ICM postulates for such systems.
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5.2 Clustering

Consider the following classical Gaussian Mixture
Model of the observed multivariate random vector
X using latent variable Z.

7~
X|{z =k}

Mult(ﬂ-laﬂ-Qa'“ 77TK)7 (14)
~ N, Zx), (15)
where z indicates the cluster membership of one ob-
servation, and p;, 3 are means and covariances

of the p-dimensional Gaussian distribution of each
cluster.

5.2.1 Invariance hypothesis

E1 22 : En

S~/

Figure 4: (a) Generative model for a mixture of
Gaussians. (b) Cluster data generated with random
parameters (projected on 2 components). (c) Data
in (b) after a generic transformation. (d) Suspicious
dependency between cluster means and covariances
in a case of a mispecified number of clusters.

To get an insight of what form of genericity is rele-
vant for such generative model, imagine the collected
data reflects the phenotype of different subspecies of
plants (similarly to the popular Iris dataset). Each
cluster mean p,, reflects the average characteristics
of the subspecies k, while the covariance matrices
3, express the variations of these characteristics
across the subpopulation. If we assume that each
subspecies has emerged independently (say on differ-
ent continents) and that they never interacted with
each other (no competition for resources), we suggest
that the variability within each subspecies should be

unrelated to the variations across species. As a con-
sequence, randomizing the properties of p;’s while
keeping 3;’s constant may lead to a model as likely
to have been generated by Nature as the observed
dataset sampled from X.

This intuition leads to formulate a causal generative
model as described in Fig.[4a] where a noise vector of
covariance Y is added to the mean vector of each
cluster k (constituting the causes), before clusters
are mixed according to m in order to generate the
observed effect X. In order to randomize the con-
figuration of p;’s with respect to the noise distribu-
tions, we apply a random orthogonal transformation
to them by left multiplication.

To ease analysis, we represent the model by the sum
of an (intra-cluster) variability component V and a
cluster mean component M. Then

VI{z =k} ~N(0,Xy),

X=V+M,
{M|{Z:k}:ll«k~

We then choose O(p) as generic group and p-
dimensional orthogonal matrices from this group act
on the mean vectors by left multiplication to the
variable M, before V is added. Application of one
generic transformation results in clusters with the
same intra-cluster variability as the original data,
but whose locations in the feature space have been
randomized, as illustrated on Figs. [4b] and [Ad with
an 5-dimensional feature space and 10 clusters. In
this illustration, the structure of the observations
does not seem to be affected by the transformation,
suggesting the original data is ”typical” in some
sense. This makes sense as mean and covariance
parameters have been drawn independently at ran-
dom. However, there are simple pathological exam-
ples where a clustering algorithm can fail to capture
the underlying structure of the data and generate
an atypical dependency between means and covari-
ances. Assume for example that, focusing on one
single Gaussian cluster, a clustering algorithm fails
to identify a single cluster and instead cuts it in
two clusters. This situation illustrated on Fig. [Ad]
shows an interesting dependency between the cen-
troids of the two clusters and their within cluster em-
pirical covariance matrices: the difference between
centroids is oriented in the direction (eigenspace)
of smallest variance. We postulate that such suspi-
cious dependencies may appear when the clustering
algorithm fails to capture the causal structure of the
data.
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Figure 5: (a) Clustering performance of 'gm-em’ and
'’kmeans’ algorithms against genericity ratio for 800
simulations; yellow ground truth points on the very
right hand-side indicate how the ground truth gener-
icity ratio concentrates (note they hide points of suc-
cessful trials for both algorithms). (b) Distribution
of the genericity ratios for both algorithms in case
of successful trials (performance exceeds 99%) and
failed trials (performance below 99%).

5.2.2 Contrast

To detect such suspicious dependencies in the in-
ferred generative model using the group theoretic
approach, we propose the following 4th order tensor
contrast

O(X) =Ex tr [XXTXXT .

Using this contrast is justified by the following.

Proposition 3 Let X be a centered p-dimensional
random variable, and (C), s the generic contrast
obtained by random orthogonal transformation ap-
plied to cluster means, then

C(X) = (€5 =4y St — g | 221

Indeed, this result shows that differences between
the contrast of the data and the EGC quantify the
alignment between the cluster means p;, and the
principal axes (eigenvectors) of the covariance ma-
trices Xj. We will use the resulting genericity ratio
to detect suspicious dependencies in the solution of
clustering algorithms, such that of Fig.

5.2.3 Experiments

We test this approach to detect bad clustering of a
simulated dataset. We generate 5 random clusters
in a 20 dimensional space. The cluster means are
drawn at random from an isotropic Gaussian dis-
tribution with standard deviation 2. Cluster co-
variances are generated with random axes (with
isotropic distribution) and eigenvalues. We test the
performance of two clustering algorithm: K-means

10 dimensions 20 dimensions

0.6 0.8
[ randomized ratio
04 0.6 [ measured ratio
1

0.4

0.2
0.2

0

0.995 1 1.005 0.995 1.005

Figure 6: Normalized histograms of the genericity
ratio for the CIFAR-10 dataset. Left panel: mea-
sured ratio (M= 0.9994, SD= 0.0002), randomized
ratio (M= 1.0001, SD= 0.0027). Right panel: mea-
sured ratio (M= 0.99991, SD= 6.3 e-5), randomized
ratio (M= .99989, SD= 6.4 e-4).

(’kmeans’) and the Expectation Minimization al-
gorithm based on the simulated Gaussian Mixture
model ("gm-em’). The scatter plot shown on Fig.
suggests that the genericity ratios are broadly dis-
tributed on the interval [0.98,1.1] when the algo-
rithms do not reach a good estimation of the orig-
inal clusters. Comparison of the distributions of
the genericity ratio in case of success and failure of
the clustering shown on Fig. [bbl shows a much more
concentrated distribution when the clusters are cor-
rectly retrieved. This suggests that a genericity ratio
far from one indeed witnesses the failure of the al-
gorithm to cluster the data properly and could be
exploited to improve the performance of clustering
algorithms.

We further addressed the question whether real
datasets satisfy the ICM principle exploited in our
framework. For that we use the CIFAR-10 dataset
containing 64x64 color pictures of 10 different types
of objects (Krizhevskyl 2009). In order to reduce the
dimension and eliminate correlation between neigh-
boring pixels, we preprocessed the images by ex-
tracting the 10 or 20 first principal components of
the data, using singular value decomposition. We
computed the generic ratio for 5 non-overlaping
batches of 10000 images preprocessed separately and
compared it with the generic distribution of this ra-
tio (denoted randomized ratio) estimated by apply-
ing random orthogonal transformations the cluster
mean vector. The results shown in Fig. [6] suggest
that the CIFAR datasets satisfies the ICM assump-
tion. Result for the same approach applied to the
MNIST dataset lead to the same conclusion (Fig. 7
in appendix).

Acknowledgements

MB would like to thank Marek Kaluba for helpful
discussions and comments. MB acknowledges fund-
ing from the Max Planck ETH Center for Learning
Systems.



Michel Besserve, Naji Shajarisales, Bernhard Schoélkopf, Dominik Janzing

References

E. Bareinboim and J. Pearl. Causal inference and the
data-fusion problem. Proceedings of the National
Academy of Sciences, 113(27):7345-7352, 2016.

P. Daniusis, D. Janzing, K. Mooij, J. Zscheischler,
B. Steudel, K. Zhang, and B. Scholkopf. Inferring
deterministic causal relations. In Uncertainty in
Artificial Intelligence, 2010.

M. L. Eaton. Group invariance applications in statis-
tics. volume 1. Institute of Mathematical Statis-
tics, 1989.

W. T. Freeman. The generic viewpoint assumption
in a framework for visual perception. Nature, 368
(6471):542, 1994.

K. Fukumizu, A. Gretton, B. Scholkopf, and B.K.
Sriperumbudur. Characteristic kernels on groups
and semigroups. In Advances in Neural Informa-
tion Processing Systems, pages 473-480, 2009.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Ad-
vances in Neural Information Processing Systems,

pages 2672-2680, 2014.

A. Hyvérinen and S.M. Smith. Pairwise likelihood
rations for estimation of non-gaussian structural
equation models. Journal of Machine Learning
Research, 14:111-152, 2013.

D. Janzing and B. Schélkopf. Causal inference using
the algorithmic Markov condition. Information
Theory, IEEE Transactions on, 56(10):5168-5194,
2010.

D. Janzing, P. O. Hoyer, and B. Schélkopf. Telling
cause from effect based on high-dimensional obser-
vations. In International Conference on Machine
Learning, 2010.

D. Janzing, J. Mooij, K. Zhang, J. Lemeire,
J. Zscheischler, P. Daniusis, B. Steudel, and
B. Scholkopf. Information-geometric approach to
inferring causal directions. Artificial Intelligence,
182-183:1-31, 2012.

A. Krizhevsky. Learning multiple layers of features
from tiny images. 2009.

J. Lemeire and D. Janzing. Replacing causal faith-
fulness with algorithmic independence of condi-
tionals. Minds and Machines, pages 1-23, 2012.

D. Lopez-Paz, K. Muandet, B. Scholkopf, and I. Tol-
stikhin. Towards a learning theory of cause-effect
inference. In International Conference on Ma-
chine Learning, pages 1452-1461, 2015.

J. Pearl. Causality: models, reasoning and inference,
volume 29. Cambridge Univ Press, 2000.

J. Peters, P. Bithlmann, and N. Meinshausen. Causal
inference by using invariant prediction: identifica-
tion and confidence intervals. Journal of the Royal
Statistical Society: Series B (Statistical Methodol-
ogy), 78(5):947-1012, 2016.

J. Peters, D. Janzing, and B. Scholkopf. Elements
of Causal Inference — Foundations and Learning
Algorithms. MIT Press, 2017.

M. Rojas-Carulla, B. Scholkopf, R. Turner, and
J. Peters. Causal transfer in machine learning.
arXiww preprint arXiw:1507.05333, 2015.

B. Scholkopf, D. Janzing, J. Peters, E. Sgouritsa,
K. Zhang, and J. Mooij. On causal and anticausal

learning. In International Conference on Machine
Learning, 2012.

E. Sgouritsa, D. Janzing, P. Hennig, and
B. Scholkopf. Inference of cause and effect with
unsupervised inverse regression. In Artificial In-
telligence and Statistics, 2015.

N. Shajarisales, D. Janzing, B. Scholkopf, and
M. Besserve. Telling cause from effect in determin-
istic linear dynamical systems. In International
Conference on Machine Learning, 2015.

S. Shimizu, P.O. Hoyer, A. Hyvérinen, and A. Ker-
minen. A linear non-gaussian acyclic model for

causal discovery. The Journal of Machine Learn-
ing Research, 7:2003-2030, 2006.

P. Spirtes, C.N. Glymour, and R. Scheines. Cau-
sation, prediction, and search, volume 81. MIT
press, 2000.

W. K. Tung. Group theory in physics. 1985.
R A Wijsman. Cross-sections of orbits and their ap-
plication to densities of maximal invariants. 1967.

R.A. Wijsman. Invariant measures on groups and
their use in statistics. IMS, 1990.

K. Zhang, B. Scholkopf, K. Muandet, and Z. Wang.
Domain adaptation under target and conditional
shift. 2013.

K. Zhang, M. Gong, and B. Scholkopf. Multi-source
domain adaptation: A causal view. 2015.

J. Zscheischler, D. Janzing, and K. Zhang. Testing
whether linear equations are causal: A free proba-
bility theory approach. In Uncertainty in Artificial
Intelligence, 2011.



	INTRODUCTION
	EXAMPLE IN VISION
	Occlusion and illusory contours
	Formulation of the causal inference problem

	GENERAL FRAMEWORK
	Background and related work
	Formal definition
	Invariant generative models

	REINTERPRETING PAIRWISE CAUSAL INFERENCE
	The Trace Method
	Automorphisms on the unit interval
	Linear Non-Gaussian Additive Noise Models (LiNGAM)

	UNSUPERVISED LEARNING
	Causal generative models
	Clustering
	Invariance hypothesis
	Contrast
	Experiments



