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Abstract

We address the problem of inferring the
causal relation between two variables by com-
paring the least-squares errors of the predic-
tions in both possible causal directions. Un-
der the assumption of an independence be-
tween the function relating cause and effect,
the conditional noise distribution, and the
distribution of the cause, we show that the
errors are smaller in causal direction if both
variables are equally scaled and the causal
relation is close to deterministic. Based on
this, we provide an easily applicable method
that only requires a regression in both pos-
sible causal directions. The performance of
this method is compared with different re-
lated causal inference methods in various ar-
tificial and real-world data sets.

1 Introduction

Causal inference [1, 2] is becoming an increasingly
popular topic in machine learning, since the results
are often not only of interest to predicting the result
of potential interventions, but also to general statis-
tical and machine learning applications [3]. In par-
ticular, the identification of the causal relation be-
tween only two observed variables is a challenging task
4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15]. As regards
the present work, we address this bivariate setting,
where one variable is the cause and the other variable
is the effect. That is, given observed data X,Y that
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are drawn from a joint distribution px y, we are inter-
ested in inferring whether X caused Y or Y caused X.
For instance, is a certain change of the phyiscal state
of a patient a symptom or a cause of a certain disease?
If we are not able to observe the effect of an interven-
tion on one of the variables, the identification of the
correct causal relation generally relies on the exploita-
tion of statistical asymmetries between cause and ef-
fect [6, 9, 13, 1, 2]. Conventional approaches to causal
inference rely on conditional independences and there-
fore require at least three observed variables. Given
the observed pattern of conditional dependences and
independences, one infers a class of directed acyclic
graphs (DAGs) that are compatible with the respective
pattern (subject to Markov condition and faithfulness
assumption [1, 2]). Whenever there are causal arrows
that are common to all DAGs in the class, conditional
(in)dependences yield definite statements about causal
directions.

In case of bivariate data, however, we rely on those
types of asymmetries between cause and effect that are
already apparent in the bivariate distribution alone.
One kind of asymmetry is given by restricting the
structural equations relating cause and effect to a
certain function class: For linear relations with non-
Gaussian independent noise, the linear non-Gaussian
acyclic model (LINGAM) [6] guarantees to identify the
correct causal direction. For nonlinear relations, the
additive noise model (ANM) [9] and its generaliza-
tion to post-nonlinear models (PNL) [16] identify the
causal direction by assuming an independence between
cause and noise, where, apart from some exceptions,
a model can only be fit in the correct causal direction
such that the input is independent of the residual.

Further recent approaches for the bivariate scenario
are based on an informal independence assumption
stating that the distribution of the cause, denoted by
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pc contains no information about the conditional dis-
tribution of the effect, given the cause, denoted by
pe|c- Here, the formalization of ‘no information’ is a
challenging task. For the purpose of foundational in-
sights (rather than for practical purposes), [17, 18] for-
malize the idea via algorithmic information and pos-
tulate that knowing pc does not enable a shorter de-
scription of pgc and vice versa. The information-
geometric approach for causal inference (IGCI) [13] is
inspired by the independence assumption and is able
to infer the causal direction in deterministic nonlinear
relationships subject to a certain independence condi-
tion between the slope of the function and the distri-
bution of the cause. A related but different indepen-
dence assumption is also used by a technique called
unsupervised inverse regression (CURE) [14], where
the idea is to estimate a prediction model of both pos-
sible causal directions in an unsupervised manner, i.e.
only the input data is used for the training of the pre-
diction models. According to the above independence
assumption, the effect data may contain information
about the relation between cause and effect that can
be employed for predicting the cause from the effect,
but the cause data alone does not contain any infor-
mation that helps the prediction of the effect from the
cause (as hypothesized in [19]). Accordingly, the unsu-
pervised regression model in the true causal direction
should be less accurate than the prediction model in
the wrong causal direction.

For our approach, we address the causal inference
problem by exploiting an asymmetry in the mean-
squared error (MSE) of predicting the cause from the
effect and the effect from the cause, respectively, and
show, that under appropriate assumptions and in the
regime of almost deterministic relations, the predic-
tion error is smaller in causal direction. A preliminary
version of this idea can be found in [20, 21] but in
these works the analysis is based on a simple heuristic
assuming that the regression of Y on X and the regres-
sion of X on Y yield functions that are inverse to each
other, which holds approximately in the limit of small
noise. Moreover, the analysis is also based on the as-
sumption of an additive noise model in causal direction
and on having prior knowledge about the functional re-
lation between X and Y, which makes it impractical
for generic causal inference problems.

In this work, we aim to generalize and extend the two
aforementioned works in several ways: 1) We explic-
itly allow a dependency between cause and noise. 2)
We give a proper mathematical formulation of the the-
ory that justifies the method subject to clear formal
assumptions. 3) We perform more evaluations for the
application in causal inference and compare it with
various related approaches. The theorem stated in this

work might also be of interest for general statistical
purposes. An extended version of this work with a
more extensive analysis can be found in [22].

The paper is structured as follows: In Section 2, we in-
troduce the used notations and assumptions, which are
necessary for main theorem of this work stated in Sec-
tion 3. An implementation that utilizes this theorem
for inferring the causal direction is straightforward and
further discussed in Section 4 and evaluated in various
artificial and real-world data sets in Section 5.

2 Preliminaries

In the following, we introduce the preliminary nota-
tions and assumptions.

2.1 Notation and problem setting

The goal of this paper is to correctly identify cause
and effect variable of given observations X and Y.
Throughout this paper, a capital letter denotes a ran-
dom variable and a lowercase letter denotes values at-
tained by the random variable. Variables X and Y are
assumed to be real-valued and to have a joint proba-
bility density (with respect to the Lebesgue measure),
denoted by pxy. By slightly abusing terminology,
we will not further distinguish between a distribution
and its density since the Lebesgue measure as a refer-
ence is implicitly understood. The notations px, py,
and py|x are used for the corresponding marginal and
conditional densities, respectively. The derivative of a
function f is denoted by f’.

2.2 General idea

As mentioned before, the general idea of our approach
is to simply compare the MSE of regressing Y on X
and the MSE of regressing X on Y. If we denote
cause and effect by C, E € {X,Y}, respectively, our
approach explicitly reads as follows. Let ¢ denote the
function that minimizes the expected least-squares er-
ror when predicting E from C, which implies that ¢
is given by the conditional expectation ¢(c) = E[F|c].
Likewise, let 1) be the minimizer of the least-squares
error for predicting C' from E, that is, ¢¥/(e) = E[C|e].
Then we will postulate assumptions that imply

E[(E - ¢(C))*] <E[(C — ¢(E))?], (1)

in the regime of almost deterministic relations. This
conclusion certainly relies on some kind of scaling con-
vention. For our theoretical results we will assume that
both X and Y attain values between 0 and 1. How-
ever, in some applications, we will also scale X and Y
to unit variance to deal with unbounded variables. (1)
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can be rewritten in terms of conditional variance as

E[Var[E|C]] < E[Var[C|E]].
2.3 Assumptions

First, recall that we assume throughout the paper that
either X is the cause of Y or vise versa in an uncon-
founded sense, i.e. there is no common cause. To
study the limit of an almost deterministic relation in
a mathematically precise way, we consider a family of
effect variables E,, by

B := 6(C) +aN, (2)

where o € RT is a parameter controlling the noise
level and N is a noise variable that has some (upper
bounded) joint density py,c with C. Note that N
here does not need to be statistically independent of
C (in contrast to ANMs). Here, ¢ is a function that
is further specified below. Therefore, (2) does not,
a priori, restrict the set of possible causal relations,
because for any pair (C, E') one can define the noise N
as the residual N := F—¢(C) and thus obtain Ey = E
for any arbitrary function ¢.

For this work, we make use of the following assump-
tions:

1. Invertible function: ¢ is a strictly monotoni-
cally increasing twice differentiable function ¢ :
[0,1] — [0,1]. For simplicity, we assume that ¢
is monotonically increasing with ¢(0) = 0 and
¢(1) = 1 (similar results for monotonically de-
creasing functions follow by reflection £ — 1—F).
We also assume that gb*l/ is bounded.

2. Compact supports: The distribution of C has
compact support. Without loss of generality,
we assume that 0 and 1 are the smallest and
the largest values, respectively, attained by C.
We further assume that the distribution of N
has compact support and that there exist values
n4 > 0 > n_ such that for each ¢, [n_,n,] is the
smallest interval containing the support of pyj..
This ensures us to know that [an_,14+any] is the
smallest interval containing the support of pg_ .
Then the shifted and rescaled variable

. 1

K, : (Ey —an_)

1 +ang —an_
attains 0 and 1 as minimum and maximum values
and thus is equally scaled as C'.

3. Unbiased mnoise: We use the convention
E[N|c] = 0 for all values ¢ of C' without loss of
generality (this can easily be achieved by modify-
ing ¢). Then ¢ is just the conditional expectation,
that is, ¢(c) = E[E|c].

4. Unit noise variance: The expected conditional
noise variance is E[Var[N|C]] =1, which is also
not a proper restriction, because we can scale «
accordingly since we are only interested in the
limit o — 0.

5. Independence postulate: While the above as-
sumptions are just technical, we now state the es-
sential assumption that generates the asymmetry
between cause and effect. To this end, we con-
sider the unit interval [0,1] as probability space
with uniform distribution as probability measure.
The functions ¢ — ¢'(c¢) and ¢ — Var[N|c]pc(c)
define random variables on this space, which we
postulate to be uncorrelated, formally stated as

Covl¢', Var[N|C]pc] = 0. (3)
More explicitly, (3) reads:

/0 & (¢) Var[N|dpe(c)de

—/ ¢’(c)dc/ Var[N|c|pc(c)de = 0. (4)
0 0

The justification of (3) is not obvious at all. For the
special case where the conditional variance Var[N|c] is
a constant in ¢ (e.g. for ANMs), (3) reduces to

Cov(¢',pc] = 0, ()

which is an independence condition for deterministic
relations stated in [23]. Conditions of similar type as
(5) have been discussed and justified in [13]. They
are based on the idea that ¢ contains no information
about pc. This, in turn, relies on the idea that the
conditional pg o contains no information about pc.

To discuss the justification of (4), observe first that it
cannot be justified as stating some kind of ‘indepen-
dence’ between pc and ppjc. To see this, note first
that (4) states an uncorrelatedness of the two func-
tions ¢ — ¢(¢) and ¢ — Var[N|c]pc(c). Since the
latter function contains the map ¢ — Var[N|c], which
is a porperty of the conditional pg|c and not of the
marginal po, it thus contains components from both
pc and pgc. Nevertheless, to justify (4) we assume
that the function ¢ represents a law of nature that
persists when pc and N change due to changing back-
ground conditions. From this perspective, it becomes
unlikely that they are related to the background con-
dition at hand. This idea follows the general spirit
of ‘modularity and autonomy’ in structural equation
modelling, that some structural equations may remain
unchanged when other parts of a system change (see
Chapter 2 in [3] for a literature review).!

'Note, however, that the assignment E = ¢(C) + N is
not a structural equation in a strict sense, because then C'
and N would need to be statistically independent.
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A simple implication of (4) reads
1
/ ¢'(c) Var[N|c|pc(c)de = 1, (6)
0

due to fol ¢ (c)de =
Var[N|C] = 1.

1 and fol Var[N|c|pc(c)de =

In the following, the term independence postulate is
referred to the aforementioned postulate and the term
imndependence to a statistical independence, which
should generally become clear from the context.

3 Theory

As introduced in Section 2.2, we aim to exploit an in-
equality of the expected prediction errors in terms of
E[Var[E|C]] < E[Var[C|E]] to infer the causal direc-
tion. Under the aforementioned assumptions, this can
be stated if the noise variance is sufficiently small. In
order to conclude this inequality and, thus, to justify
an application to causal inference, we must restrict our
analysis to the case where the noise variance is suffi-
ciently small, since a more general statement is not
possible under the aforementioned assumptions. The
analysis can be formalized by the ratio of the expecta-
tions of the conditional variances in the limit o — 0.

We will then show

i EIVar[C|Eq]

~ > 1.
a—0E[Var[E,|C]]

3.1 Error asymmetry theorem

For our main theorem, we first need an important
lemma:

Lemma 1 (Limit of variance ratio) Let the as-
sumptions 1-4 in Section 2.3 hold. Then the following
limit holds:

lim

a—0E[Var[E,|C]]

ar ~o¢ !
E[Var[C|E,]] :/0 ¢/<1€)2 Var[N|c|pc(c)de (7)

The formal proof is a bit technical and can be found
in [22], however, the idea is quite simple if we think of
the scatter plot of an almost deterministic relation as
a thick line. Then Var[E,|c] and Var[C|E, = ¢(c)| are
roughly the squared widths of the line at some point
(¢, ¢(c)) measured in vertical and horizontal direction,
respectively. The quotient of the widths in vertical and
horizontal direction is then given by the slope. This
intuition yields the following approximate identity for

small o:

1

(¢'(c))?
1
= a?——— Var[N|c]. 8
@y e ®
Taking the expectation of (8) over C' and recall-
ing that Assumption 4 implies E[Var[E,|C]] =
?E[Var[N|C]] = o? already yields (7).

Var[C|E, = ¢(c)] = Var[E,|C = (]

With the help of Lemma 1, we can now formulate the
core theorem of this paper:

Theorem 1 (Error Asymmetry) Let the assump-
tions 1-5 in Section 2.3 hold. Then the following limit
always holds

E[Var[C|E4]|

im———">1
a—=0E[Var[E,|C]]

)

with equality only if the functional relation in Assump-
tion 3 is linear.

To show this, we make particular use of Lemma 1,
Assumption 4 and the independence postulate to apply
the Cauchy Schwarz inequality to (7), which gives us

ol
/0 FIRE Var[N|c]pc(c)de

> </01 qﬁ/tc)Var[NMpc(c)dc) > 1.

A more detailed proof can be found in [22].

Note that if ¢ is non-invertible, there is an informa-
tion loss in anticausal direction, since multiple possible
values can be assigned to the same input. Therefore,
we can expect that the error difference becomes even
higher in these cases.

3.2 Remark

Theorem 1 states that the inequality holds for all
values of « smaller than a certain finite threshold.
Whether this threshold is small or whether the asym-
metry with respect to regression errors already occurs
for large noise cannot be concluded from the above
theoretical insights. Presumably, this depends on fea-
tures of ¢, pc, pnjc in a complicated way. However,
the experiments in Section 5 suggest that the asym-
metry often appears even for realistic noise levels.

4 Implementation

A causal inference algorithm that exploits Theorem 1
can be formulated in a straightforward way. Given
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observations X,Y sampled from a joint distribution
px.,y, the key idea is to fit regression models in both
possible directions and compare the MSE.?2 We call
this approach Regression Error based Causal Inference

(RECI).

Although estimating the conditional expectations
E[Y|X] and E[X|Y] by regression is a standard task in
machine learning, we should emphasize that the usual
issues of over- and underfitting are critical for our pur-
pose (like for methods based on ANMs or PNLs), be-
cause they under- or overestimate the noise levels. It
may, however, happen that the method even bene-
fits from underfitting: if there is a simple regression
model in causal direction that fits the data quite well,
but in anticausal relation the conditional expectation
becomes more complex, a regression model with un-
derfitting increases the error even more for the anti-
causal direction than for the causal direction. This
speculative remark is somehow supported by our ex-
periments, where we observed that simple models per-
formed better than complex models, even though they
probably did not represent the true conditional expec-
tation. Also, an accurate estimation of the MSE with
respect to the regression model and appropriate pre-
processing of the data like removing isolated points in
low-density regions, might improve the performance.

5 Experiments

For the experiments, we compared our method with
three different related causal inference methods in var-
ious artificial and real-world data sets. In each evalua-
tion, observations of two variables were given and the
goal was to correctly identify cause and effect vari-
ables.

5.1 Causal inference methods for comparison

In the following, we briefly discuss and compare the
causal inference methods which we used for the evalu-
ations.

LINGAM The model assumptions of LINGAM are
E=pC+ N,

where § € R, C' L N and N is non-Gaussian. For
the experiments, we used a state-of-the-art implemen-
tation based on [25].

ANM The ANM approach assumes that
E = f(C)+ N,
2[24], which appeared after submission, also infers the

causal direction via regression, but from a minimum de-
scription length perspective.

where f is nonlinear and C' 1L N. We used an im-
plementation provided by [15], which uses a Gaussian
process regression for the prediction and provides dif-
ferent methods for the evaluation of the causal direc-
tion.

IGCI The IGCI approach is able to determine the
causal relationship in a deterministic setting

under the ‘independence assumption’ Covl[log f/, pc] =
0. An implementation was also provided by [15], where
we always tested all possible combinations of reference
measures and information estimators. Generalizations
of IGCI for non-deterministic relations are actually not
known and we consider Assumption 5 in Section 2.3 as
first step towards possibly more general formulations.

CURE CURE is based on the idea that the distri-
bution po does not help for better regressing E on C,
while the distribution pg may help for better regress-
ing C on E. An implementation of CURE by the au-
thors has been provided for our experiments. Here, we
used similar settings as described in Section 6.2 of [14],
where we used four internal repetition in the artificial
data and eight in the real-world data, but only one
overall repetition due to the high computation cost.

RECI Our approach addresses non-deterministic
nonlinear relations and, in particular, allows a depen-
dency between cause and noise. Since we only require
the fitting of a least-squares solution in both possible
causal directions, RECI can be easily implemented and
does not rely on any independence tests.

In the experiments, we always used the same class of
regression functions for the causal and anticausal di-
rection to compare the errors, but performed multiple
experiments with different function classes. For each
evaluation, we randomly split the data into training
and test data. The utilized regression models were:

e a logistic function (LOG) of the form a + (b —
a)/(1+exp(c- (d —x)))

e shifted monomial functions (MON) of the form
ax™ + b with n € [2,9]

e polynomial functions of the form

Zf:o a;xt with k € [1,9]

(POLY)

e support vector regression (SVR) with a linear ker-
nel

e neural networks (NN) with different numbers of
hidden neurons and at most two hidden layers
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The logistic and monomial functions cover rather sim-
ple regression models, which are probably not able to
capture the true function f in most cases. On the
other hand, support vector regression and neural net-
works should be complex enough to capture f. The
polynomial functions are rather simple too, but more
flexible than the logistic and monomial functions.

We used the standard Matlab implementation of these
methods and always chose the default parameters,
where the parameters of LOG, MON and POLY were
fitted by minimizing the least-squared error. In order
to have an accurate estimate of the MSE with respect
to the function class, we averaged the MSE over all
performed runs before comparing them.

General Remark FEach evaluation was performed
in the original data sets and in preprocessed versions
where isolated points (low-density points) were re-
moved. For the latter, we used the implementation
and parameters from [14], where a kernel density es-
timator with a Gaussian kernel is utilized. Note that
CURE per default uses this preprocessing step. In all
evaluations, we forced a decision by the algorithms,
where in case of ANM the direction with the highest
score of the independence test was taken.

Except for CURE, we averaged the results of each
method over 100 runs, where we uniformly sampled
500 data points for ANM and SVR if the data set
contains more than 500 data points. Since we did
not optimize the choice of functions and estimators,
we only summarize the results of the best perform-
ing ANM and IGCI methods. Accordingly, we only
summarize the results of the best performing MON,
POLY and NN setups. Note that the results of IGCI
and LINGAM are constant over all runs since all data
points were used.

5.2 Artificial data

For experiments with artificial data, we performed
evaluations with simulated cause-effect pairs generated
for a benchmark comparison in [15].

5.2.1 Simulated benchmark cause-effect pairs

The work of [15] provides simulated cause-effect pairs
with randomly generated distributions and functional
relationships under different conditions. As pointed
out by [15], the scatter plots of these simulated data
look similar to those of real-world data. We took
the same data sets as used in [15] and extended
the reported results with an evaluation with CURE,
LINGAM, RECL

The data sets are categorized into four different cate-

gories:

e SIM: Pairs without confounders. The results are
shown in Figure 1(a)

e SIM-c: A similar scenario as SIM, but with one
additional confounder. The results are shown in
Figure 1(b)

e SIM-1n: Pairs with low noise level without con-
founder. The results are shown in Figure 1(c)

e SIM-G: Pairs where the distributions of C' and N
are almost Gaussian without confounder. The re-
sults are shown in Figure 1(d)

The general form of the data generation process with-
out confounder but with measurement noise is

ClNPCvNNpN
NCNN(O,O'C),NENN(O,UE)
C=C"+Ng,E = fg(C',N)+ Ng

and with confounder

C'~pc,N ~pN,Z ~pz

C" = fe(C', Z)

NC NN(O,J@),NE NN(O,UE)
C=C"+N¢,E = fe(C",Z,N) + Ng,

where N¢, Np represent independent observational
Gaussian noise and the variances o¢ and og are cho-
sen randomly with respect to the setting.> More de-
tails can be found in Appendix C of [15]. Note that
adding noise to the cause (as it is done here) can also
be considered as a kind of confounding.

In all data sets except SIM-G, we normalized the data
for RECI. In SIM-G, Assumption 2 is violated, since
these variables have no compact support due to the
nearly Gaussian distribution. Therefore, we standard-
ized the data for RECI and IGCI instead of normal-
izing them. The good results of RECI show some ro-
bustness with respect to a different scaling.

Generally, ANM performs the best in all data sets,
while the performance gap, depending on the choice
of the class of regression functions, between ANM and
RECI is relatively small. On the other hand, in all
data sets, RECI always outperforms IGCI, CURE and
LiINGAM if a simple logistic or polynomial function is
utilized for the regression. Even though Theorem 1
does not exclude cases of a high noise level, it makes
a clear statement about low level noise. Therefore,

3Note that only Ng is Gaussian, while the regression

residual is non-Gaussian due to the nonlinearity of fr and
non-Gaussianity of N, Z.
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Figure 1: The best achieved performances of all meth-
ods in the artificial data sets.

as expected, RECI performs better in SIM-1n than in
SIM and SIM-c due to the low noise level. In all cases,
LINGAM performs very poorly due to the violations
of its core assumptions.

For RECI, similar function classes, such as 327 a;z
and Zf:() a;x', give similar performances. While LOG
performed the best in SIM, SIM-c and SIM-1n, a poly-
nomial function of the form Z?:o a;x" performed the
best in SIM-G.

ANM and RECI require a least-squares regression, but
ANM additionally depends on an independence test,
which can have a high computational cost and a big
influence on the performance. Therefore, even though
RECI does not outperform ANM, it represents a com-
petitive alternative with a lower computational cost,
depending on the regression model and MSE estima-
tion. Also, it can be expected that RECI performs
significantly better than ANM in cases where the de-
pendency between C' and N is very weak or non-
existent seeing that RECI explicitly allows an inde-
pendency. In comparison with IGCI, LINGAM and
CURE, RECI outperforms in almost all data sets.
Note that [15] performed more extensive experiments
and show more comparisons with ANM and IGCI in
these data sets, where additional parameter configura-
tions were tested.

5.3 Real-world data

In real-world data, the true causal relationship gen-
erally requires expert knowledge and can still lead to

4The data set can be

100
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Figure 2: The best achieved performances of all meth-
ods in the real-world data sets.

rather philosophical discussions in unclear cases. For
our evaluations, we considered the commonly used
cause-effect pairs (CEP) benchmark data sets. These
benchmark data sets provided, at the time of these
evaluations, 106 data sets with given cause and ef-
fect variables.* However, since we only consider a two
variable problem, we omit the multivariate data sets,
which leaves 100 data sets for the evaluations. Each
data set comes with a corresponding weight. This is
because several data sets are too similar to consider
them as independent examples, hence they get lower
weights. Therefore, the accuracy is a weighted sum
over all cause-effect pairs. The experimental setup is
the same as for the artificial data sets, but we doubled
the number of internal repetition of CURE to eight
times in order to provide the same experimental con-
ditions as in [14].

Figure 2 shows the results of the evaluations. In
all cases, RECI performs better than all other meth-
ods. Surprisingly, the very simple monomial functions
ax® 4+ c and ax? + ¢ perform the best, even though it is
very unlikely that these functions are able to capture
the true function ¢. We obtained similar observations
in the artificial data sets. The work of [15] provides
further evaluations of ANM and IGCI in the original
CEP data set with additional parameter configurations.
Regarding CURE, we had to use a simplified imple-
mentation due to the high computational cost, which
did not perform as well as the results reported in [14].

5.4 Error ratio as rejection criterion

It is not clear how to define a confidence measure for
the decision of RECI. However, since Theorem 1 states
that the correct causal direction has a smaller error,
we evaluated the idea of using the error ratio

min(E[Var[ X |Y]], E[Var[Y|X]]) )
max(E[Var[ X |Y]], E[Var[Y|X]])

found on
https://webdav.tuebingen.mpg.de/cause-effect /. More
details and discussion about the causal relationship of the
first 100 pairs can be found in [15].
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Figure 3: The performance of RECI in various data
sets with respect to the error ratio (9) as rejection cri-
terion. A small ratio indicates a high error difference.

as a rejection criterion for a decision. The idea is that
the smaller the error ratio the higher the confidence of
the decision due to the large error difference. Note that
we formulated the ratio inverse to Theorem 1 in order
to get a value on [0,1]. We re-evaluated the experi-
mental results by considering only data sets where at
most a certain error ratio was obtained by RECI. Fig-
ures 3(a)-3(d) show some examples of the performance
of RECI if we use the error ratio as rejection criterion.
In the figures, an error ratio of 0.2, for instance, can
be seen as a surrogate indicator of RECI’s accuracy if
we only consider data sets where the error ratio was
< 0.2 and exclude data sets where the error ratio was
> (0.2. In this sense, we can get an idea of how useful
the error ratio is as rejection criterion. While Figures
3(b)-3(d) support the intuition that the smaller the
error ratio, the higher the decision confidence, Figure
3(a) has a contradictive behavior. However, note that
only a few data sets have an error ratio < 0.3 and the
majority have an error ratio between 0.3 and 0.9, ex-
cept for Figure 3(c) where the majority have an error
ratio > 0.9.

5.5 Discussion

Due to the greatly varying behavior and the choice of
various optimization parameters, a clear rule of which
regression function is the best choice for RECI re-
mains an unclear and difficult problem. Overall, it
seems that simple functions are better in capturing
the error asymmetries than complex models. How-
ever, a clear explanation for this is still lacking. A
possible reason for this might be that simple functions
in causal direction already achieve a small error, while

in anticausal direction, more complex models are re-
quired to achieve a small error. To justify specula-
tive remarks of this kind raises deep questions about
the foundations of causal inference. Using algorithmic
information theory, one can, for instance, show that
the algorithmic independence of pc and pg|c implies
K(pc) + K(pejc) < K(pe) + K(pop), if K denotes
the description length of a distribution in the sense of
Kolmogorov complexity, for details see Section 4.1.9 in
[3]. In this sense, appropriate independence assump-
tions between pc and pg|c imply that pg ¢ has a sim-
pler description in causal direction than in anticausal
direction.

Regarding the computational cost, we want to empha-
size that RECI, depending on the implementation de-
tails, can have a significantly lower computational cost
than ANM and CURE, while providing comparable or
even better results. Further, it can be easily imple-
mented and applied. More extensive experiments and
comparisons can be found in [22].

6 Conclusion

We presented an approach for causal inference based
on an asymmetry in the prediction error. Under the
assumption of an independence among the data gen-
erating function, the noise, and the distribution of the
cause, we proved (in the limit of small noise) that the
conditional variance of predicting the cause by the ef-
fect is greater than the conditional variance of predict-
ing the effect by the cause. Here, the additive noise is
not assumed to be independent of the cause (in con-
trast to so-called additive noise models). The stated
theorem might also be interesting for other statistical
applications.

We proposed an easily implementable and applicable
method, which we call RECI, that exploits this asym-
metry for causal inference. The evaluations show sup-
porting results and leave room for further improve-
ments. By construction, the performance of RECI
depends on the regression method. According to our
limited experience so far, regression with simple model
classes (that tend to underfit the data) performs rea-
sonably well. To clarify whether this happens because
the conditional distributions tend to be simpler — in a
certain sense — in causal direction than in anticausal
direction has to be left for the future.
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