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Appendix

A Proofs

A.1 Derivation of the smooth relaxed dual

Recall that

.
OTgq(a,bd) Telll/'{lgzlb)zt c; + Q(ty). (16)

We now add Lagrange multipliers for the two equality constraints but keep the constraint 7' > 0 explicitly:

T T _ T T _
OTq(a, b)_%%aemm BE[R"Zt c; + Q(t; (T1, —a)+B"(T"1,, —b).

Since is a convex optimization problem with only linear equality and inequality constraints, Slater’s condi-
tions reduce to feasibility [Boyd and Vandenberghe, 2004, §5.2.3] and hence strong duality holds:

OTq(a,b) = _max min Y tle; +Qt;) + o' (T, —a) + B7(T 1, —b)
7 20 &
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et o Zan%’gt & = film) = Ut;) —ala =BT
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T T T
e a'a+pB b— 221?5@ (a+ Bl — cj) — Q(ty).

Finally, plugging the expression of @ gives the claimed result.

A.2 Derivation of the convex conjugate

The convex conjugate of OTq(a,b) w.r.t. the first argument is

OTh(g,b) = sup g'a— O0Tq(a,b).
acA™

Following a similar argument as [Cuturi and Peyré| |2016, Theorem 2.4], we have

n
* _ T o
OT5(g:b) = max (T'gl, —C) Zﬂ(tg)
TT1,,=b J=1
Notice that this is an easier optimization problem than , since there are equality constraints only in one
direction. [Cuturi and Peyré| [2016] showed that this optimization problem admits a closed form in the case of

entropic regularization. Here, we show how to compute OT§g for any strongly-convex regularization.

The problem clearly decomposes over columns and we can rewrite it as

0Tg(g,b) = max t;r(g —c;) —Qt))



Smooth and Sparse Optimal Transport

where we defined Q;(y) = bijQ(bjy) and where maxq is defined in (8).

A.3 Expression of the strongly-convex duals
Using a similar derivation as before, we obtain the duals of and .

Proposition 3 Duals of and

1 1
ROT b) = ——P* (-2 — —®*(-28,b
‘P(a7 ) a,gé%?)%(]) 2 ( aaa’) 2 ( ﬂv )

f/{b'/Lp(a,b) = max —-®*(—a,a)+B'b

o,B€P(C)
= max —®*(—a,a) b max(a; — ¢ 5),
acR™ ze[m]
j=1
where ®* is the conjugate of ® in the first argument.
The duals are strongly convex if ® is smooth.
When ®(z,y) = 5 [lz — y||*, ®*(~e,a) = [la|* — ' a. Plugging that expression in the above, we get
ROTs(a,b) = max aTa+,3Tb—'y(||a||2+ 18]1%) (17)

a,BeP(C)

and

ﬁ(\)_ip(a,b): max a'a+B'b— 7||ozH2

o,BeP(C)
n ’Y
T 2
= max @ a— b; ma i) — = |la]|”.
nax le[x]( = ciy) — 5l

j=1

This corresponds to the original dual and semi-dual with squared 2-norm regularization on the variables.

A.4 Proof of Theorem [I]

Before proving the theorem, we introduce the next two lemmas, which bound the regularization value achieved
by any transportation plan.

Lemma 2 Bounding the entropy of a transportation plan

Let H(a) = =3, ailoga; and H(T) == —3_, ;t; jlogt; ; be the joint entropy.
Leta e A™, be A™ and T € U(a,b). Then,

max{H(a), H(b)} < H(T) < H(a) + H(b).

Proof. See, for instance, [Cover and Thomas|, [2006].

Together with 0 < H(a) < logm and 0 < H(b) < logn, this provides lower and upper bounds for the entropy of
a transportation plan. As noted in |Cuturi, 2013, the upper bound is tight since

o H(T)=H(ab") = H(a) + H(b).

Lemma 3 Bounding the squared 2-norm of a transportation plan

Letae A™, be A™ and T € U(a,b). Then,

m n ﬂ bf]_i 2 2 . 2 2
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Proof. The tightest lower bound is given by min
TeU(a,b

)

)||TH2. An exact iterative algorithm was proposed in [Calvillo

and Romero, [2016] to solve this problem. However, since we are interested in an explicit formula, we consider
instead the lower bound Trlnin | T||? (i.e., we ignore the non-negativity constraint). It is known [Romerol [1990]
n=a

T71,,=b

that the minimum is achieved at ¢; ; = % + % --L

mn’

hence our lower bound. For the upper bound, we have

We can do the same with b € A™ to obtain ||T]|?> < ||b]|?, yielding the claimed result. [J

Together with 0 < |la]|> <1 and 0 < ||b]|? < 1, this provides lower and upper bounds for the squared 2-norm of
a transportation plan.

Proof of the theorem. Let T and T{ be optimal solutions of and , respectively. Then,
OT(a,b) + UTg) = (T", C) + UTg) < (T4, C) + QUTY) = OTgo(a, b).

Likewise,
OTq(a,b) = (T4, C) + QT5) < (T*,C) + Q(T*) = OT(a,b) + Q(T™).

Combining the two, we obtain
OT(a,b) + Q(T3) < OTq(a,b) < OT(a,b) + Q(T™).

Using T*, T4 € U(a, b) together with Lemma [2f and Lemma [3| gives the claimed results.

A.5 Proof of Theorem [2]
To prove the theorem, we first need the following two lemmas.

Lemma 4 Bounding the 1-norm of a and 3 for (e, 3) € P(C)
Let o, B € P(C) with extra constraints a'1,, =0 and a'a+ B7b >0, where a € A™ and b € A"™. Then,

0 < llafli + 8l < [[Clloc (v +n)

where
V= max{(? +n/m) ||a71||OC ) ||b71||oo} :

Proof. The proof technique is inspired by [Meshi et al.| [2012, Supplementary material Lemma 1.2].

The 1-norm can be rewritten as

I 181 = o, T ats B
se{-1,1}"
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Our goal is to upper bound the following objective

max r"a+s'8 st. 0<a'a+pA3"b,
acR™,BeRn
ai + B < ¢,
aTlm =0,

with a constant that does not depend on r and s. We call the above the dual problem. Its Lagrangian is

m,n
L(e, B, v, T) =7 a+s B+ pa’ 1y, +v(a a+BTb)+ > ti;(ci;—oi—B)
ij=1

=(r+plp+va—-T1,) a+(s+vb—T"1,) 8+ (T,C)
with 4 € R, v > 0, T > 0. Maximizing the Lagrangian w.r.t. a and 3 gives the corresponding primal problem

min (T,C) st. Tl,=va+r+ ul,,
T>0, peR, v>0

T'1,, =vb+s.

By weak duality, any feasible primal point provides an upper bound of the dual problem. We start by choosing
w= %(Zj 85— >_;1i) so that 3, . ¢; ; provides the same values w.r.t. the last two constraints. Next, we choose

24 n/m 1
V = max { maX——,Inax;—
i a; 7 bj

which ensures the non-negativity of va + r + ul,, and vb + s regardless of r and s. It follows that the
transportation plan 7" defined by

1
T= m(ya +r+ply)(wb+s8)T

is feasible. We finally bound the objective, (T, C) < |C| >, ;ti; < [Cl, (v +n). O

Lemma 5 Bounding the 1-norm of a for (a,-) € P(C)
Let v, B € P(C) with extra constraints > " a; =0 and a"a+B7b >0, where a € A™ and b € A™. Then,

0< lels < 2/|Cllos a7 . -

Proof. Similarly as before, our goal is to upper bound
max r'a st. 0<a'a+B'b,
aEeR™ BeR™
a; + B < cijs
a'l, =0,
with a constant which does not depend on r. The corresponding primal is
i T,C . T1, = 1
TZO,I,z?Gl%,VZO< C) s n=vat Tt pln,
T'1,, = vb.

By weak duality, any feasible primal point gives us an upper bound. We start by choosing © = % >, 7 so that
>_i; ti,j provides the same values w.r.t. the last two constraints. Next, we choose, v = max 2 which ensures the
3

a;’
non-negativity of va + r + pl,, (vb > 0 is also satisfied since v > 0) which appears in the r.h.s. of the second
constraint, independently of r. It follows that the transportation plan T' defined by

= W(V& + 74 pul,y,)wb)" = (va+r+ pl,,)b"
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is feasible. We finally bound the objective

(T,0) <Ol Y tij < vICle =21C] a7,
2]

which concludes the proof. [
Proof of the theorem. We begin by deriving the bound for the relaxed primal. Let (a*,3*) and (a}, 8%) be
optimal solutions of (3) and (17)), respectively. Since (a%) a+ (85)"b < (a*)Ta + (8*) b, we have

ROTy(a,b) < OT(a,b) - Z(aa|® + [ Bo ).
Likewise,

OT(a,b) ~ J(le*[” + 8*]*) < ROTa(a,b).

Combining the two, we get
’y * * ’y
OT(a,b) — 5 (le*|* + |8*]*) < ROTq(a, b) < OT(a,b) -  (lleva|* + [|Be[|*). (18)

Hence we need to bound variables o, 8 € P(C). Since |- |2 < | - |1, we can upper bound |o* |1 + |8*]1. In
addition, we can always add the additional constraint that a'a + 8'd > 0"a 4+ 0"b = 0 since (0,0) is dual
feasible for . Since for any optimal pair a*,3*, the pair a* — o1, 8* 4+ o1 is also feasible and optimal for
any o € R, we can also add the constraint &' 1,, = 0. The obtained bound will obviously hold for any optimal
pair a*, 3*. Hence, we can apply Lemma By the same reasoning but using the constraint 3'1, = 0 in place
of a'1,, = 0, we can obtain a similar bound. By combining these two bounds, we obtain our final bound:

lell1 + [I8]l1 < |Clloc min{ry +n,v2 +m}
where

v = max {(2+n/m) o~ 67}
vy =max {[la™| . (2+m/n) [b7H]_}.
Taking the square of this bound and plugging the result in gives the claimed result. Applying the same

reasoning with Lemma [5| gives the claimed result for the semi-relaxed primal.

B Alternating minimization with exact block updates

General case. Let B(a) be an optimal solution of (7)) given « fixed, and similarly for a(3). From the first-order
optimality conditions,

Vi (a+ Bi(a)ly —¢;) 1 =b; Vi€ [n] (19)
and similarly for a given 3 fixed. Solving these equations is non-trivial in general. However, because
Viéa (a+ Bj(a)ly, — ¢;) = b;Vmaxg, (a — ¢ )

holds Yo € R™, j € [n], we can retrieve ;(a) if we know how to compute Vmaxg(xz) and the inverse map
(Vda)~t(y) exists. That map exists and equals VQ(y) provided that Q is differentiable and y > 0.

Entropic regularization. It is easy to verify that is satisfied with

=71 b here K i=e
ﬁ(a)_'YOg m where = e

e
and similarly for a(3). These updates recover the iterates of the Sinkhorn algorithm [Cuturi, [2013].
Squared 2-norm regularization. Plugging the expression of Vg in , we get that B(a) must satisfy

[+ Bj(a) Ly, — ¢;] {1 =yb; V) € [n].
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Close inspection shows that it is exactly the same optimality condition as the Euclidean projection onto the

simplex argglinHy — x||? must satisfy, with = O‘V_b;:j. Let z;11 > -+ > x[;) be the values of « in sorted order.
yeam

Following [Michelot], 1986, [Duchi et al.l |2008], if we let

A
p = max {z € [m]: xp) — h <me - 1) > O}
r=1

then y* is eractly achieved at [x + %J;‘)lm]% where

The expression for a(3) is completely symmetrical. While a projection onto the simplex is required for each
coordinate, as discussed in §3.3] this can be done in expected linear time. In addition, each coordinate-wise
solution can be computed in parallel.

Alternating minimization. Once we know how to compute () and «(3), there are a number of ways
we can build a proper algorithm to solve the smoothed dual. Perhaps the simplest is to alternate between
B + B(a) and a <+ a(3). For entropic regularization, this two-block coordinate descent (CD) scheme is known
as the Sinkhorn algorithm and was recently popularized in the context of optimal transport by |Cuturi [2013].
A disadvantage of this approach, however, is that computational effort is spent updating coordinates that may
already be near-optimal. To address this issue, we can instead adopt a greedy CD scheme as recently proposed
for entropic regularization by |Altschuler et al.[[2017].

C Additional experiments

We ran the same experiments as Figure [2] and Figure [3] on one more image pair: “Grafiti” by Jon Ander and
“Rainbow Bridge National Monument Utah”, by Bernard Spragg. Both images are in the public domain. The
results, presented in Figure [ and Figure [f] below, confirm the empirical findings described in and The
images are available at https://github.com/mblondel/smooth-ot/tree/master/datal


https://github.com/mblondel/smooth-ot/tree/master/data
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Figure 5: Same experiment as Figure [3]on one more image pair.
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Figure 6: Same experiment as Figure [2] on one more image pair.



