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B Proofs from Section 2

B.1 Proof of Proposition 1

Proof. We prove the following relations:

• ⌫ � �, ⌫̌ � �̌:
By setting S = ; in both Eq. (4) and Eq. (5), we obtain 8S ✓ V :

X

i2S

f({i}) � �f(S), (19)

and
f(S) � �̌

X

i2S

f({i}). (20)

The result follows since, by definition of ⌫ and ⌫̌, they are the largest scalars such that Eq. (19) and Eq. (20)
hold, respectively.

• � � 1 � ↵̌, �̌ � 1 � ↵:
Let S,⌦ ✓ V be two arbitrary disjoint sets. We arbitrarily order elements of ⌦ = {e

1

, · · · , e|⌦|} and we let
⌦j�1

denote the first j � 1 elements of ⌦. We also let ⌦
0

be an empty set.

By the definition of ↵̌ (see Eq. (7)) we have:

|⌦|X

j=1

f ({ej}|S) =
|⌦|X

j=1

f ({ej}|S [ {ej} \ {ej})

�
|⌦|X

j=1

(1� ↵̌)f ({ej}|S [ {ej} \ {ej} [ ⌦j�1

)

= (1� ↵̌)f (⌦|S) , (21)

where the last equality is obtained via telescoping sums.

Similarly, by the definition of ↵ (see Eq. (6)) we have:

(1� ↵)

|⌦|X

j=1

f ({ej}|S) =
|⌦|X

j=1

(1� ↵)f ({ej}|S [ {ej} \ {ej})


|⌦|X

j=1

f ({ej}|S [ {ej} \ {ej} [ ⌦j�1

)

= f (⌦|S) . (22)

Because S and ⌦ are arbitrary disjoint sets, and both � and �̌ are the largest scalars such that for all disjoint
sets S,⌦ ✓ V the following holds

P|⌦|
j=1

f({ej}|S) � �f(⌦|S) and �̌

P|⌦|
j=1

f ({ej}|S)  f (⌦|S), it follows
from Eq. (21) and Eq. (22), respectively, that � � 1� ↵̌ and �̌ � 1� ↵.
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B.2 Proof of Remark 1

Proof. Consider any set S ✓ V , and A and B such that A [B = S, A \B = ;. We have

f(A) + f(B)

f(S)
�

⌫̌

P
i2A f({i}) + ⌫̌

P
i2B f({i})

f(S)
=

⌫̌

P
i2S f({i})
f(S)

� ⌫⌫̌,

where the first and second inequality follow by the definition of ⌫ and ⌫̌ (Eq. (8) and Eq. (9)), respectively.
By the definition (see Eq. (10)), ✓ is the largest scalar such that f(A) + f(B) � ✓f(S) holds, hence, it follows
✓ � ⌫⌫̌.

C Proofs of the Main Result (Section 3)

C.1 Proof of Lemma 2

We reproduce the proof from [2] for the sake of completeness.

Proof.

f(S \ E⇤
S) = f(S)� f(S) + f(S \ E⇤

S)

= f(S
0

[ S

1

) + f(S \ E
0

)� f(S \ E
0

)� f(S) + f(S \ E⇤
S)

= f(S
1

) + f(S
0

| S
1

) + f(S \ E
0

)� f(S)� f(S \ E
0

) + f(S \ E⇤
S)

= f(S
1

) + f(S
0

| (S \ S
0

)) + f(S \ E
0

)� f(E
0

[ (S \ E
0

))� f(S \ E
0

) + f(S \ E⇤
S)

= f(S
1

) + f(S
0

| (S \ S
0

))� f(E
0

| (S \ E
0

))� f(S \ E
0

) + f(S \ E⇤
S)

= f(S
1

) + f(S
0

| (S \ S
0

))� f(E
0

| (S \ E
0

))� f(E
1

[ (S \ E⇤
S)) + f(S \ E⇤

S)

= f(S
1

) + f(S
0

| (S \ S
0

))� f(E
0

| (S \ E
0

))� f(E
1

| S \ E⇤
S)

= f(S
1

)� f(E
1

| S \ E⇤
S) + f(S

0

| (S \ S
0

))� f(E
0

| (S \ E
0

))

� (1� µ)f(S
1

), (23)

where we used S = S

0

[S

1

, E⇤
S = E

0

[E

1

. and (23) follows from monotonicity, i.e., f(S
0

| (S \S
0

))�f(E
0

| (S \
E

0

)) � 0 (due to E

0

✓ S

0

and S \ S
0

✓ S \ E
0

), along with the definition of µ.

C.2 Proof of Lemma 3

Proof. We start by defining S

0
0

:= OPT
(k�⌧,V \E

0

)

\ (S
0

\ E
0

) and X := OPT
(k�⌧,V \E

0

)

\ S0
0

.

f(S
0

\ E
0

) + f(OPT
(k�⌧,V \S

0

)

) � f(S0
0

) + f(X) (24)

� ✓f(OPT
(k�⌧,V \E

0

)

) (25)

� ✓f(OPT
(k�⌧,V \E⇤

S)

), (26)

where (24) follows from monotonicity as S0
0

✓ (S
0

\E
0

) and (V \ S
0

) ✓ (V \E
0

). Eq. (25) follows from the fact
that OPT

(k�⌧,V \E
0

)

= S

0
0

[X and the bipartite subadditive property (10). The final equation follows from the
definition of the optimal solution and the fact that E⇤

S = E

0

[ E

1

.

By rearranging and noting that f(S \E⇤
S) � f(S

0

\E
0

) due to (S
0

\E
0

) ✓ (S \E⇤
S) and monotonicity, we obtain

f(S \ E⇤
S) � ✓f(OPT

(k�⌧,V \E⇤
S)

)� f(OPT
(k�⌧,V \S

0

)

).

C.3 Proof of Theorem 1

Before proving the theorem we outline the following auxiliary lemma:



Ilija Bogunovic†, Junyao Zhao†, Volkan Cevher

Lemma 5 (Lemma D.2 in [2]). For any set function f , sets A,B, and constant ↵ > 0, we have

max{↵f(A),�f(B)� f(A)} �
✓

↵

1 + ↵

◆
�f(B). (27)

Next, we prove the main theorem.

Proof. First we note that � should be chosen such that the following condition holds |S
0

| = d�⌧e  k. When
⌧ = dcke for c 2 (0, 1) and k ! 1 the condition � <

1

c su�ces.

We consider two cases, when µ = 0 and µ 6= 0. When µ = 0, from Lemma 2 we have

f(S \ E⇤
S) � f(S

1

) (28)

On the other hand, when µ 6= 0, by Lemma 2 and 4 we have

f(S \ E⇤
S) � max{(1� µ)f(S

1

), (� � 1)⌫̌(1� ↵̌)µf(S
1

)}

� (� � 1)⌫̌(1� ↵̌)

1 + (� � 1)⌫̌(1� ↵̌)
f(S

1

). (29)

By denoting P := (��1)⌫̌(1�↵̌)
1+(��1)⌫̌(1�↵̌) we observe that P 2 [0, 1) once � � 1. Hence, by setting � � 1 and taking the

minimum between two bounds in Eq. (29) and Eq. (28) we conclude that Eq. (29) holds for any µ 2 [0, 1].

By combining Eq. (29) with Lemma 1 we obtain

f(S \ E⇤
S) � P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \S
0

)

). (30)

By further combining this with Lemma 3 we have

f(S \ E⇤
S) � max{✓f(OPT

(k�⌧,V \E⇤
S)

)� f(OPT
(k�⌧,V \S

0

)

), P
⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \S
0

)

)}

� ✓

P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘

1 + P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \E⇤
S)

) (31)

where the second inequality follows from Lemma 5. By plugging in ⌧ = dcke we further obtain

f(S \ E⇤
S) � ✓

P

⇣
1� e

�� k��dcke�1

(1�c)k

⌘

1 + P

⇣
1� e

�� k��dcke�1

(1�c)k

⌘
f(OPT

(k�⌧,V \E⇤
S)

)

� ✓

P

✓
1� e

��
1��c� 1

k
� �

k
1�c

◆

1 + P

✓
1� e

��
1��c� 1

k
� �

k
1�c

◆f(OPT
(k�⌧,V \E⇤

S)

)

k!1����!
✓P

⇣
1� e

�� 1��c
1�c

⌘

1 + P

⇣
1� e

�� 1��c
1�c

⌘
f(OPT

(k�⌧,V \E⇤
S)

).

Finally, Remark 2 follows from Eq. (30) when ⌧ 2 o

⇣
k
�

⌘
and � � log k (note that the condition |S

0

| = d�⌧e  k

is thus satisfied), as k ! 1, we have both k�d�⌧e
k�⌧ ! 1 and P = (��1)⌫̌(1�↵̌)

1+(��1)⌫̌(1�↵̌) ! 1, when ⌫̌ 2 (0, 1] and

↵̌ 2 [0, 1).
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C.4 Proof of Corollary 1

To prove this result we need the following two lemmas that can be thought of as the alternative to Lemma 2
and 4.

Lemma 6. Let µ0 2 [0, 1] be a constant such that f(E
1

) = µ

0
f(S

1

) holds. Consider f(·) with bipartite subaddi-
tivity ratio ✓ 2 [0, 1] defined in Eq. (4). Then

f(S \ E⇤
S) � (✓ � µ

0)f(S
1

). (32)

Proof. By the definition of ✓, f(S
1

\ E
1

) + f(E
1

) � ✓f(S
1

). Hence,

f(S \ E⇤
S) � f(S

1

\ E
1

)

� ✓f(S
1

)� f(E
1

)

= (✓ � µ

0)f(S
1

).

Lemma 7. Let � be a constant such that |S
0

| = d�⌧e and |S
0

|  k, and let ⌫̌, ⌫ 2 [0, 1] be superadditivity and
subadditivity ratio (Eq. (9) and Eq. (8), respectively). Finally, let µ0 be a constant defined as in Lemma 6. Then,

f(S \ E⇤
S) � (� � 1)⌫̌⌫µ0

f(S
1

). (33)

Proof. The proof follows that of Lemma 4, with two modifications. In Eq. (34) we used the subadditive property
of f(·), and Eq. (35) follows by the definition of µ0.

f(S \ E⇤
S) � f(S

0

\ E
0

)

� ⌫̌

X

ei2S
0

\E
0

f({ei})

� |S
0

\ E
0

|
|E

1

| ⌫̌

X

ei2E
1

f({ei})

� (� � 1)⌧

⌧

⌫̌

X

ei2E
1

f({ei})

� (� � 1)⌫̌⌫f (E
1

) (34)

= (� � 1)⌫̌⌫µ0
f(S

1

). (35)

Next we prove the main corollary. The proof follows the steps of the proof from Appendix C.3, except that here
we make use of Lemma 6 and 7.

Proof. We consider two cases, when µ

0 = 0 and µ

0 6= 0. When µ

0 = 0, from Lemma 6 we have

f(S \ E⇤
S) � ✓f(S

1

).

On the other hand, when µ

0 6= 0, by Lemma 6 and 7 we have

f(S \ E⇤
S) � max{(✓ � µ

0)f(S
1

), (� � 1)⌫̌⌫µ0
f(S

1

)}

� ✓

(� � 1)⌫̌⌫

1 + (� � 1)⌫̌⌫
f(S

1

). (36)

By denoting P := (��1)⌫̌⌫
1+(��1)⌫̌⌫ and observing that P 2 [0, 1) once � � 1, we conclude that Eq. (36) holds for any

µ

0 2 [0, 1] once � � 1.

By combining Eq. (36) with Lemma 1 we obtain

f(S \ E⇤
S) � ✓P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \S
0

)

). (37)



Ilija Bogunovic†, Junyao Zhao†, Volkan Cevher

By further combining this with Lemma 3 we have

f(S \ E⇤
S) � max{✓f(OPT

(k�⌧,V \E⇤
S)

)� f(OPT
(k�⌧,V \S

0

)

), ✓P
⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \S
0

)

)}

�
✓

2

P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘

1 + ✓P

⇣
1� e

�� k�d�⌧e
k�⌧

⌘
f(OPT

(k�⌧,V \E⇤
S)

), (38)

where the second inequality follows from Lemma 5. By plugging in ⌧ = dcke in the last equation and by letting
k ! 1 we arrive at:

f(S \ E⇤
S) �

✓

2

P

⇣
1� e

�� 1��c
1�c

⌘

1 + ✓P

⇣
1� e

�� 1��c
1�c

⌘
f(OPT

(k�⌧,V \E⇤
S)

).

Finally, from Eq. (38), when ⌧ 2 o

⇣
k
�

⌘
and � � log k, as k ! 1, we have both k�d�⌧e

k�⌧ ! 1 and P = (��1)⌫̌⌫
1+(��1)⌫̌⌫ !

1 (when ⌫, ⌫̌ 2 (0, 1]). It follows

f(S \ E⇤
S)

k!1����! ✓

2(1� e

��)

1 + ✓(1� e

��)
f(OPT

(k�⌧,V \E⇤
S)

).

D Proofs from Section 4

D.1 Proof of Proposition 2

Proof. The goal is to prove: �̌ � m
L .

Let S ✓ [d] and ⌦ ✓ [d] be any two disjoint sets, and for any set A ✓ [d] let x(A) = argmax
supp(x)✓A,x2X l(x).

Moreover, for B ✓ [d] let x(A)

B denote those coordinates of vector x(A) that correspond to the indices in B.

We proceed by upper bounding the denominator and lower bounding the numerator in (5). By definition of x(S)

and strong concavity of l(·),

l(x(S[{i}))� l(x(S))  hrl(x(S)),x(S[{i}) � x(S)i � m

2

���x(S[{i}) � x(S)

���
2

 max
v:v

(S[{i})c=0

hrl(x(S)),v � x(S)i � m

2

���v � x(S)

���
2

=
1

2m

���rl(x(S))i
���
2

where the last equality follows by plugging in the maximizer v = x(S) + 1

mrl(x(S))i. Hence,

X

i2⌦

⇣
l(x(S[{i}))� l(x(S))

⌘


X

i2⌦

1

2m

���rl(x(S))i
���
2

=
1

2m

���rl(x(S))
⌦

���
2

.

On the other hand, from the definition of x(S[⌦) and due to smoothness of l(·) we have

l(x(S[⌦))� l(x(S)) � l(x(S) +
1

L

rl(x(S))
⌦

)� l(x(S))

� hrl(x(S)),
1

L

rl(x(S))
⌦

i � L

2

����
1

L

rl(x(S))
⌦

����
2

=
1

2L

���l(x(S))
⌦

���
2

.
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It follows that
l(x(S[⌦))� l(x(S))P

i2⌦

�
l(x(S[{i}))� l(x(S))

� � m

L

, 8 disjoint S,⌦ ✓ [d]

We finish the proof by noting that �̌ is the largest constant for the above statement to hold.

D.2 Variance Reduction in GPs

D.2.1 Non-submodularity of Variance Reduction

The goal of this section is to show that the GP variance reduction objective is not submodular in general.
Consider the following PSD kernel matrix:

K =

2

4
1

p
1� z

2 0p
1� z

2 1 z

2

0 z

2 1

3

5
.

We consider a single x = {3} (i.e. M is a singleton) that corresponds to the third data point. The objective is
as follows:

F (i|S) = �

2

{3}|S � �

2

{3}|S[i.

The submodular property implies F ({1}) � F ({1}|{2}). We have:

F ({1}) = �

2

{3} � �

2

{3}|{1}

= 1�K({3}, {3})�K({3}, {1})(K({1}, {1}) + �

2)�1

K({1}, {3})
= 1� 1 + 0 = 0,

and

F ({2}) = �

2

{3} � �

2

{3}|{2}

= 1�K({3}, {3})�K({3}, {2})(K({2}, {2}) + �

2)�1

K({2}, {3})

= 1� (1� z

2(1 + �

2)�1

z

2) =
z

4

1 + �

2

,

and

F ({1, 2}) = �

2

{3} � �

2

{3}|{1,2}

= 1�K({3}, {3}) + [K({3}, {1}),K({3}, {2})]

1 + �

2

,K({2}, {1})
K({1}, {2}), 1 + �

2

��1


K({1}, {3})
K({2}, {3})

�

= 1� 1 + [0, z2]


1 + �

2

,

p
1� z

2

p
1� z

2

, 1 + �

2

��1


0
z

2

�

=
z

4(1 + �

2)

(1 + �

2)2 � (1� z

2)
.

We obtain,

F ({1}|{2}) = F ({1, 2})� F ({2})

=
z

4

(1 + �

2)� (1� z

2)(1 + �

2)�1

� z

4

1 + �

2

.

When z 2 (0, 1), F ({1}|{2}) is strictly greater than 0, and hence greater than F ({1}). This is in contradiction
with the submodular property which implies F ({1}) � F ({1}|{2}).
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D.2.2 Proof of Proposition 3

Proof. We are interested in lower bounding the following ratios: f({i}|S\{i}[⌦)

f({i}|S\{i}) and f({i}|S\{i})
f({i}|S\{i}[⌦)

.

Let k
max

2 R
+

be the largest variance, i.e. k(xi,xi)  k

max

for every i. Consider the case when M is a singleton
set:

f(i|S) = �

2

x|S � �

2

x|S[i.

By using ⌦ = {i} in Eq. (39), we can rewrite f(i|S) as

f(i|S) = a

2

iB
�1

i ,

where ai, Bi 2 R
+

, and are given by:

ai = k(x,xi)� k(x,XS)(k(XS ,XS) + �

2I)�1

k(XS ,xi)

and

Bi = �

2 + k(xi,xi)� k(xi,XS)(k(XS ,XS) + �

2I)�1

k(XS ,xi).

By using the fact that k(xi,xi)  k

max

, for every i and S, we can upper bound Bi by �

2 + k

max

(note that
k(xi,xi)� k(xi,XS)(k(XS ,XS)+�

2I)�1

k(XS ,xi) � 0 as variance cannot be negative), and lower bound by �

2.
It follows that for every i and S we have:

a

2

i

�

2 + k

max

 f(i|S)  a

2

i

�

2

.

Therefore,

f({i}|S \ {i} [ ⌦)

f({i}|S \ {i}) � a

2

i /(�
2 + k

max

)

a

2

i /�
2

=
�

2

�

2 + k

max

, 8S,⌦ ✓ V, i 2 S \ ⌦,

f({i}|S \ {i})
f({i}|S \ {i} [ ⌦)

� a

2

i /(�
2 + k

max

)

a

2

i /�
2

=
�

2

�

2 + k

max

, 8S,⌦ ✓ V, i 2 S \ ⌦.

It follows:

(1� ↵) � �

2

�

2 + k

max

, and

(1� ↵̌) � �

2

�

2 + k

max

.

The obtained result also holds for any set M ✓ [n].

D.2.3 Alternative GP variance reduction form

Here, the goal is to show that the variance reduction can be written as

F (⌦|S) = �

2

x|S � �

2

x|S[⌦

= aB�1aT , (39)

where a 2 R1⇥|⌦\S|
+

, B 2 R|⌦\S|⇥|⌦\S|
+

and are given by:

a := k(x,X
⌦\S)� k(x,XS)(k(XS ,XS) + �

2I)�1

k(XS ,X
⌦\S),

and

B := �

2I+ k(X
⌦\S ,X⌦\S)� k(X

⌦\S ,XS)(k(XS ,XS) + �

2I)�1

k(XS ,X
⌦\S).

This form is used in the proof in Appendix D.2.2.
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Proof. Recall the definition of the posterior variance:

�

2

x|S = k(x,x)� k(x,XS)
�
k(XS ,XS) + �

2I|S|
��1

k(XS ,x).

We have

F (⌦|S) = �

2

x|S � �

2

x|S[⌦

= k(x,XS[⌦

)
�
k(XS[⌦

,XS[⌦

) + �

2I|⌦[S|
��1

k(XS[⌦

,x)� k(x,XS)
�
k(XS ,XS) + �

2I|S|
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where we use the following notation:

m
1

:= k(x,XS),

m
2

:= k(x,X
⌦\S),

A
11

:= k(XS ,XS) + �

2I|S|,

A
12

:= k(XS ,X
⌦\S),

A
21

:= k(X
⌦\S , XS),

A
22

:= k(X
⌦\S ,X⌦\S) + �

2I|⌦\S|.

By using the inverse formula [39, Section 9.1.3] we obtain:
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where
B := A

22

�A
21

A�1
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A
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.

Finally, we obtain:
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By setting

a := m
2

�m
1

A�1

11

A
12

= k(x,X
⌦\S)� k(x,XS)(k(XS ,XS) + �

2I)�1

k(XS ,X
⌦\S)

and

aT := mT
2

�A
21

A�1

11

mT
1

= k(X
⌦\S ,x)� k(X

⌦\S ,XS)(k(XS ,XS) + �
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k(XS ,x),

we have
F (⌦|S) = aB�1aT ,

where
B = �

2I|⌦\S| + k(X
⌦\S ,X⌦\S)� k(X

⌦\S ,XS)(k(XS ,XS) + �

2I|S|)
�1

k(XS ,X
⌦\S).
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E Additional Experiments
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Figure 6: Additional experiments for comparison of the algorithms on support selection task.


