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Abstract

Sequential hypothesis test and change-point
detection when the distribution parameters
are unknown is a fundamental problem in
statistics and machine learning. We show that
for such problems, detection procedures based
on sequential likelihood ratios with simple one-
sample update estimates such as online mirror
descent are nearly second-order optimal. This
means that the upper bound for the algorithm
performance meets the lower bound asymptot-
ically up to a log-log factor in the false-alarm
rate when it tends to zero. This is a blessing,
since although the generalized likelihood ra-
tio (GLR) statistics are optimal theoretically,
but they cannot be computed recursively, and
their exact computation usually requires infi-
nite memory of historical data. We prove the
nearly second-order optimality by making a
connection between sequential change-point
detection and online convex optimization and
leveraging the logarithmic regret bound prop-
erty of online mirror descent algorithm. Nu-
merical examples validate our theory.

1 Introduction

Sequential analysis is a classic topic in statistics con-
cerning online inference from a sequence of observations.
The goal is to make a statistical inference as quickly
as possible while controlling the false alarm rate. Two
related sequential analysis problems commonly stud-
ied are sequential hypothesis testing and sequential
change-point detection [Siegmund} [1985]. They arise
from various applications including online anomaly
detection, statistical quality control, biosurveillance,
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financial arbitrage detection and network security mon-
itoring (see, e.g., Siegmund)| [2013], | Tartakovsky et al.
[2014)).

We are interested in sequential change-point detection
when there are unknown parameters for data distribu-
tion. For instance, in change-point detection, given a
sequence of samples X7, X5, ..., a common assump-
tion is that they are i.i.d. with certain distribution fy
parameterized by 6, and the values of 0 are different
before and after the change-point. One can assume that
before the change, the parameter value is 6y. This is
reasonable since, in various settings, there is a relatively
large amount of background data. Thus, the parame-
ter @ in the normal state can be estimated with good
accuracy. After the change, the value of the parameter
switches to an unknown value, and it represents an
anomaly or novelty that needs to be discovered.

1.1 Motivation

First, we explore the dilemma of CUSUM and gen-
eralized likelihood ratio (GLR) statistics. Consider
change-point detection with unknown parameters. A
commonly used change-point detection method is the
so-called CUSUM procedure [Page, [1954]. It can
be derived from likelihood ratios. Assume that be-
fore the change, the samples X; follow a distribu-
tion fy,, and after the change, the samples X, fol-
low another distribution fy,. CUSUM procedure has
a recursive structure. Initiate with Wy = 0. The
likelihood-ratio statistic can be computed according to
Wit = max{W; + log(fo, (Xi41)/ fo,(Xi+1)), 0}, and
a change-point is detected whenever W; exceeds a pre-
specified threshold. Due to the recursive structure,
CUSUM is memory efficient, since it does not need
to store the historical data and only needs to record
the value of W;. However, one possible issue with
CUSUM is the choice of the post-change parameter
0. In practice, it is usually chosen to represent the
“smallest” change-of-interest. However, this choice is
somewhat subjective. In the multi-dimensional set-
ting, it is hard to define what the “smallest” change
would mean. Moreover, when the assume parameter



Nearly second-order optimality of online joint detection and estimation via one-sample update schemes

0, deviates significantly from the true parameter value,
CUSUM may suffer a severe performance degradation
|Granjon, [2013].

An alternative approach is the Generalized Likelihood
Ratio (GLR) statistic [Basseville et all [1993]. The
GLR statistic finds the maximum likelihood estimate
(MLE) of the post-change parameter and plugs it back
to the likelihood ratio to form the detection statistic.
To be more precise, for each hypothetical change-point
location k, the corresponding post-change samples are
{Xk+1,-..,X¢}. Using these samples, one can form
the MLE denoted as ék,t. Without knowing whether
the change occurs and where it occurs beforehand when
forming the GLR statistic, we have to maximize k over
all possible change locations. The GLR statistic is
given by maxy<¢ Yi_y 41 log(fy, , (Xi)/ fa, (X1)), and a
change is announced whenever it exceeds a pre-specified
threshold. The GLR statistic is more robust than
CUSUM |Lai, [1998], and it is particularly useful when
the post-change parameter may vary from one situation
to another. However, a drawback of GLR statistic is
that it is not memory efficient and it cannot be com-
puted recursively. Moreover, when there is a constraint
on the maximum likelihood estimator (such as sparsity),
MLE cannot have closed-form solution; one has to store
the historical data to re-estimates ék,t and re-compute
the summation Y;_y,, log(f;, ,(Xi)/fa,(X+)) when-
ever there is new data. As a remedy, the frequently
used window-limited GLR restricts the maximization
over k € (1,t] to be over k € (t — w,t]. However, this
does not help eliminate the time of the re-computation
of the summation.

In practice, rather than CUSUM or GLR, various one-
sample update schemes are used especially in machine
learning literature. The one-sample update schemes
perform online estimates of the unknown parameter
and plug the estimates into the likelihood ratio statistic
to perform detection. The one-sample update takes
the form of 6, = h( X, ét,l) for some function h that
uses only the most recent data and the previous esti-
mate. Some examples of one-sample estimate schemes
include online gradient descent and online mirror de-
scent (similar scheme has been used in |[Raginsky et al.
(2009} |2012]). The one-sample update enjoys efficient
computation, as the information from the new data
can be incorporated via low computational cost update
such as mirror descent, which even has closed-form
solution in some cases. It is also memory efficient since
the update only needs the most recent sample. Such
estimator may not correspond to the exact MLE, but
they tend to have good performance. An important
question remains to be answered: how much perfor-
mance do we lose by using one-sample update schemes
rather than the exact GLR?

1.2 Contributions

This paper aims to address the above question by prov-
ing the nearly second-order optimality of simple one-
sample update schemes for sequential hypothesis test
and change-point detection. The nearly second-order
optimality |[Tartakovsky et al., |2014] means that the
upper bound for performance matches the lower bound
up to a log-log factor. In particular, we consider like-
lihood ratios with plug-in online mirror descent esti-
mator. Our approach generalizes the non-anticipating
estimator framework |[Lorden and Pollak} 2005| from
detecting Gaussian mean shift and Gamma shape shift
to the exponential family with constrained parameters.
Moreover, we provide a more general framework to
prove the second-order optimality beyond Gaussian
assumption |Lorden and Pollak, [2008], through linking
the statistical efficiency with the regret bound for the
online optimization algorithm. Here we focus on on-
line mirror-descent, but the result can be generalized
to other schemes such as the online gradient descent.
The proof leverages the logarithmic regret property of
online mirror descent and the lower bound established
in statistical sequential change-point detection litera-
ture [Siegmund and Yakir, 2008, [Tartakovsky et al.,
2014]. Synthetic examples validate the performances
of one-sample update schemes.

The contributions of the paper are summarized as fol-
lows

e We provide a general upper bound for sequential
hypothesis test and change-point detection proce-
dures with the one-sample update schemes. The
upper bound explicitly captures the impact of es-
timation on detection by an estimation algorithm
dependent factor. This factor shows up as an addi-
tional term in the upper bound for the expected
detection delay, and it corresponds to the regret
bound of the estimator. This establishes an in-
teresting linkage between sequential change-point
detection and online convex optimizatio

e Using our upper bound and existing lower bound,
we show that the one-sample update schemes are
nearly second-order optimal for the exponential
family. Moreover, numerical examples verify the
good performance of one-sample update schemes.
They can perform better and are more robust than

! Although both fields, sequential change-point detection
and online convex optimization, study sequential data, the
precise connection between them is not clear, partly because
the performance metrics are different: the former concerns
with the tradeoff between false-alarm-rate and detection
delay, whereas the latter focuses on bounding the cumulative
loss incurred by the sequence of estimators through regret
bound |Azoury and Warmuth) 2001}, [Hazan) [2016].
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the likelihood ratio methods with pre-specified
parameters (e.g., CUSUM for change-point detec-
tion). Moreover, they are computationally efficient
alternatives of GLR statistic (which requires stor-
ing infinite samples) and cause little performance
loss relative to GLR.

The comparison of three approaches is summarized in
Table Il

Memory . Robust
Computation
Effi- Efficiency Perfor-
ciency mance
Likelihood ratio
with pre-specified
parameters: v v
SPRT/CUSUM
Generalized likeli-
hood ratio (GLR) v
with exact MLE
One-sample
update schemes v v v

Table 1: Comparison of three approaches.

1.3 Literature and related work

Besides GLR procedure [Lai, (1995, [1998], another ap-
proach aiming to address the unknown post-change pa-
rameter issue is called the Shiryayev-Roberts-Robbins-
Siegmund (SRRS) procedure [Lorden and Pollakl 2005].
The main idea of SRRS dates back to the power one se-
quential test [Robbins and Siegmund|, [1974]: instead of
plugging in the MLE obtained using all samples up to
the current moment as done in the GLR procedure, the
SRRS procedure uses a sequence of non-anticipating es-
timators. The non-anticipating estimators are formed
by dropping the most recent sample (thus the name
“non-anticipating”). The advantage is that the test
statistic can be computed recursively. The SRRS pro-
cedure is then extended to general exponential family
|[Lorden and Pollakl [2008| and the first order optimality
of their procedures are well established. Even if our
work also extends the original SRRS procedure [Rob-
bins and Siegmund), [1974] to the general exponential
family, two big differences should be noticed. First, our
non-anticipating estimator is different from the original
SRRS |Robbins and Siegmund, [1974] and the extended
version [Lorden and Pollak} 2008| in that SRRS still
uses exact MLE estimated from all but the most re-
cent sample, whereas our estimator only approximates
the MLE using one-sample update schemes. This ap-
proximation further allows us to take the parameter
structure into consideration such as the sparsity and
the smoothness of parameters. Second, different with
Lorden and Pollak| [2005] and [Lorden and Pollak [2008|
of which the second-order optimality is only proved for

Gaussian and Gamma, distributions, our work estab-
lishes nearly second-order optimality for our procedure
for all the distributions in the exponential family.

With unknown parameters, [Pollak| [1987] developed
a modified SR procedure by introducing a prior dis-
tribution to the unknown parameters; however, the
resulted detection statistic is hard to compute recur-
sively since the prior is not a conjugate. The more
recent work [Yilmaz et al., [2015, |Yilmaz et al., [2016]
studies joint detection and estimation problem of a
specific form: a linear scalar observation model with
Gaussian noise, and under the alternative hypothesis,
there is an unknown multiplicative parameter. This
problem arises from many applications such as spec-
trum sensing |[Yilmaz et al., [2014], image observations
[Vo et all |2010], MIMO radar [Tajer et all [2010], etc.
Yilmaz et al|[2015] demonstrate that solving the joint
problem by treating detection and estimation sepa-
rately with the corresponding optimal procedure does
not yield an overall optimum performance, and pro-
vides an elegant closed-form optimal detector. Later
on, Yilmaz et al.|[2016] generalizes the results. There
are also other approaches solving the joint detection-
estimation problem using multiple hypotheses testing
Baygun and Hero| [1995], [Vo et al.| [2010] and Bayesian
formulation [Moustakides et al. [2012]. Our work differs
from the above in that we consider the general form
of joint detection and estimation problem, where the
unknown parameter § shows up generally as the pa-
rameter of the exponential family. Moreover, we do not
aim to find the exact optimal solution. Instead, we find
whether using the computationally efficient one-sample
estimator for detection loses much performance.

Related work using online convex optimization for
anomaly detection include Raginsky et al.|[2009], which
develops an efficient detector for the exponential family
using online mirror descent and proves a logarithmic
regret bound, and Raginsky et al.|[2012], which dynam-
ically adjusts the detection threshold to allow feedbacks
about decision outcomes. However, these works con-
sider a different setting that the change is a transient
outlier instead of a persistent change, as assumed by
the classic statistical change-point detection literature.
When there is persistent change, it is important to
accumulate “evidence” by pooling the post-change sam-
ples (our work considers the persistent change). In
Li et al.| [2017], the authors develop a one-sample up-
date scheme to estimate the influence matrix and then
form the likelihood ratio detection statistic to detect
changes in the social network. However, theoretical
performance of such one-sample update schemes has
not been well-understood.
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2 Problem formulation

Assume a sequence of i.i.d. random variables
X1,Xs,... with a probability density function of a
parametric form fy. The parameter # may be un-
known. Consider two related problems: sequential
hypothesis test and sequential change-point detection.
The detection statistic relies on a sequence estimators
{ét} constructed using online mirror descent. The on-
line mirror descent uses simple one-sample update: the
update from ét,l to ét only uses the current sample
X;. This is the main difference from the traditional
generalized likelihood ratio (GLR) statistic [Lai, [1998],
where each 6, is estimated using historical samples. In
the following, we present detailed descriptions of two
problems. We will consider exponential family and
present our non-anticipating estimator based on the
one-sample estimate.

2.1 Sequential hypothesis test

Consider null hypothesis Hg : 8 = 6y versus the alterna-
tive Hy : 6 # 6. Hence the parameter under the alter-
native distribution is unknown. The classic approach
to solve this problem is the sequential probability-ratio
test (SPRT) [Wald and Wolfowitz, 1948|: at each time,
given samples { X1, Xs,..., X}, the decision is either
to accept Hg, accept Hp, or taking more samples if
neither hypotheses can be resolved confidently. Here,
we introduce modified SPRT with a sequence of non-
anticipating plug-in estimators:

0 = 0(X1,..., X)), t=1,2,..., (1)
Define the likelihood ratio at time ¢ as

fo. (Xi)
H ;01 i>1. (2)

The test statistic has a simple recursive implementation

Ay =Apq- f@ifl(Xi)/féo (X7)

Moreover, it has a martingale property due to the non-
anticipating nature of the estimator: Eg, [Ai[Ai—1] =
A;_1. The decision rule is a stopping time

7(b) = min{t > 1: log Ay > b}, (3)

where b > 0 is a pre-specified threshold. We reject
the null hypothesis whenever the statistic exceeds the
threshold. The goal is to resolve the two hypotheses
using as few samples as possible under the type-I error
constraint.

2.2 Sequential change-point detection

A problem related to sequential hypothesis test is se-
quential change-point detection. Due to its importance

in applications and different performance metrics, se-
quential change-point detection is usually studied sep-
arately. A change may occur at an unknown time v
which changes the underlying distribution of the data.
One would like to detect such a change as quickly as
possible. Formally, change-point detection can be cast
into the following hypothesis test:

ii.d.
Ho: X1, Xa,... "~ fo,,

11d i.i.d.
H12 Xl,..., ~ fgo, Xl,+1,X,,+2,... ~ fg,

(4)
Here we assume 6 is unknown, and it represents the

anomaly. The goal is to detect the change as quickly as
possible after it occurs under the false alarm constraint.

We will consider likelihood ratio based detection proce-
dures adapted from two types of existing ones, which
we call adaptive CUSUM (ACM), and the adaptive
SRRS (ASR) procedures.

For change-point detection, the post-change parameter
is estimated using post-change samples. This means
that for each putative change-point location before
the current time k < ¢, the post-change samples are
{Xk,...,X¢}; with a slight abuse of notation, the post-
change parameter is estimated as

Ori = Ori(Xp, ..., X0),
Therefore, for k =1, ék,i becomes 6; defined in 1' for

SPRT. Base on this, the likelihood ratio at time ¢ for
a hypothetical change-point location k is given by

fekll i

I

where Ay ; can be computed recursively similar to (2)).

i> k. (5)

0.1 = 0o. (6)

Since we do not know the change-point location v,
from the maximum likelihood principle, we take the
maximum of the statistics over all possible values of k.
This gives the ACM procedure:

= > :
Tacm(b) = inf {t >1 11;12; log Ay > b} , (M

where b is a pre-specified threshold.

Similarly, by replacing the maximization in @ with
summation, we obtain the following ASR procedure
|[Lorden and Pollak, 2005|, which can be interpreted
as a Bayesian statistic similar to the Shiryaev-Roberts
procedure.

Tasr(b) = inf {t >1:log <i Ak,t> > b} ,  (8)

k=1
where b is a pre-specified threshold. The computations

of Ay and estimators {ét}, {ékt} are discussed later
in section [2.4]
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2.3 Exponential family

In this paper, we focus on fy being the exponential
family. Consider an observation space X equipped
with a sigma algebra B and a sigma finite measure
H on (X,B). Assume the number of parameters is
d. Let a7 denote the transpose of a vector or ma-
trix. Let ¢ : X — R% be an H-measurable function
o(x) = (d1(x),...,¢a(x))T. Here ¢(z) corresponds to
the sufficient statistic for 6. Let © denote the parame-
ter space in RZ. Let {Py, 0 € O} be a set of probability
distributions with respect to the measure H. Then,
{Py,0 € O} is said to be a multivariate exponential
family with natural parameter 6, if the probability den-
sity function of each fy € Py with respect to H can
be expressed as fp(x) = exp{0T¢(x) — ®(0)}. In the
definition, the so-called log-partition function is given
by

o(0) := log/XeXp(GTgb(x))dH(x).

To make sure fy(x) a well-defined probability density,
we consider the following two sets of parameters:

0={#cR?: log/X exp(0Té(x))dH (x) < +o0},

and
0, ={0€0:V*®(0) = olixa}.

Note that —log fy(x) is o-strongly convex over O,.

Two more terms used in this paper are the dual func-
tion of ® and the Bregman divergence between two
distributions. Based on [Wainwright and Jordan| [2008],
for the exponential family the Legendre-Fenchel dual
®* is defined as ®*(2) := sup,ce{uTz — ®(u)}, and
the Bregman divergence induced by & is defined as
Bg(61,02) := 1(02,01), where I(u,v) is the Kullback-
Leibler (KL) divergence between f,(z) and f,(x).

2.4 Online mirror descent (OMD) for
non-anticipating estimators

We discuss how to construct the non-anticipating es-
timators {ét}tzl in , and {ém},l <k<tin
using online mirror descent (OMD). OMD is a generic
procedure for solving the online convex (OCO) op-
timization problem. Our problem of finding maxi-
mum likelihood estimator can be cast into an OCO
with the loss function being the negative log-likelihood
0(6) = —log fo(X).

The main idea of OMD is the following. At each time
step, the estimator 0,1 is updated using the new sam-
ple X;, by balancing the tendency to stay close to the
previous estimate, against the tendency to move in the
direction of the greatest local decrease of the loss func-
tion. For the loss function defined above, a sequence

of OMD estimator is constructed by

6, = argminuTV (B 1) + ~Bo(u,0,1)].  (9)
uerl i

Here I" C O, is a closed convex set, which is problem-
specific and encourages certain parameter structure
such as sparsity and smoothness. Similarly, ékﬂf can
be constructed via OMD for sequential change-point
detection. The only difference is that ék,t is computed
if we use X as our first observation and then apply
the recursive update on Xgy1,... (for ét we use X,
as our first observation).

There is an equivalent form of OMD, presented as
the original formulation [Nemirovskii et all [1983]. The
equivalent form is sometimes easier to use for algorithm
development, and it consists of four steps: (1) compute
the dual variable: fi,_; = V®(#,_1); (2) perform the
dual update: ji; = fi;_1 — ntVZt(ét_l); (3) compute
the primal variable: 8, = (V®)*(ji); (4) perform the
projected primal update: 0, = argmin, B@(u,ét).
The equivalence between the above form for OMD and
the nonlinear projected subgradient approach in @ is
proved by [Beck and Teboulle| [2003]. We adopt this
approach when deriving our algorithm and follow the
same strategy as Raginsky et al. [2009]. Our algorithm
is presented in Algorithm [f}

A standard performance metric for OCO is regret. The
regret is the difference between the total cost that
an online algorithm has incurred relatively to that of
the best fixed decision in hindsight. Given samples
X1,...,X;, the regret for a sequence of estimators
{0;}_, is defined as

t t
Re=Y {~logf; (X))}~ inf > {~log f3(X,)}.
=1 (USC] i—1

(10)
For strongly convex loss function, the regret of many
OCO algorithms, including the online mirror descent,
has the property that R, < C'logn for some constant
C (depend on fy and ©,) and any positive integer
n |Agarwal and Duchi|, 2011, Raginsky et al., 2012].
Note that for exponential family, the loss function is
the negative log-likelihood function, which is strongly
convex over ©,. Hence, we have the logarithmic regret

property.

3 Nearly second-order optimality of
one-sample update procedures

Below we prove the nearly second-order optimality of
the one-sample update schemes. More precisely, the
nearly second-order optimality means that the algo-
rithm obtains the lower performance bound asymp-
totically up to a log-log factor in the false-alarm rate,
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Algorithm 1 Online mirror-descent for non-

anticipating estimators

Require: Exponential family specifications ¢(z), ®(z)
and fyp(z); initial parameter value 6y; sequence
of data Xi,...,X,...; a closed, convex set for
parameter I' C ©,; a decreasing sequence of strictly
positive step-sizes {n;}.

1: 0y = 0y, Ao = 1. {Initialization}

2: for allt=1,2,...,do

3:  Acquire a new observation X,

4:  Compute loss: £y(6;_1) = ®(0;_1) — 07 _,¢(X;)

5:  Compute likelihood ratio: A; = A;q X
fo,  (Xe)/ fo, (X)

6:  fi—1 = VO(Or_1), f1r = fie—1 — Me(fre—1 — H(Xy))
{Dual update}

7o by = (V)" (i) 3

8: 0 = argmin,p By (u,8;) {Projected primal up-
date}

9: end for

10: return {ét}tZI and {A;}i>1.

as the false alarm rate tends to zero (In many cases
the log-log factor is a small number). In particular,
we show that the performance of 7(b) for sequential
hypothesis testing, Tacm(b) and Tagr (b) for sequential
change-point detection setting, obtain the known lower
bounds established in the statistical sequential analysis
literature up to a log-log factor.

We first introduce some necessary notations. Denote
Py, and Ky, the probability measure and expectation
when the change occurs at time v and the post-change
parameter is 6, i.e., when Xq,..., X, areii.d. random
variables with density fo, and X, 11, X, 19,... are i.i.d.
random variables with density fy. Moreover, let P
and E., denote the probability measure when there is
no change, i.e., X1, X5,... are i.i.d. random variables
with density fg,. Finally, let F; denote the o-field
generated by Xq,...,X; fort > 1.

3.1 Sequential hypothesis test

The two standard performance metrics are the the type-
I error (false detection probability), which is defined
for sequential hypothesis testing as P (7(b) < 00),
and the expected number of samples needed to reject
the null Eg o[7(b)]. Since it is possible to take infinite
samples, the power of the test in is one, and the
type-1I error is zero. A meaningful test should have
both small P, (7(b) < 00) and small Eg o[7(b)]. Usually,
one adjusts the threshold b to control the type-I error
to be below a certain level.

Intuitively, a reasonable sequence of estimator {6}
should converge to the true parameter 6 as we collect

more data. This is reflected by the following regular-
ity condition (similar assumption has been made in
equation (5.84) from |Tartakovsky et al.| [2014])

(Eo0l1(6,6:)])" < oo, (11)

t=1

for some constant r > 1 that characterizes the con-
vergence rate of {0;}. A larger  means a slower con-
vergence rate. This is a mild assumption that can be
obtained by many estimators such as OMD.

Our main result is the following. As has been observed
by [Lai| [2004], there is a loss in the statistical efficiency
by using one-sample update estimator {ét}, relative to
the GLR approach using the entire sample in the past
(X1,...,X¢t). The theorem below shows that this loss
due to one-sample update corresponds to the expected
regret of the estimators {6;}.

Theorem 1 (Upper bound for OCO based SPRT).
Given a sequence of estimator {ét}tzl generated by any
0CO algorithm of which the regret is R,, for each n,
with 0g = 6. When holds, as b — o0,

b Ep,0[R+)]
(9,00) 1(0790)

Here O(1) is a term upper-bounded by an absolute con-
stant as b — oco.

Ego[r(b)] < 7 +0(1)  (12)

The main idea of the proof is to decompose the statis-
tic defining 7(b), log A(t), into a few terms that form
martingales, and then invoking the Wald’s Theorem
for the stopped process.

The result of Theorem [l is very significant for the
following two reasons. First, it is very general because
we obtain an upper bound for the expected number
of observations needed to make correct decisions for
any reasonable OCO algorithm. Second, equation
shows a clear connection between the classic metric for
sequential hypothesis testing (left-hand side of (12)))
and the classic metric for OCO algorithm (the second
term on the right-hand side of ) This bridges the
gap between the sequential hypothesis testing and the
online optimization, two different but important fields.

Though the stopping time 7(b) appears on both sides
of the inequality. This is not an issue since we can
see later in Corollary || that the 7() in the right-hand
side of can be replaced by logb if the estimation
algorithm has a logarithmic expected regret. This loga-
rithmic expected regret, as shown in the supplementary
materials, can be achieved by OMD for the exponential
family. Specifically, Algorithm [I] can guarantee that
Eg,0[R»] < Clogn for any positive integer n.

Corollary 1. For a sequence of estimators with a
logarithmic expect regret bound such that Ego[R,] <
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Clogn for any positive integer n and some constant
C >0, when holds, we have

Eo,o[r(b)] < ](9?90) + f(g?g:) e

o(1)).  (13)

Here o(1) is a vanishing term as b — oco.

Moreover, we can obtain an upper bound on the type-I
error of test 7(b).

Lemma 1 (Type-I error). For a sequence of estimators
{0:}1>0, 0, € O, given threshold b, P (7(b) < 00) <
exp(—b).

Lemma [I| sheds some lights on how to choose an ap-
propriate b. One can choose b = log(1/a) to control
the type-I error to be less than a. Moreover, Lemmall]
is valid generally for any non-anticipating estimators.

Leveraging an existing lower bound for general SPRT
presented in Section 5.5.1.1 of [Tartakovsky et al.|[2014],
we establish the nearly second-order optimality of OCO
based SPRT as follows:

Corollary 2 (Nearly second-order optimality of OCO
based SPRT). Consider a sequence of estimators with
a logarithmic expect regret bound such that Eg o[R,] <
Clogn for any positive integer n and some constant
C >0, and holds. Define a set C(a) = {T :
Poo(T < 00) < a}. For b =1log(1/a), due to Lemmal[l]
7(b) € C(a). For such a choice, 7(b) is nearly second-
order optimal in the sense that for any 6 € O, — {0y},
as a — 0,

Ego[r(b)] = inf Ego[T] = O(log(log(1/a))). (14)

TeC(w)

The result means that, compared with any procedure
(including the optimal procedure) calibrated to have a
fixed type-I error less than «, our procedure incurs at
most an increase in the expected sample size to make
correct decisions on the order of log(log(1/«)), which
is usually a small number. For instance, even for a
conservative choice o = 10~° when controlling the false
alarm, we have log(log(1/a)) = 2.44.

3.2 Sequential change-point detection

Following the similar routine as before, we consider the
sequential change-point detection problem. Here the
two commonly used performance metrics [Tartakovsky]
et al.2014] are: the average run length (ARL), denoted
by Eo[T]; and the maximal conditional average delay
to detection (CADD), denoted by sup,~qEg [T — v |
T > v]. ARL is the expected number of samples
between two successive false alarms, and CADD is
the expected number of samples needed to detect the

change after it occurs. A good procedure should have a
large ARL and a small CADD. Similar to the sequential
hypothesis test, one usually choose b large enough so
that ARL is larger than a pre-specified level.

We have the following theorem bounding the detection
delay, by relating the CUSUM to SPRT [Lorden), [1971]
and using the fact that when the measure P, is known,
sup,>oEg [T —v | T > v] is attained at v = 0 for
both ASR and ACM procedures.

Theorem 2. Consider the change-point detection pro-
cedure Tasr (D) in (§) and Tacm(b) in (). For any
sequence of estimator {ét}t21 generated by any OCO
algorithm of which the regret is R, for each n, with
o = 0. Asb— oo, if holds, we have that

S.'i%]EG,V[TASR(b) -V | TASR(b) > l/]

< Sli}g E97V[TACM(b) -V | TACM(b) > l/]
< (1(8,60)) " (b+Ego[Rrm)] +O(1)).

Above, we may apply a similar argument as in Corollary
to remove the dependence on 7(b) on the right-hand-
side of the inequality.

Then, using martingale property of the detection statis-
tic, we establish the lower bound for the ARL of the
detection procedures, which is needed for proving The-
orem [3]

Lemma 2 (ARL). Consider the change-point detection
procedure Tacm(b) in (@ and Tasr(b) in (@), and a

sequence of estimators {0;}1>0, 0 € ©. Given v > 0,
provided that b > log~y, we have

Eco[Tacm(b)] > Eoo[Tasr(b)] > 7.

Lemma |2 guides us how to choose b appropriately. For
example, given a required lower bound v for ARL, one
can choose b = log~ to satisfy the ARL constraint.
Lemma [2]is valid for any non-anticipating estimators.

Combing the upper bound in Theorem [2] with an exist-
ing lower bound for the EDD of SRRS procedure from
Siegmund and Yakir| [2008|, we obtain the following
nearly second-order optimality.

Corollary 3 (Nearly second-order optimality of OCO
based ACM and ASR). Consider a sequence of esti-
mators with a logarithmic expect regret bound such
that Ego[R,] < Clogn for any positive integer n
and some constant C > 0, and holds. Define
S(v) ={T : Ex[T] > ~}. Forb=1log~, due to Lemma
[4 both Tasr(b) and Tacwm(b) belong to S(v). For such
b, both Tasr(b) and Tacm(b) are nearly second-order
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optimal in the sense that for any 6 € © — {6y}

Sup Eo ., [Tasr(b) — v+ 1| Tasr(b) > v]

- inf  supEg, [T(b)—v+1|T0b) >v 15
oty 5B o.u[T(b) | T(b) = v] (15)

= O(loglog~).
Similar expression holds for Tacm (D).

Similar with Corollary [2| this result means that com-
pared with the optimal ones among all the detection
procedures of which the ARLSs are larger than ~y, our
procedure incurs at most an increase in the expected
detection delay on the order of O(loglog~y). This num-
ber loglog~y is also usually small even for a very large
v. Furthermore, comparing with , we note
that the lower bound v for the ARL plays the same
role as 1/« because 1/ is roughly the false-alarm rate
for sequential change-point detection [Lordenl [1971].

4 Synthetic examples

In this section, we present some synthetic examples
to demonstrate the good performance of our methods.
We will focus on ACM and ASR for sequential change-
point detection. Recall that when the measure P,
is known, sup,~oEg [T —v | T > v] is attained at
v = 0 for both ASR and ACM procedures (a proof
can be found in the proof of Theorem 2, i.e., equation
(8) in the supplementary material). Therefore, in the
following experiments, we define the expected detection
delay (EDD) as Eg o[T] for a stopping time T'. In other
words, we assume that the change happens at the very
beginning of the sequence.

We consider detecting the sparse mean shift in multi-
variate normal distribution. Sparse mean shift means
that only a small part of entries of the post-change
mean vector are non-zero. This setting is of particular
interest in sensor network or DNA sequence detection
[Xie and Siegmund}, [2013} [Siegmund et al.|[2011]. Below,
||-||, means the ¢, norm, ||-||, means the ¢; norm, |||,
means the £y norm defined as the number of non-zero
entries.

In this setting, we have that Bg(01,02) = I(02,61) =
|61 — 62]13/2. Equipped with this Bregman divergence,
the projection onto I' in Algorithm [I]is just a Euclidean
projection onto a convex set. In many cases, the projec-
tion can be implemented efficiently. An important and
useful case is ' = {6 : ||0||1 < s} where s is a prescribed
radius of the ¢; ball. The projection onto ¢; ball can
be obtained via simple soft-thresholding [Duchi et al.
2008|. This encourages the detection of sparse mean
vectors since I' can be viewed as the convex relaxation

of {6 ]l0 < ).

Assume that the initial samples have been normalized
by subtracting mean and dividing the standard devia-
tion. Therefore, the pre-change distribution is N'(0, I).
To compare the performance of different procedures,
we first use simulations to choose the threshold b’s
such that the ARLs of the procedures are all 10000.
Note that ARL is an increasing function of b so this
can be done by a simple bisection. Two benchmark
procedures are CUSUM and GLR. For CUSUM proce-
dure, we specify a nominal post-change mean, which
is an all-one vector. Our procedures are Tysr(b) and
Tacar(b) with T =R% and I' = {6 : ||0]|; < s}. In the
following experiments, we run 10000 Monte Carlo trials
to obtain each simulated EDD.

In the experiments, we set d = 20. The post-change
distributions are N(6, I;), where 100p% entry of 6 is 1
and others are 0 and the location of nonzero entries are
deterministic. Table [2] shows the EDDs versus the pro-
portion p of nonzero entries of post-change parameter
0. Note that our procedures incur little performance
loss compared with GLR procedure and CUSUM pro-
cedure. Notably, Tacar(b) with T' = {6 : ||0||, < 5}
performs almost the same as the GLR procedure and
much better than the CUSUM procedure when p is
small. This also shows the advantage of projection
when the true parameter is sparse.

p=01|p=03|p=04| p=0.6
CUSUM | 188.60 64.30 18.97 3.77
GLR 19.10 7.00 5.49 3.86
ASR 45.22 12.62 8.90 5.90
ACM 45.60 12.50 9.00 5.87
ASR-1 20.81 9.45 7.42 5.09
ACM-/1 | 19.24 7.51 6.11 4.92

Table 2: Comparison of OMD based methods versus the
traditional CUSUM and GLR methods for detecting
sparse mean-shift. Below, “CUSUM”: CUSUM proce-
dure with pre-specified all-one vector as post-change
parameter; “GLR”: GLR procedure; “ASR”: Tasr(b)
with T' = R%; “ACM”: Tacm (b) with ' = RY; “ASR-L17:
Tasr(b) with T' = {0 : ||0]]1 <5}; “ACM-L1™: Tacar(b)
with T' = {6 : ||0]|1 < 5}. p is the proportion of non-
zero entries in #. The value for each point is averaged
over 10000 Monte Carlo trials. For each value in the
table, the standard deviation is less than one half of
the value.
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