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1 Proof of the equality between the dropout and its deterministic reformulation

Proposition 1. For a fixed m × n matrix X, consider the problem of factorizing X into the product UV>
where U is m× d and V is n× d, for some d ≥ ρ(X) := rank(X). Define r = [r1, . . . , rd], whose elements are
Bernoulli(θ) i.i.d. where 0 < θ < 1. Furthermore, denote uk ∈ Rm and vk ∈ Rn the k-th column in U and V,
respectively, k = 1, . . . , d. Then,

Er

∥∥∥∥X− 1
θ
Udiag(r)V>

∥∥∥∥2

F

= ‖X−UV>‖2F + 1− θ
θ

d∑
k=1
‖uk‖22‖vk‖22. (1)

Proof. Equivalently, we will demonstrate that

Er‖θX−Udiag(r)V>‖2F = θ2‖X−UV>‖2F + θ(1− θ)
d∑
k=1
‖uk‖22‖vk‖22.

Since

Er‖θX−Udiag(r)V>‖2F =

= Er

∥∥∥∥∥∥∥
 θX11 −

∑d
k=1 U1krkV1k, . . . , θX1n −

∑d
k=1 U1krkVnk

...
. . .

...
θXm1 −

∑d
k=1 UmkrkV1k, . . . , θXmn −

∑d
k=1 UmkrkVnk


∥∥∥∥∥∥∥

2

F

, (2)

by definition of Frobenius norm and linearity of Er, we elicit

Er‖θX−Udiag(r)V>‖2F =
m∑
i=1

n∑
j=1

Er

(θXij −
d∑
k=1

UikrkVjk

)2 . (3)

Use the bias-variance decomposition E[r2] = V[r] + E[r]2, holding for a scalar random variable r.

Er‖θX−Udiag(r)V>‖2F =
m∑
i=1

n∑
j=1

Vr

[
θXij −

d∑
k=1

UikrkVjk

]
+

+
m∑
i=1

n∑
j=1

(
Er

[
θXij −

d∑
k=1

UikrkVjk

])2

. (4)

Since r1, . . . , rd are i.i.d., use the properties of expectation Er and variance Vr with respect to linear combinations
of independent random variables.

Er‖θX−Udiag(r)V>‖2F =
m∑
i=1

n∑
j=1

d∑
k=1

U2
ikV

2
jkVr [rk] +

+
m∑
i=1

n∑
j=1

(
θXij −

d∑
k=1

UikEr [rk]Vjk

)2

. (5)

Exploit the analytical formulas for expected value and variance of a Bernoulli(θ) distribution.

Er‖θX−Udiag(r)V>‖2F =
m∑
i=1

n∑
j=1

d∑
k=1

U2
ikV

2
jk · θ(1− θ)+

+
m∑
i=1

n∑
j=1

(
θXij −

d∑
k=1

Uik · θ · Vjk

)2

. (6)
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Rearrange the terms.

Er‖θX−Udiag(r)V>‖2F = θ(1− θ)
d∑
k=1

(
m∑
i=1

U2
ik

) n∑
j=1

V 2
jk

+

+ θ2
m∑
i=1

n∑
j=1

(
Xij −

d∑
k=1

UikVjk

)2

. (7)

Use the definition of row-by-column product of matrices

Er‖θX−Udiag(r)V>‖2F = θ(1− θ)
d∑
k=1

(
m∑
i=1

U2
ik

) n∑
j=1

V 2
jk

+

+ θ2
m∑
i=1

n∑
j=1

(
Xij −

[
UV>

]
ij

)2
. (8)

Apply the definitions of squared Euclidean norm ‖ · ‖22 and Frobenius norm ‖ · ‖F

Er‖θX−Udiag(r)V>‖2F = θ(1− θ)
d∑
k=1
‖uk‖22‖vk‖22 + θ2‖X−UV>‖F .

This concludes the proof.
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Proposition 2.

0 = inf
d,U,V

d∑
k=1
‖uk‖22‖vk‖22 s.t. d ≥ ρ(X),U ∈ Rm×d,V ∈ Rn×d and UV> = X. (9)

Proof. Let U and V such that UV> = X for a particular choice of d. Denote

Ω(U,V) =
d∑
k=1
‖uk‖22‖vk‖22 (10)

and define

A =
√

2
2 [U,U] ∈ Rm×2d (11)

B =
√

2
2 [V,V] ∈ Rn×2d. (12)

Then

AB> =
(√

2
2

)2

UV> +
(√

2
2

)2

UV> = 1
2X + 1

2X = X (13)

and

Ω(A,B) =
2d∑
k=1
‖ak‖22‖bk‖22 (14)

= 1
4

d∑
k=1
‖uk‖22‖vk‖22 + 1

4

d∑
k=1
‖uk‖22‖vk‖22 = 1

2Ω(U,V). (15)

In light of this observation, suppose, by absurd that ε > 0 is the minimum of (9), being such value realizes for
some matrix U and V. Then, we can repeat the same construction and produce a pairs of matrix A and B such
that Ω(A,B) = ε

2 . Thus, necessarily, (9) holds being the objective non-negative.
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2 Matrix factorization with variable size

Proposition 3. For every 0 < p < 1, define

θ(d) = p

d− (d− 1)p . (16)

Then, the following properties hold.

1. 0 < θ(d) < 1 for all d ∈ N \ {0}.

2. 1− θ(kd)
θ(kd) = k

1− θ(d)
θ(d) for all k ∈ N \ {0}.

Proof. 1. We will prove θ(d) > 0 and θ(d) < 1 separately. Since p > 0, then θ(d) > 0 if and only ifm−(m−1)p > 0.
But this is true since

m− (m− 1)p = m−mp+ p ≥ m(1− p) > 0. (17)

On the other hand, since the fraction θ(d) is positive, θ(d) < 1 is verified if and only if

p < m− (m− 1)p (18)

if and only if
0 < m−mp (19)

if and only if
p < 1 (20)

which is actually true by assumption.

2. The property can also be verified analytically by noticing that

1− θ(d)
θ(d) =

1− p

d− (d− 1)p
p

d− (d− 1)p
= d− (d− 1)p− p

p
= d

1− p
p

. (21)

This concludes the proof
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Proposition 4. For any m× n matrix X, consider the expression

‖X‖M = min
d,U,V

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22 s.t. d ≥ ρ(X),U ∈ Rm×d,V ∈ Rn×d and UV> = X. (22)

where λd = d 1−p
p , for any 0 < p < 1, uk ∈ Rm and vk ∈ Rn define the k-th column in U and V, respectively,

k = 1, . . . , d. Then, equation (22) defines a quasi-norm over m× n matrices.

Proof. Using the definition of quasi-norm, we have to prove the following

• ‖X‖M ≥ 0 for every X ∈ Rm×n

• ‖X‖M = 0⇐⇒ X = 0

• ‖αX‖M = |α|‖X‖M for every α ∈ R and X ∈ Rm×n

• ‖ · ‖M is unitarily invariant. In formulæ

‖PXQ‖M = ‖X‖M for every P ∈ Om and Q ∈ On, (23)

where Op := {A ∈ Rp×p : A>A = AA> = I} is the set of all orthonormal matrices of size p.

• Fix X ∈ Rm×n and arbitrary choose a pair of matrices U and V, of suitable dimensions, such that UV> = X.
We get √√√√λd

d∑
k=1
‖uk‖22‖vk‖22 ≥ 0.

Since the very same holds when computing the minimum over d,U and V, we obtain ‖X‖M ≥ 0.

• “‖X‖M = 0⇒ X = 0” Let U ∈ Rm×d and V ∈ Rn×d such that

‖X‖M =

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22

and assume √√√√λd

d∑
k=1
‖uk‖22‖vk‖22 = 0.

Then
d∑
k=1
‖uk‖22‖vk‖22 = 0

since λd > 0 (due to 0 < θ(d) < 1) and, also,

‖uk‖22‖vk‖22 = 0 for every k = 1, . . . , d, (24)

since the summation is composed by non-negative terms. By using the zero-product property, we elicit

for every k = 1, . . . , d ‖uk‖22 = 0 or ‖vk‖22 = 0 (25)

and
for every k = 1, . . . , d ‖uk‖2 = 0 or ‖vk‖2 = 0. (26)

This implies that
for every k = 1, . . . , d uk = 0 or vk = 0 (27)
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since ‖ · ‖2 is a norm. But then, for any i = 1, . . . ,m and j = 1, . . . , n, the combination of the relationship

Xij =
d∑
k=1

U ikV jk (28)

combined with (27) gives
Xij = 0 for every i, j (29)

which is the first half of the thesis. The second one, “‖X‖M = 0⇐ X = 0”, follows from the following arguments.
Assume X = 0. Then the optimal decomposition UV> = X in the sense of (22) will be U = 0 and V = 0.
This implies ‖X‖M = 0.

• (Absolute homogeneity.) Since we already proved (141), we can skip the case α = 0 because

‖0X‖M = ‖0‖M
(141)= 0 = 0 · ‖X‖M. (30)

Hence, let assume α 6= 0. In such a case, by definition,

‖αX‖M = minimum
d ≥ ρ(αX)
U ∈ Rm×d
V ∈ Rn×d

s.t. UV> = αX

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22. (31)

Since α 6= 0,

‖αX‖M = minimum
d ≥ ρ(X)
U ∈ Rm×d
V ∈ Rn×d

s.t. UV> = αX

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22. (32)

Equivalently,

‖αX‖M = |α| minimum
d ≥ ρ(X)
U ∈ Rm×d
V ∈ Rn×d

s.t. ( 1
αU)V> = X

√√√√λd

d∑
k=1

∥∥∥∥ 1
α

uk
∥∥∥∥2

2
‖vk‖22. (33)

Since the transformation U 7→ Ũ := 1
αU is invertible, we get

‖αX‖M = |α| minimum
d ≥ ρ(X)
Ũ ∈ Rm×d
V ∈ Rn×d

s.t. ŨV> = X

√√√√λd

d∑
k=1
‖ũk‖22 ‖vk‖22 = |α|‖X‖M. (34)

• Fix X ∈ Rm×n,P ∈ Om and Q ∈ On arbitrary chosen. Then, by definition,

‖PXQ‖M = minimum
d ≥ ρ(PXQ)
U ∈ Rm×d
V ∈ Rn×d

s.t. UV> = PXQ

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22. (35)
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Since P and Q are invertible, ρ(PXQ) = ρ(X) and the equation UV> = PXQ is equivalent to P>UV>Q> =
X. Therefore,

‖PXQ‖M = minimum
d ≥ ρ(X)
U ∈ Rm×d
V ∈ Rn×d

s.t. (P>U)(QV)> = X

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22. (36)

Define Ũ = P>U and Ṽ = QV. Since the maps U 7→ Ũ and V 7→ Ṽ, we obtain

‖PXQ‖M = minimum
d ≥ ρ(X)
Ũ ∈ Rm×d

Ṽ ∈ Rn×d

s.t. ŨṼ> = X

√√√√λd

d∑
k=1
‖uk‖22‖vk‖22 (37)

and also

‖PXQ‖M = minimum
d ≥ ρ(X)
Ũ ∈ Rm×d

Ṽ ∈ Rn×d

s.t. ŨṼ> = X

√√√√λd

d∑
k=1
‖ũk‖22‖ṽk‖22 = ‖X‖M (38)

since the Euclidean norm is unitarily invariant and therefore ‖ũk‖22 = ‖Puk‖22 = ‖uk‖22 and ‖ṽk‖22 = ‖Qvk‖22 =
‖vk‖22.
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3 Variatonal form of the nuclear norm

Let us introduce the following technical result.

Lemma 1 (The Frobenius norm of a matrix is rotational invariant). For any arbitrary m× n matrix Y and for
any R1 ∈ O(m) and R2 ∈ O(n), we have

‖Y‖F = ‖R1YR2‖F . (39)

Proof. Fix Y ∈ Rm×n, R1 ∈ O(m) and R2 ∈ O(n) arbitrary chosen. By observing that, for a rotational matrix,
inverse and adjoint are equal, we get

‖Y‖2F = 〈Y,Y〉F
= 〈R>1 R1Y,Y〉F
= 〈R>1 R1Y,YR>2 R2〉F
= 〈R1YR>2 ,R1YR>2 〉F
= ‖R1YR>2 ‖2F .

The thesis follows by square-rooting the extremal members of the previous chain of inequalities.

In order to define the nuclear norm, let us consider the family of Schatten/von Neumann ν-norms, ν ≥ 1, since
the nuclear norm can be retrieved as a particular case.

Definition 1 (Schatten/von Neumann ν norms). Fix ν ∈ [1,+∞[ arbitrary chosen1. For any m× n matrix Y
we define the Schatten/von Neumann ν-norm

‖Y‖S,ν =
(

n∑
i=1

[σi(Y)]ν
)1/ν

(40)

where σi(Y) are the singular values of Y and we assume m ≥ n, the latter hypothesis being non restrictive upon
matrix inversion.

Lemma 2. When ν = 2, the Schatten/von Neumann norm ‖ · ‖S,2 equals the Frobenius norm ‖ · ‖F .

Proof. Consider the singular value decomposition

Y = LΣR>, (41)

where Σ stacks σ1(Y), . . . , σn(Y) on the diagonal. By definition

‖Y‖2S,2 =
n∑
i=1

[σi(Y)]2 (42)

and by definition of Frobenius norm

‖Y‖2S,2 = ‖Σ‖2F . (43)

By using (39) and (41),

‖Σ‖2F = ‖LΣR>‖2F = ‖Y ‖2F , (44)
1Although the case nu = +∞ is allowed in the literature, we will skip it here for simplicity
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which is the thesis.

Definition 2. Nuclear norm For any m× n matrix Y, let us define the nuclear norm as

‖Y‖? =
n∑
i=1

σi(Y), (45)

being σi(Y) the singular values of Y, i = 1, . . . , n.

Proposition 5. For any p > 0,

‖Y‖? = minimum
U,V : UV> = Y

‖U‖F ‖V‖F (46)

Proof. We will demonstrate the thesis by proving that

‖Y‖? ≤ minimum
U,V : UV> = Y

‖U‖F ‖V‖F (47)

and
minimum

U,V : UV> = Y
‖U‖F ‖V‖F ≤ ‖Y‖? (48)

hold at the same time

• Proof of (47). For a generic d, let U and V two m× d and n× d dimensional matrices, respectively, such
that Y = UV>. Then,

‖Y‖? = ‖UV>‖? (49)

and

‖Y‖? =
n∑
i=1

σi(UV>) (50)

by definition of nuclear norm (45). Let

ρ = rank(Y) = rank(UV>) ≤ min(rank(U), rank(V)). (51)

Then,

‖Y‖? =
ρ∑
i=1

σi(UV>), (52)

since σρ+1(Y) = · · · = σn(Y) = 0. Use Von Neumann inequality

‖Y‖? ≤
ρ∑
i=1

σi(U)σi(V) (53)

Apply Cauchy-Schwartz inequality.

‖Y‖? ≤

√√√√ ρ∑
i=1

σi(U)2

√√√√ ρ∑
j=1

σj(V)2. (54)

The square-rooting is an increasing function. Therefore, through (51),

‖Y‖? ≤

√√√√ ρ∑
i=1

σi(U)2

√√√√rank(V)∑
j=1

σj(V)2 ≤

√√√√rank(U)∑
i=1

σi(U)2

√√√√rank(V)∑
j=1

σj(V)2, (55)
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since adding non-negative addends to the summations. Hence, using (40) with ν = 2,

‖Y‖? ≤ ‖U‖S,2‖V‖S,2. (56)

Apply Lemma 2.
‖Y‖? ≤ ‖U‖F ‖V‖F . (57)

Consider an arbitrary p > 0, then
‖Y‖? ≤ ‖U‖F ‖V‖F . (58)

Since d, U and V are generic, we can minimize both terms with respect to them. In this case, the inequality is
trivially preserved. Then,

‖Y‖? ≤ minimum
U,V : UV> = Y

‖U‖F ‖V‖F , (59)

obtaining (47).

• Proof of (48). Consider a thin singular value decomposition Y = LΣR> for Y and let us choose

U = LΣ1/2 and V = RΣ1/2, (60)

being Σ1/2 the diagonal matrix obtaining from Σ entrywise square-rooting all its entries. Note that

U V> = LΣ1/2
(
RΣ1/2

)>
= LΣ1/2Σ1/2R> = LΣR> = Y. (61)

Hence,
minimum

U,V : UV> = Y
‖U‖F ‖V‖F ≤ ‖U‖F ‖V‖F (62)

and
minimum

U,V
‖U‖F ‖V‖F ≤ ‖Σ1/2‖F ‖Σ1/2‖F (63)

by using (39) in the right member. Then

minimum
U,V : UV> = Y

‖U‖F ‖V‖F ≤
(
‖Σ1/2‖F

)2p
. (64)

Observe that (
‖Σ1/2‖F

)2p
=

rank(Y)∑
i=1

(√
σi(Y)

)2
p

=

rank(Y)∑
i=1

σi(Y)

p

= trace(Σ) (65)

Thus, by means of the definition of nuclear norm (45),

minimum
U,V : UV> = Y

‖U‖F ‖V‖F ≤ trace(Σ)

= ‖Y‖? (66)

which gives (48).

We can achieve one other equivalent expression for the nuclear norm as in Prop. 5. In order to do this, let us
consider the following necessary technical result.

Lemma 3. For any a, b ∈ R, and p > 0

(2ab) = minimum
η > 0

(
a2

η
+ ηb2

)
(67)
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Proof. Fix arbitrary a, b ∈ R and η > 0. Then

0 ≤ (a− ηb)2,

0 ≤ a2 − 2ηab+ η2b2,

2ηab ≤ a2 + η2b2.

Divide each term by η > 0.

2ab ≤ a2

η
+ ηb2.

The inequality is preserved after p-th order exponentiation, p > 0.

(2ab) ≤
(
a2

η
+ ηb2

)
.

Thus, the function fa,b(η) = (a
2

η
+ ηb2) upper bounds (2ab) for any a, b, η. Then, since

fa,b(a/b) =
(
a2

a
b+ a

b
b2
)

= (ab+ ab) = (2ab), (68)

we get the thesis by using the definition of minimum.

Proposition 6. For any p > 0,

‖Y‖? = minimum
U,V : UV> = Y

1
2
(
‖U‖2F + ‖V‖2F

)
(69)

Proof. It is enough to observe that, for any matrix U and V such that UV> = Y, also U/√η and √ηV still
satisfy the same property, η > 0. Then, for any arbitrary η > 0,

minimum
U,V : UV> = Y

1
2
(
‖U‖2F + ‖V‖2F

)
= minimum

U,V : UV> = Y

(
1
2
‖U‖2F
η

+ 1
2η‖V‖

2
F

)
(70)

Minimize over η and apply (67).

minimum
U,V : UV> = Y

1
2
(
‖U‖2F + ‖V‖2F

)
= minimum

U,V : UV> = Y
(‖U‖F ‖V‖F ) . (71)

The thesis is direct corollary of Prop. 5.

Proposition 7. For any p > 0,

‖Y‖? = minimum
U,V : UV> = Y

1
2

(
d∑
k=1
‖uk‖22 +

d∑
k=1
‖vk‖22

)
, (72)

where uk ∈ Rm and vk ∈ Rn denote the k-th column of U and V, respectively.

Proof. It follows by applying (69) and observing that

‖U‖2F + ‖V‖2F =
d∑
k=1
‖uk‖22 +

d∑
k=1
‖vk‖22 (73)
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Proposition 8.

‖Y‖? = minimum
U,V : UV> = Y

d∑
k=1
‖uk‖2‖vk‖2, (74)

where uk ∈ Rm and vk ∈ Rn denote the k-th column of U and V, respectively.

Proof. Apply (67) for any k = 1, . . . , d. Then,

‖uk‖2‖vk‖2 = minimum
ηk > 0

(
1
2
‖uk‖22
ηk

+ ηk‖vk‖22
)
. (75)

Since we have a decoupled minimization problem, we can commute summation and minimum, rewriting

d∑
k=1
‖uk‖2‖vk‖2 =

d∑
k=1

minimum
ηk > 0

(
1
2
‖uk‖22
ηk

+ ηk‖vk‖22
)

(76)

into
d∑
k=1
‖uk‖2‖vk‖2 = minimum

η1, . . . , ηd > 0

(
1
2

d∑
k=1

‖uk‖22
ηk

+
d∑
k=1

ηk‖vk‖22

)
. (77)

Minimize both terms with respect to d, U and V.

minimum
U,V : UV> = Y

d∑
k=1
‖uk‖2‖vk‖2

= minimum
η1, . . . , ηd > 0, d,U,V : UV> = Y

(
1
2

d∑
k=1

‖uk‖22
η

+ η‖vk‖22

)
. (78)

Equivalently,

minimum
U,V : UV> = Y

d∑
k=1
‖uk‖2‖vk‖2

= minimum
η1, . . . , ηd > 0, d,U,V : UV> = Y

(
1
2

d∑
k=1
‖uk/

√
ηk‖22 + ‖√ηkvk‖22

)
. (79)

We can discard the factors ηk exploiting the condition UV> = Y.

minimum
U,V : UV> = Y

d∑
k=1
‖uk‖2‖vk‖2 = minimum

d,U,V : UV> = Y

(
1
2

d∑
k=1
‖uk‖22 + ‖vk‖22

)
.

We get

minimum
U,V : UV> = Y

d∑
k=1
‖uk‖2‖vk‖2 = ‖Y‖?

by means of (72).

Observation. Due to the fact that, in all previous formulas, d was fixed and generic, the variational forms still
apply if we select d to be the arg minimum of the objective fuctions whose minimization over U and V gives the
variational forms itself. Therefore,
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‖X‖? = min
d≥ρ(X),U∈Rm×d,V∈Rn×d : UV>=X

1
2
(
‖U‖2F + ‖V‖2F

)
(80)

= min
d≥ρ(X),U∈Rm×d,V∈Rn×d : UV>=X

‖U‖F ‖V‖F (81)

= min
d≥ρ(X),U∈Rm×d,V∈Rn×d : UV>=X

1
2

(
d∑
k=1
‖uk‖22 +

d∑
k=1
‖vk‖22

)
(82)

= min
d≥ρ(X),U∈Rm×d,V∈Rn×d : UV>=X

d∑
k=1
‖uk‖2‖vk‖2. (83)

4 (Lower) convex envelope of the regularizer

Proposition 9. The convex envelope of 1
2‖X‖

2
M is 1−p

2p ‖X‖
2
?.

Proof. First, recall that the convex envelope of a function f is the largest closed, convex function g such
that g(x) ≤ f(x) for all x and is given by g = (f∗)∗, where f∗ denotes the Fenchel dual of f , defined as
f∗(q) ≡ supx 〈q, x〉 − f(x). Let Θ(X) = 1

2‖X‖
2
M, given by

Θ(X) = inf
d ≥ ρ(X)
U ∈ Rm×d
V ∈ Rn×d

s.t. UV> = X

λd
2

d∑
k=1
‖uk‖22‖vk‖22. (84)

and note that this can be equivalently written by the equation

Θ(X) = inf
d ≥ ρ(X)
U ∈ Rm×d
V ∈ Rn×d

Λ ∈ Rd

λd
2 ‖Λ‖

2
2 s.t.

d∑
k=1

ΛkukvTk = X and (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k. (85)

This gives the Fenchel dual of Θ as

Θ∗(Q) = sup
d

sup
U ∈ Rm×d
V ∈ Rn×d

Λ ∈ Rd

d∑
k=1

Λk
〈
Q,ukvTk

〉
− λd

2 ‖Λ‖
2
2 s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k. (86)

Now, note that if we define the vector Bd(U,V) ∈ Rd as

Bd(U,V) =


〈
Q,u1vT1

〉〈
Q,u2vT2

〉
...〈

Q,udvTd
〉
 , (87)

then from (86) we have that

Θ∗(Q) = sup
d

sup
U ∈ Rm×d
V ∈ Rn×d

sup
Λ∈Rd

〈Bd(U,V),Λ〉 − λd
2 ‖Λ‖

2
2 s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k (88)

= sup
d

sup
U ∈ Rm×d
V ∈ Rn×d

1
2λd
‖Bd(U,V)‖22 s.t. (‖uk‖2, ‖vk‖2) ≤ (1, 1) ∀k. (89)
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where the final equality comes from noting that the supremum w.r.t. Λ is the definition of the Fenchel dual of the
squared `2 norm evaluated at Bd(U,V).

Now, from(89) and the definition of Bd(U,V) note that for a fixed value of d, (89) is optimized w.r.t. (U,V) by
choosing all the columns of (U,V) to be equal to the maximum singular vector pair, given by

sup
u∈Rm,v∈Rn

〈
Q,uvT

〉
s.t. (‖u‖2, ‖v‖2) ≤ (1, 1). (90)

Note also that for this optimal choice of (U,V) we have that Bd(U,V) = σ(Q)1d where σ(Q) denotes the largest
singular value of Q and 1d is a vector of all ones of size d. Plugging this in (89) gives

Θ∗(Q) = sup
d

1
2λd
‖σ(Q)1d‖22 = sup

d

σ2(Q)d
2λd

=
(

p

1− p

)
σ2(Q)

2 , (91)

where recall λd = d(1− p)/p. The result then follows by noting the well-known duality between the spectral norm
(largest singular value) and the nuclear norm and basic properties of the Fenchel dual.
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5 Optimal dropout for MF satisfies the optimality conditions for the convex
lower bound

For a fixed Y ∈ Rm×n, find U ∈ Rm×d, and V ∈ Rn×d, d ≥ rank(Y), consider the dropout problem

min
U,V,d

Er

∥∥∥∥Y− 1
θ
Udiag(r)V>

∥∥∥∥2

F

, (92)

where r is a d-dimensional random vector with i.i.d. Bernoulli(θ) entries, 0 < θ < 1. We know that

Er

∥∥∥∥Y− 1
θ
Udiag(r)V>

∥∥∥∥2

F

= ‖Y−UV>‖2F + 1− θ
θ

d∑
k=1
‖uk‖22‖vk‖22 (93)

and for a particular choice θ = θ(d), we get

Er

∥∥∥∥Y− 1
θ(d)Udiag(r)V>

∥∥∥∥2

F

= ‖Y−UV>‖2F + d
1− p
p

d∑
k=1
‖uk‖22‖vk‖22 (94)

Definition 3 (Convex envelope). The convex envelope of a real-valued function f is the largest closed, convex
function g such that g ≤ f .

Definition 4. Fix Y ∈ Rm×n arbitrary. Then, for any integer d ≥ rank(Y) and U ∈ Rm×d, V ∈ Rn×d, define

Ω(Y) = inf
d,U,V

d 1−p
p

d∑
k=1
‖uk‖22‖vk‖22 s.t. UV> = Y. (95)

Proposition 10. The convex envelope of 1
2Ω(Y) is 1−p

2p ‖Y‖
2
?.

• If we can show that a local minimum of

f(U,V, d) =
[
‖Y−UV>‖2F + d 1−p

p

d∑
k=1
‖uk‖22‖vk‖22

]
(96)

satisfies the optimality conditions for its lower bound

f(U,V, d) ≥ F (X) = ‖X−Y‖2F + 1−p
p ‖X‖

2
?, (97)

then we know we’ve also found a global minimum of (96).

Lemma 4. Let (Ū, V̄, d̄) a local minimizer of (96). Then,

〈
Y− ŪV̄>, ŪV̄>

〉
= d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (98)

Proof. Since (Ū, V̄) is a local minimizer of f(U,V, d̄), then there exists δ > 0 such that, for any ε > 0, ε < δ, we
must have

f(Ū, V̄, d̄) ≤ f(Ū + εŪ, V̄ + εV̄, d̄) = f((1 + ε)Ū, (1 + ε)V̄, d̄). (99)

That is

‖Y− ŪV̄>‖2F + d̄ 1−p
p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 ≤ ‖Y− (1 + ε)2ŪV̄>‖2F + d̄ 1−p

p (1 + ε)4
d̄∑
k=1
‖ūk‖22‖v̄k‖22. (100)
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Exploit the first order approximations (1 + ε)2 = 1 + 2ε + O(ε2) and (1 + ε)4 = 1 + 4ε + O(ε2). Since
‖A + (1 + ε)2B‖2F = ‖A + (1 + 2ε)B‖2F +O(ε2),

‖Y− ŪV̄>‖2F + d̄ 1−p
p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 ≤ (101)

‖Y− ŪV̄> − 2εŪV̄>‖2F + d̄ 1−p
p (1 + 4ε)

d̄∑
k=1
‖ūk‖22‖v̄k‖22 +O(ε2) (102)

and also, by deleting d̄ 1−p
p

∑d̄
k=1 ‖ūk‖22‖v̄k‖22 and rearranging terms,

0 ≤ ‖Y− ŪV̄> − 2εŪV̄>‖2F − ‖Y− ŪV̄>‖2F + 4εd̄ 1−p
p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 +O(ε2). (103)

Divide by ε = 2ε,

0 ≤ 1
ε

(
‖Y− ŪV̄> − εŪV̄>‖2F − ‖Y− ŪV̄>‖2F

)
+ 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 +O(ε). (104)

Take the limit as ε→ 0 and use the definition of one-sided directional derivative for a differentiable function h

〈∇h(x),d〉 = ∇dh(x) = lim
ε→0

h(x + εd)− h(x)
ε

(105)

for h(·) = ‖Y− ·‖2F , x = ŪV̄> and d = ŪV̄>. Then,

0 ≤
〈[
∇X‖X−Y‖2F

]
(ŪV̄>), ŪV̄>

〉
+ 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (106)

= 2
〈
ŪV̄> −Y, ŪV̄>

〉
+ 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (107)

and, once the factor 2 is simplified,

0 ≤ −
〈
Y−UV>, ŪV̄>

〉
+ d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22. (108)

Note that by ε > 0 and sufficiently small, we must also have,

f(Ū, V̄, d̄) ≤ f(Ū− εŪ, V̄− εV̄, d̄) = f((1− ε)Ū, (1− ε)V̄, d̄). (109)

By applying the same steps as before, we get

0 ≤ 1
ε

(
‖Y− ŪV̄> + εŪV̄>‖2F − ‖Y− ŪV̄>‖2F

)
− 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 +O(ε). (110)

Take the limit as ε→ 0 and use the definition of directional derivative (105).

0 ≤
〈[
∇X‖X−Y‖2F

]
(ŪV̄>),−ŪV̄>

〉
− 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (111)

= 2
〈
ŪV̄> −Y,−ŪV̄>

〉
− 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (112)

= 2
〈
Y− ŪV̄>, ŪV̄>

〉
− 2d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22. (113)
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Simplify the common factor 2, after changing the signs,

0 ≥ −
〈
Y−UV>, ŪV̄>

〉
+ d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (114)

The thesis comes by combining (108) and (114).

Theorem 1 (Necessary and sufficient conditions for local minima of (96) to be global for (97)). Let (Ū, V̄, d̄) be
a local minimizer of problem (96):

min
U,V,d

[
‖Y−UV>‖2F + d 1−p

p

d∑
k=1
‖uk‖22‖vk‖22

]
(115)

and consider its convex lower bound (97):

min
X
‖X−Y‖2F + 1−p

p ‖X‖
2
?, (116)

• Sufficient conditions. Assume that

‖ŪV̄>‖? =

√√√√d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (117)

and
p>(Y− ŪV̄>)q ≤ 1−p

p ‖p‖2‖q‖2‖ŪV̄>‖? (118)

for any column vector p ∈ Rm and q ∈ Rn. Then ŪV̄> is a global minimizer for (97).

• Necessary condition. Assume that ŪV̄> is a global minimizer for (97). Then, (117) is satisfied.

Proof. • The first order optimality condition for

min
X
‖X−Y‖2F + λ‖X‖2? (119)

is

0 ∈ ∇X‖X−Y‖2F + ∂( 1−p
p ‖X‖

2
?) (120)

⇔ 0 ∈ 2(X−Y) + 2 1−p
p ‖X‖?∂‖X‖? (121)

⇔ Y−X ∈ 1−p
p ‖X‖?∂‖X‖? (122)

⇔ Y−X
1−p
p ‖X‖?

∈ ∂‖X‖?. (123)

Recall that
∂‖X‖? =

{
W ∈ Rm×n : 〈X,W〉 = ‖X‖?, p>Wq ≤ ‖p‖2‖q‖2 ∀ (p,q)

}
. (124)

Therefore, since (118) easily reads as the inequality in (124) for

W = Y− ŪV̄>
1−p
p ‖ŪV̄>‖?

, (125)

the thesis will follow if we show 〈
ŪV̄>, Y− ŪV̄>

1−p
p ‖ŪV̄>‖?

〉
= ‖ŪV̄>‖? (126)

or, equivalently, 〈
Y− ŪV̄>, ŪV̄>

〉
= 1−p

p ‖ŪV̄>‖2?. (127)

We can observe that (127) easily follows from (117) if considering equation (98) of Lemma 4.
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• Let (Ū, V̄, d̄) be a global minimizer of (96) and assume that ŪV̄> satisfies the optimality conditions for
(97).
Since (Ū, V̄, d̄) is a local minimizer of (96), then, thanks to Lemma 4, we have

〈
Y− ŪV̄>, ŪV̄>

〉
= d̄ 1−p

p

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (128)

At the same time, since ŪV̄> satisfies the optimality conditions for (97), we have

Y− ŪV̄> ∈ 1−p
p ‖ŪV̄>‖?∂‖ŪV̄>‖?. (129)

Considering that

∂‖X‖? =
{
W : 〈X,W〉 = ‖X‖?, p>Wq ≤ ‖p‖2‖q‖2 ∀ (p,q)

}
, (130)

in particular,
〈Y− ŪV̄>, ŪV̄>〉 = 1−p

p ‖ŪV̄>‖2?. (131)

Combine (98) and (131), we get

‖ŪV̄>‖2? = d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22 (132)

and (117) follows by square-rooting each member of (132).

Lemma 5. For any n ∈ N+ and a1, . . . , an ∈ R, we get(
n∑
k=1

ak

)2

≤ n
n∑
k=1

a2
k (133)

Proof. For any n-dimensional column vectors x and y, Cauchy-Schwartz inequality is

x>y ≤ ‖x‖2‖y‖2 (134)

and therefore
(x>y)2 ≤ ‖x‖22‖y‖22. (135)

The thesis follows by applying the previous inequality to the case x = [a1, . . . , an]> and y = [1, . . . , 1]. Indeed, in
such a case,

(x>y)2 =
n∑
k=1

ak, ‖x‖22 =
n∑
k=1

a2
k and ‖y‖22 = n. (136)

Observation: a consequence of (117), i.e. another necessary condition.

Assume that (Ū, V̄, d̄) is a local minimizer of (96), being at the same time ŪV̄> the global minimizer of (97).
Then, for what we said, equation (117) is satisfied. That is,

‖ŪV̄>‖? =

√√√√d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22. (137)

Exploit the variational form of the nuclear norm to obtain√√√√d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22 ≤

d̄∑
k=1
‖ūk‖2‖v̄k‖2 (138)
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and, equivalently,

d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22 ≤

 d̄∑
k=1
‖ūk‖2‖v̄k‖2

2

. (139)

Apply (133) for n = d̄ and ak = ‖ūk‖2‖v̄k‖2. Then d̄∑
k=1
‖ūk‖2‖v̄k‖2

2

≤ d̄
d̄∑
k=1
‖ūk‖22‖v̄k‖22. (140)

By combining the last two inequalities, we get

d̄

d̄∑
k=1
‖ūk‖22‖v̄k‖22 =

 d̄∑
k=1
‖ūk‖2‖v̄k‖2

2

(141)

Analyzing the polar

We are interested in a better understanding of equation (118):

p>(Y− ŪV̄>)q ≤ 1−p
p ‖p‖2‖q‖2‖ŪV̄>‖? for all p ∈ Rm and q ∈ Rn. (142)

Therefore, we will provide a few sufficient conditions built on top of the following technical result.

Lemma 6. For any A ∈ Rm×n and x ∈ Rn,

‖Ax‖2 ≤ ‖A‖2‖x‖2 (143)
‖Ax‖2 ≤ ‖A‖F ‖x‖2 (144)
‖Ax‖2 ≤

√
mn‖A‖max‖x‖2 (145)

Proof of (143). The thesis comes after the definition of operator norm,

‖A‖2 = sup
{
‖Ax‖2
‖x‖2

: x ∈ Rn,x 6= 0
}
. (146)

Proof of (144). We get (144) from (143) by using the fact that ‖A‖2 ≤ ‖A‖F through the following chain of
inequalities.

‖A‖22 = σ1(A)2 = max
i

[σi(A)2] = max
i
λi(A>A) ≤

m∑
i=1

λi(A>A) = trace(A>A) = ‖A‖2F . (147)

Proof of (145). By definition of Euclidean norm,

‖Ax‖22 =
m∑
i=1

 n∑
j=1

Aijxj

2

. (148)

For any i = 1, . . . ,m apply (133).

‖Ax‖22 ≤ n
m∑
i=1

n∑
j=1

A2
ijx

2
j ≤ n

m∑
i=1

n∑
j=1

max
p,q

A2
pqx

2
j

= mnmax
p,q

A2
pq

n∑
j=1

x2
j = mnmax

p,q
A2
pq‖x‖22. (149)

The thesis comes by square-rooting the extremal terms in the chain of equalities (149) and noticing that√
max
p,q

A2
pq = max

p,q
|Apq| = ‖A‖max. (150)
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Proposition 11. Equation (118):

p>(Y−UV>)q ≤ 1−p
p ‖p‖2‖q‖2‖UV>‖? (151)

is satisfied for any column vectors p ∈ Rm and q ∈ Rn if any of the following conditions are matched.

1. σ1(Y) ≤ 1−p
p ‖UV>‖? − σ1(UV>) = 1−p

p

min(m,n)∑
i=1

σi(UV>)− σ1(UV>) (152)

2. (117) and (98) hold for U,V, each having d columns, and
‖Y‖2F ≤ ‖UV>‖2F −

1−p
p ‖UV>‖?

(
2‖UV>‖? − 1

)
(153)

3. ‖Y−UV>‖max ≤
1√
mn

1−p
p ‖UV>‖? (154)

Proof. As the main tool to prove (152), (153) and (154), we notice that, thanks to Cauchy-Schwartz inequality,
we get

p>(Y−UV>)q ≤ ‖p‖2‖(Y−UV>)q‖2 (155)
for any column vector p ∈ Rm and q ∈ Rn.

1. We will obtain (118) if we are able to show that (152) implies

‖(Y−UV>)q‖2 ≤ 1−p
p ‖q‖2‖UV>‖?. (156)

By means of (143), we get

‖(Y−UV>)q‖2 ≤ ‖Y−UV>‖2‖q‖2 = σ1(Y−UV>)‖q‖2. (157)

Since, for any pairs of matrices A,B ∈ Rm×n one gets

σ1(A + B) ≤ σ1(A) + σ1(B), (158)

then
‖(Y−UV>)q‖2 ≤

(
σ1(Y) + σ1(UV>)

)
‖q‖2, (159)

since the singular values of −UV> are the same ones of UV>. It’s easy to see that (159) combined with the
assumption (152) gives (156).

2. We will obtain (118) if we are able to show that (153) implies

‖(Y−UV>)q‖2 ≤ 1−p
p ‖q‖2‖UV>‖? (160)

Since, by using (144), we get

‖(Y−UV>)q‖2 ≤ ‖Y−UV>‖F ‖q‖2. (161)

Now,

‖Y−UV>‖2F = ‖Y‖2F + ‖UV>‖2F − 2〈Y,UV>〉 (162)
= ‖Y‖2F + ‖UV>‖2F − 2〈Y−UV> + UV>,UV>〉 (163)
= ‖Y‖2F − ‖UV>‖2F − 2〈Y−UV>,UV>〉 (164)

and, by combining (98) with (117), we get

‖Y−UV>‖2F = ‖Y‖2F − ‖UV>‖2F − 2 1−p
p ‖UV>‖2?. (165)

Therefore, ‖Y−UV>‖2F ≤
1−p
p ‖UV>‖? rewrites

‖Y‖2F − ‖UV>‖2F − 2 1−p
p ‖UV>‖2? −

1−p
p ‖UV>‖? ≤ 0 (166)

and therefore we get the thesis.
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3. We will obtain (118) if we are able to show that (154) implies

‖(Y−UV>)q‖2 ≤ 1−p
p ‖q‖2‖UV>‖?. (167)

But, this is straightforward as consequence of (145) which states

‖(Y−UV>)q‖2 ≤
√
mn‖Y−UV>‖max‖q‖2. (168)
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6 Closed-form solution for the convex lower bound of dropout for MF

Proposition 12. Let X = LΣR> be the singular value decomposition of X. The optimal solution to

min
Y

‖X−Y‖2F + λ‖Y‖2? (169)

is given by Y = LSµ(Σ)R>, where λ > 0, µ = λd
1+λd σ̄d(X), σ̄d(X) is the average of the top d singular values of

X, d represents the largest integer such that σd(X) > λd
1+λd σ̄d(X), and Sµ is defined as the shrinkage thresholding

operator which set to zero all singular values of X which are less or equal to µ.

Proof. Since both the nuclear norm ‖ · ‖? and the Frobenius norm ‖ · ‖F are rotationally invariant, up to
non-restrictive rotations applied to the data matrix X, the thesis can be equivalently proved by considering the
following result.

Let x = [x1, . . . , xr] a fixed vector with xi ≥ xi+1 > 0. Define µd as the average of the first d entries of x Then,
the optimal solution to the optimization problem

min
a∈Rr

‖a − x‖22 + λ‖a‖21 (170)

is given by a = [a1, . . . , ar] where

ai =

xi −
λd

1 + λd
µd i = 1, . . . , d

0 i = d+ 1, . . . , r
(171)

where d is the largest positive integer less or equal to r such that all ai given in (171) are positive.

In order to prove this claim, first note that the objective function is strictly convex and, hence, there is a unique
global minimum. If λ = 0 the global minimizer is precisely x, which is consistent with the formula given in the
statement of the proposition. So, suppose that λ > 0. Next, notice that if a = [a1, a2, . . . , ar] is an optimal
solution, then all ai must be non-negative. Indeed, if say a1 < 0, then the vector [−a1, a2, . . . , ar] already gives a
smaller objective value. Now, the first order optimality condition of our problem rewrites

0 ∈ (a − x) + λ‖a‖1∂‖a‖1. (172)

There are two cases for each coordinate i of (172).

ai = xi − λ‖a‖1, if ai > 0, and xi = λ‖a‖1ξi, if ai = 0. (173)

where ξi in (173) is some number in the interval [0, 1]. Notice that since xi > 0 for every i, the second condition
in (173) guarantees that the global solution can not be the zero vector, otherwise ‖a‖1 = 0 and so xi = 0 for
every i. Thus, suppose that exactly the first k ≥ 1 coordinates of a are non-zero. Then sum the equations
ai = xi − λk‖a‖1 for i = 1, . . . , k. We get

‖a‖1 = kµk − λk‖a‖1 (174)

which gives
‖a‖1 = k

1 + λk
µk. (175)

Then (173) and (175) give

ai = xi −
λk

1 + λk
µk > 0 for i = 1, . . . , k and ai = 0 for i = k + 1, . . . , r. (176)

Now, let d be the largest integer such that ai = xi −
λd

1 + λd
µd > 0 and define the vector

v =

x1 −
λd

1 + λd
µd, . . . , xd −

λd

1 + λd
µd, 0, . . . , 0︸ ︷︷ ︸

r − d times

 . (177)
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If d = r, then v satisfies the optimality condition (173) and so it is the global minimizer. So suppose that d < r.
In that case, to show that v is the global minimizer it suffices to show that

xd+1 −
λd

1 + λd
µd ≤ 0. (178)

since this is equivalent to saying that for any i >d there exists ξi ∈ [0, 1] such that xi = λ‖v‖1ξi in which case v
satisfies the optimality condition (173). Now by the maximality of d, we have that

xd+1 −
λ(d+ 1)

1 + λ(d+ 1)µd+1 ≤ 0. (179)

Equivalently, we get the following chain of inequalities(
1− λ

1 + λ(d+ 1)

)
xd+1 −

λ

1 + λ(d+ 1)

d∑
k=1

xk ≤ 0 (180)

1 + λd

1 + λ(d+ 1)xd+1 −
λ

1 + λ(d+ 1)

d∑
k=1

xk ≤ 0 (181)

xd+1 −
λd

1 + λd
µd ≤ 0 (182)

from which we obtain the desired condition.



Running heading author breaks the line

7 Complementary results for the numerical simulation

In this Section we will present the complete version of Figure 1 in the paper. Also, we provide more examples of
digits’ reconstruction on MNIST dataset.

Figure 1: For θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and d ∈ {10, 40, 160} we compare the deterministic problem (red) with
its stochastic counterpart (blue). The exponential moving average of the stochastic objective is shown in cyan.
Best viewed in color.
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Figure 2: Experiments on MNIST dataset, whose original images are reported in the first column. For each of
those, we compute dropout for MF with θ = 0.5 (second column) and the corresponding closed-form solution
(third column).
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Figure 3: Experiments on MNIST dataset, whose original images are reported in the first column. For each of
those, we compute dropout for MF with θ = 0.5 (second column) and the corresponding closed-form solution
(third column).
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Figure 4: Experiments on MNIST dataset, whose original images are reported in the first column. For each of
those, we compute dropout for MF with θ = 0.8 (second column) and the corresponding closed-form solution
(third column).
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Figure 5: Experiments on MNIST dataset, whose original images are reported in the first column. For each of
those, we compute dropout for MF with θ = 0.8 (second column) and the corresponding closed-form solution
(third column).
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