
Convergence diagnostics for stochastic gradient descent

with constant learning rate

Supplementary material

Theorem 1 ([3, 4]) Under certain assumptions on the loss function, there are positive constants
Aγ , B such that, for every n, it holds that

E(||θn − θ?||2) ≤ E(||θ0 − θ?||2)e−Aγn +Bγ.

Theorem 2 Consider SGD with constant rate,

θn = θn−1 − γ∇`(yn, x>n θn−1).

Suppose that Theorem 1 holds, so that that E(||θn − θ?||2) ≤ γM , for some positive M and large
enough n. We make the following additional assumptions:

(a) ∇`(y, x>θ) = f(x, θ) + e, where f(x, θ) is L-Lipschitz, E(e|x, θ) = 0 and E(||e||2) ≥ τ2.

(b) It holds E(f(x, θ − γz)>z) ≤ E(f(x, θ)>z) − γK · E(z>Cz), for any θ, z, for some positive
constant K, and some positive definite matrix C with minimum eigenvalue µ > 0.

(c) It holds that γ > (L2M − µKτ2)/µKL2M .

Then,
E(∇`(yn, x>n θn−1)>∇`(yn+1, x

>
n+1θn)) < 0.

Proof 2 For brevity let ˜̀
i = f(xi+1, θi) + ei = fi + ei be the stochastic gradient at iteration i+ 1.

E(˜̀>
i−1

˜̀
i) = E

[
(fi−1 + ei−1)

>(fi + ei)
]

= E
[
(fi−1 + ei−1)

>fi

]
[ because ei are zero-mean ]

= E
[
(fi−1 + ei−1)

>f (θi−1 − γfi−1 − γei−1)
]

[ by SGD step for θi ]

≤ E(||fi−1||2)− γK · E
[
(fi−1 + ei−1)

>C(fi−1 + ei−1)
]

[ by Assumption (b) ]

≤ (1− γµK)E(||fi−1)||2)− γK · E(||ei−1||2C)

≤ (1− γµK)L2E(||θi−1 − θ?||2)− γµKτ2 [ by Lipschitz Assumption (a) ]

≤ γ[(1− γµK)L2M − µKτ2]
< 0. [ by Assumption (c) and small enough γ ] (1)

Remarks. Assumption (b) is a form of strong convexity. For example, suppose that y = x>θ?+e,
then f(x, θ) = xx>(θ−θ?) and f(x, θ−γz)>z = f(x, θ)>z−γz>E(xx>)z. In this case C = E(xx>)
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is the Fisher information matrix and Assumption (b) holds for K = 1. When γ is small enough and
a Taylor approximation of f(x, θ − γz) is possible, the above result still holds for K = 1 when the
Fisher information exists. Assumption (c) shows that there is a threshold value for γ below which
the diagnostic cannot terminate. For example, suppose that error noise is small so that τ2 ≈ 0 and
K = 1, as argued before. Then, γ > 1/µ, that is, the learning rate has to exceed the reciprocal of
the minimum eigenvalue of the Fisher information matrix.

Theorem 3 Suppose that the loss is quadratic, `(y, x>θ) = (1/2)(y − x>θ)2. Let x1 and x2 be
two iid vectors from the distribution of x, and define: σ2 = E((y − x>θ?)

2); c2 = E((x>1 x2)
2);

C = E(x1x
>
2 (x>1 x2)); D = E(x1x

>
1 (x>1 x2)

2), and suppose that all such constants are finite. Then,
for γ > 0,

∆n(θ) = E(Sn+2 − Sn+1|θn = θ)

= (θ − θ?)>(C − γD)(θ − θ?)− γc2σ2.

Proof 3 For notational brevity we make the following definitions:

θ+ = θ + γ(y1 − x>1 θ)x1
θ++ = θ+ + γ(y2 − x>2 θ+)x2, (2)

where θ is the current iterate, and θ+ and θ++ are the next two using iid data (x1, y1) and (x2, y2).
For a fixed θ we understand the Pflug diagnostic through the function

H(θ) = S++ − S+|θ = ∇++`
>∇+` = (θ+ − θ)>(θ++ − θ+)/γ2 (3)

and ∆n(θ) = E(H(θ)) = E
(

(θ+ − θ)>(θ++ − θ+)/γ2
)
. (4)

We use Equation (2) to derive an expression for H:

H(θ) = (y1 − x>1 θ)(y2 − x>2 θ+)x>1 x2

= (y1 − x>1 θ)
[
y2 − x>2 θ − γ(y1 − x>1 θ)x>1 x2

]
x>1 x2

= (y1 − x>1 θ)(y2 − x>2 θ)x>1 x2 − γ(y1 − x>1 θ)2(x>1 x2)2. (5)

Let yi = x>i θ?+εi; we know that E((yi−x>i θ?)xi) = 0. Now, we analyze each term individually:

(y1 − x>1 θ)(y2 − x>2 θ)x>1 x2 = [x>1 (θ? − θ) + ε1][x
>
2 (θ? − θ) + ε2]x

>
1 x2

= (θ − θ?)ᵀx1x>2 (x>1 x2)(θ − θ?) + ε1W
(1) + ε2W

(2) + ε1ε2W
(3).

The W variables are conditionally independent of ε and so using the law of iterated expectations
these terms vanish.

E
(

(y1 − x>1 θ)(y2 − x>2 θ)x>1 x2
)

= (θ − θ?)ᵀE
(
x1x

>
2 (x>1 x2)

)
(θ − θ?) = (θ − θ?)ᵀC(θ − θ?).

Using a similar reasoning, for the second term we have:

(y1 − x>1 θ)2(x>1 x2)2 =
[
(x>1 (θ? − θ) + ε1

]2
(x>1 x2)

2

=(θ − θ?)ᵀx1x>1 (x>1 x2)
2(θ − θ?) + ε1W

(4) + ε21(x
>
1 x2)

2. (6)
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In expectation of Equation (6),

E
(

(y1 − x>1 θ)2(x>1 x2)2
)

= (θ − θ?)ᵀE(x1x
>
1 (x>1 x2)

2)(θ − θ?) + ε21(x
>
1 x2)

2

= (θ − θ?)ᵀD(θ − θ?) + σ2c2. (7)

By combining all results we finally get:

∆n(θ) = (θ − θ?)ᵀ(C − γD)(θ − θ?)− γσ2c2.

Theorem 4 Let λγ = E(1/(1 + γ||x||2)) ∈ (0, 1]. Under the assumptions of Theorem 3 applied on
the implicit procedure in Equation (9), it holds that

∆im
n (θ) = E(Sn+2 − Sn+1|θn = θ)

= aγ∆n(θ) + bγ

[
(θ − θ?)>D(θ − θ?) + σ2c2

]
,

where aγ = λ2γ, bγ = γλ2γ(1− λγ).

Proof 4 We derive similar theoretical results for H im(θ),∆im
n (θ) under the linear normal model

for implicit updates. We have the implicit updates

θ+ = θ + γ(y1 − x>1 θ+)x1

θ++ = θ+ + γ(y2 − x>2 θ++)x2

Also note the collinearity

(y1 − x>1 θ+) = λ1(y1 − x>1 θ)
(y2 − x>2 θ++) = λ2(y2 − x>2 θ+),

= λ2[y2 − x>2 θ − γλ1(y1 − x>1 θ)x>1 x2],

where λ1 = 1/(1 + γ||x1||2) and λ2 = 1/(1 + γ||x2||2). We derive an expression for H im, with
implicit updates:

H im(θ) = (θ+ − θ)>(θ++ − θ+)/γ2

= (y1 − x>1 θ+)(y2 − x>2 θ++)x>1 x2

= λ1λ2(y1 − x>1 θ)[y2 − x>2 θ − γλ1(y1 − x>1 θ)x>1 x2]x>1 x2

= λ1λ2

[
H(θ) + γ(1− λ1)(y1 − x>1 θ)2(x>1 x2)2

]
= λ1λ2H(θ) + γλ1λ2(1− λ1)(y1 − x>1 θ)(x>1 x2)2,

where H is the function from the explicit update in Equation (5). The formula for ∆im
n (θ) follows

by applying expectation and the reasoning in Equation (7). Note that E(λ1λ2) = λ2γ since λ1 and
λ2 are independent and have marginally identical distributions.

Theorem 5 Consider the GLM loss defined as `(y, x>θ) = −y · x>θ + f(x>θ). Let h(u) = f ′(u)
and suppose that h′(x>θ) ≥ k > 0, almost surely for all θ. Let x1, x2 be two iid vectors from
the distribution of x. Define σ2 = E((y − h(x>θ?)

2); c2 = E((x>1 x2)
2); C(θ, θ?) = E([h(x>1 θ) −

h(x>1 θ?)]x1); D
2(θ, θ?) = E([h(x>1 θ)− h(x>1 θ?)]

2(x>1 x2)
2). Then, for small enough γ,

∆glm
n (θ) = E(Sn+2 − Sn+1|θn = θ)

≤ ||C(θ, θ?)||2 − γk[σ2c2 +D2(θ, θ?)].

3



Proof 5 The updates for the GLM loss are as follows:

θ+ = θ + γ(y1 − h(x>1 θ))x1

θ++ = θ+ + γ(y2 − h(x>2 θ
+))x2, (8)

Note that h(x>2 θ
+) = h(x>2 θ) + γh′(x>2 θ)(y1 − h(x>1 θ))x

>
2 x1 +O(γ2). We can now follow the exact

same reasoning as in Theorem 3 and that h′(x>θ) ≥ k almost surely.

1 Mean squared error bound for constant learning rate ISGD

In this section, ` will denote likelihood, which is the negated loss (cf. Equation (9)). Thus, we have
the implicit update of SGD (ISGD):

θn = θn−1 + γ∇`(yn, x>n θn). (9)

We will operate under the following assumptions:

Assumption 1 The following assumptions are true with regard to procedure in Equation (9).

(a) Function ` is convex, twice differentiable almost surely with respect to x>θ.

(b) For the observed Fisher information matrix În(θ) = ∇2`(yn, x
>
n θ) there exists constants b > 0

and 0 < t <∞ such that b ≤ trace(În(θ)) ≤ t almost surely, for all θ. The Fisher information

matrix I(θ∗) = E
(
În(θ∗)

)
has minimum eigenvalue λ > 0.

(c) There exists σ2 > 0 such that, for all n, E(‖∇`(yn, x>n θ?‖2|Fn−1) ≤ σ2, almost surely.

(d) The function θ 7→ E(∇`(y, x>θ)) is Lipschitz with constant L, i.e., for all n, θ1, θ2,

E(‖∇`(yn;x>n θ1)−∇`(yn;x>n θ2)‖2|Fn−1) ≤ L2‖θ1 − θ2‖2.

(e) Learning rate γ > 0 is such that γL2(1 + γt) < λ(1 + γb)2.

To prove Theorem 8, our result for the upper bound on the MSE for constant learning rate
ISGD, we first prove the following results:

Lemma 6 The gradient ∇` is a scaled version of covariate x, i.e., for every θ ∈ Rp there is a
scalar λ ∈ R such that

∇`(y;x>θ) = λx

Thus, the gradient in the implicit update is a scaled version of the gradient calculated at the
previous iterate, i.e.,

∇`(yn;x>n θn) = λn∇`(yn;x>n θn−1), (10)

where the scalar λn satisfies

λn`
′(yn;x>n θn−1) = `′(yn;x>n θn−1 + γλn`

′(yn;x>n θn−1)x
>
n xn) (11)
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Proof 6 From the chain rule ∇`(yn;x>n θn) = `′(yn;x>n θn)xn , and similarly ∇`(yn;x>n θn−1) =
`′(yn;x>n θn−1)xn. Thus the two gradients are collinear. Therefore there exists a scalar λn such that

`′(yn;x>n θn)xn = λn`
′(yn;x>n θn−1)xn (12)

We also have,

θn = θn−1 + γ∇`(yn;x>n θn) [by definition of implicit SGD update Equation (9)]

= θn−1 + γλn`
′(yn;x>n θn−1)xn [by chain rule and Equation(12)] (13)

Substituting the expression for θn in Equation(13) into Equation(12) we obtain the desired result
of the theorem. From Equation(12) we get the equality

`′(yn;x>n θn) = λn`
′(yn;x>n θn−1) (14)

and substituting we get our desired result

λn`
′(yn;x>n θn−1) = `′(yn;x>n (θn−1 + γλn`

′(yn;x>n θn−1)xn))

= `′(yn;x>n θn−1 + γλn`
′(yn;x>n θn−1)x

>
n xn)

Lemma 7 Suppose Assumptions 1 (a), and (b) hold. Then, almost surely it holds

1

1 + γt
≤ λn ≤

1

1 + γb
(15)

Proof 7 From Lemma 6 we have

`′(yn;x>n θn) = λn`
′(yn;x>n θn−1), (16)

where the derivative of ` is with respect to the natural parameter x>θ. Using the definition of
the implicit update Equation (9),

θn = θn−1 + γλn`
′(yn;x>n θn−1)xn. (17)

We substitute this definition of θn into Equation(16) and perform a Taylor approximation on `′.
Recall Taylor approximation for a function f , f(x) = f(a) + f ′(ξ)(x− a) where ξ lies in the closed
interval between a and x. From Equation(17) we let θn−1 = a and γλn`

′(yn;x>n θn−1)xn = (x− a).
Also, by the Chain rule δ

δθ `
′(y;x>θ) = `′′(y;x>θ)x>. Thus we obtain,

`′(yn;x>n θn) = `′(yn;x>n θn−1) + `′′(yn;x>n θ̃)x
>
n · γλn`′(yn;x>n θn−1)xn

= `′(yn;x>n θn−1) + γλn`
′′(yn;x>n θ̃)`

′(yn;x>n θn−1)x
>
n xn (18)

where θ̃ = δθn−1 + (1− δ)θn and δ ∈ [0, 1].
By combining Equation(16) with Equation(18) and cancelling out the first derivative term we

get

λn = 1 + γλn`
′′(yn;x>n θ̃)x

>
n xn

λn(1− γ`′′(yn;x>n θ̃)‖x‖2) = 1(
1 + γ trace(În(θ̃))

)
λn ≤ 1 [where Î is the observed Fisher information] (19)

(1 + γb)λn ≤ 1 [By Assumption 1 (b)] (20)

Now we get the other bound,

(1 + γt)λn ≥ 1 [By Assumption 1 (b)]

5



Theorem 8 Suppose that Assumptions 1(a) - (e) hold. Then,

E(||θn − θ?||2) ≤
(

1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)n
E(||θn−1 − θ?||2) (21)

+
γσ2(1 + γt)

λ(1 + γb)2 − γL2(1 + γt)
(22)

Proof 8 Starting from the implicit update (9), we have

θn − θ∗ = θn−1 − θ∗ + γ∇`(yn;x>n θn)

θn − θ∗ = θn−1 − θ∗ + γλn∇`(yn;x>n θn−1) [By Lemma 6]

‖θn − θ∗‖2 = ‖θn−1 − θ∗‖2

+ 2γλn(θn−1 − θ∗)>∇`(yn;x>n θn−1)

+ ‖γλn∇`(yn;x>n θn−1)‖2 (23)

To bound the last term,

‖γλn∇`(yn;x>n θn−1)‖2

= γ2λ2n‖∇`(yn;x>n θn−1)‖2

= γ2λ2n‖∇`(yn;x>n θn−1)−∇`(yn;x>n θ∗) +∇`(yn;x>n θ∗)‖2

≤ 2γ2λ2n‖∇`(yn;x>n θn−1)−∇`(yn;x>n θ∗)‖2 + 2γ2λ2n‖∇`(yn;x>n θ∗)‖2

≤ 2

(
γ

1 + γb

)2 (
‖∇`(yn;x>n θn−1)−∇`(yn;x>n θ∗)‖2 + ‖∇`(yn;x>n θ∗)‖2

)
[By Lemma 7] (24)

Taking expectation of both sides of Equation(24),

E(‖γλn∇`(yn;x>n θn−1)‖2)

≤ 2

(
γ

1 + γb

)2 [
E(‖∇`(yn;x>n θn−1)−∇`(yn;x>n θ∗)‖2) + E(‖∇`(yn;x>n θ∗)‖2)

]
≤ 2

(
γ

1 + γb

)2 (
L2‖θn−1 − θ∗‖2 + σ2

)
[ By Lipschitz and gradient bound, Assumption 1 (c), (d) ]

(25)

We can bound the expectation of the second term as

E(2λnγ(θn−1 − θ∗)>∇`(yn;x>n θn−1))

≥ 2γ

1 + γt
E
(

(θn−1 − θ∗)>∇`(yn;x>n θn−1)
)

[By Lemma 7 ]

≥ 2γ

1 + γt
E
(

(θn−1 − θ∗)>∇h(θn−1)
)

[where ∇h(θn−1) = E(∇`(yn;x>n θn−1)|Fn−1)]

≤ − 2γλ

1 + γt
E(‖θn−1 − θ∗‖2) [By strong convexity, Assumption 1 (b) ] (26)

Taking expectations in (23) and substituting inequalities (25) and (26) into (23), and again
taking expectation, yields the recursion,

E(‖θn − θ∗‖2) ≤
(

1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)
E(‖θn−1 − θ∗‖2) + 2

(
γσ

1 + γb

)2

(27)

6



Let δn ≡ E(‖θn − θ∗‖2). We can now derive the bound of the theorem as follows:

δn ≤
(

1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)n
δ0 +

∞∑
k=1

2

(
γσ

1 + γb

)2

·
(

1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)k
=

(
1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)n
δ0 + 2

(
γσ

1 + γb

)2

·
(

2γλ

1 + γt
− 2γ2L2

(1 + γb)2

)−1
=

(
1− 2γλ

1 + γt
+

2γ2L2

(1 + γb)2

)n
δ0 +

γσ2(1 + γt)

λ(1 + γb)2 − γL2(1 + γt)

Lemma 9 Suppose that Assumption 1(e) holds. The discount factor of the non-asymptotic bound
in Theorem 8 will be bounded 0 < · < 1 for all γ > 0, and thus the mean squared error E(‖θn−θ∗‖2)
will contract for all possible values of γ. In addition the stationary term will be > 0 for all γ > 0.

Proof 9 The discount factor is bounded below by
(

1− 2γλ
1+γb + 2γ2L2

(1+γb)2

)
because b ≤ t. We will show

that this term is bounded below by 0.
A quick manipulation of the algebra gives us

(lower bound) 2γλ(1 + γb)− 2γ2L2 < (1 + γb)2 (28)

(upper bound) γL2(1 + γt) < λ(1 + γb)2 (29)

(stationary bound) γL2(1 + γt) < λ(1 + γb)2 (30)

Both the upper bound and stationary bound are satisfied by Assumption 1 (e). Further manip-
ulating the lower bound, from Equation(28),

2γλ+ 2γ2λb− 2γ2L2 < 1 + 2γb+ γ2b2

γ2(b2 − 2λb+ 2L2) + γ(2b− 2λ) + 1 > 0 (31)

Solving the equality of Equation(31) (with the quadratic equation) gives us

(2λ− 2b)±
√

(2b− 2λ)2 − 4(b2 − 2λb+ 2L2)

2(b2 − 2λb+ 2L2)

=
(2λ− 2b)±

√
(4b2 − 8λb+ 4λ2)− 4b2 + 8λb− 8L2

2(b2 − 2λb+ 2L2)

=
(2λ− 2b)±

√
4λ2 − 8L2

2(b2 − 2λb+ 2L2)

=
(λ− b)±

√
λ2 − 2L2

(b2 − 2λb+ 2L2)

Recall that for a second-degree polynomial of the form a2x
2+a1x+1, the convexity is determined

by a2. Because L ≥ λ (a standard assumption), the discriminant (λ2− 2L2) < 0 and thus there are
no real roots. Looking at the convexity,

(b2 − 2λb+ 2L2) > (b2 − 2λb+ λ2) = (b− λ)2 > 0

The strict inequality is because of the following. For all observed Fisher information matrices,
(with p the dimesnion)

trace(În(θ)) ≥ b⇒ Etrace(În(θ)) ≥ b⇒ λ · p ≥ b

Thus for all γ ∈ R the lower bound represented by Equation(28) is satisfied. We have zero real
roots and a convex function.
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