Convergence diagnostics for stochastic gradient descent with constant learning rate

Supplementary material

Theorem 1 ([3, 4]) Under certain assumptions on the loss function, there are positive constants A_{γ}, B such that, for every n, it holds that

$$
\mathbb{E}\left(\left\|\theta_{n}-\theta_{\star}\right\|^{2}\right) \leq \mathbb{E}\left(\left\|\theta_{0}-\theta_{\star}\right\|^{2}\right) e^{-A_{\gamma} n}+B \gamma .
$$

Theorem 2 Consider $S G D$ with constant rate,

$$
\theta_{n}=\theta_{n-1}-\gamma \nabla \ell\left(y_{n}, x_{n}^{\top} \theta_{n-1}\right) .
$$

Suppose that Theorem 1 holds, so that that $\mathbb{E}\left(\left\|\theta_{n}-\theta_{\star}\right\|^{2}\right) \leq \gamma M$, for some positive M and large enough n. We make the following additional assumptions:
(a) $\nabla \ell\left(y, x^{\top} \theta\right)=f(x, \theta)+e$, where $f(x, \theta)$ is L-Lipschitz, $\mathbb{E}(e \mid x, \theta)=0$ and $\mathbb{E}\left(\|e\| \|^{2}\right) \geq \tau^{2}$.
(b) It holds $\mathbb{E}\left(f(x, \theta-\gamma z)^{\top} z\right) \leq \mathbb{E}\left(f(x, \theta)^{\top} z\right)-\gamma K \cdot \mathbb{E}\left(z^{\top} C z\right)$, for any θ, z, for some positive constant K, and some positive definite matrix C with minimum eigenvalue $\mu>0$.
(c) It holds that $\gamma>\left(L^{2} M-\mu K \tau^{2}\right) / \mu K L^{2} M$.

Then,

$$
\mathbb{E}\left(\nabla \ell\left(y_{n}, x_{n}^{\top} \theta_{n-1}\right)^{\top} \nabla \ell\left(y_{n+1}, x_{n+1}^{\top} \theta_{n}\right)\right)<0 .
$$

Proof 2 For brevity let $\tilde{\ell}_{i}=f\left(x_{i+1}, \theta_{i}\right)+e_{i}=f_{i}+e_{i}$ be the stochastic gradient at iteration $i+1$.

$$
\begin{align*}
\mathbb{E}\left(\tilde{\ell}_{i-1}^{\top} \tilde{\ell}_{i}\right) & =\mathbb{E}\left[\left(f_{i-1}+e_{i-1}\right)^{\top}\left(f_{i}+e_{i}\right)\right]=\mathbb{E}\left[\left(f_{i-1}+e_{i-1}\right)^{\top} f_{i}\right] \quad \text { [because } e_{i} \text { are zero-mean] } \\
& =\mathbb{E}\left[\left(f_{i-1}+e_{i-1}\right)^{\top} f\left(\theta_{i-1}-\gamma f_{i-1}-\gamma e_{i-1}\right)\right] \quad \text { [by SGD step for } \theta_{i} \text {] } \\
& \leq \mathbb{E}\left(\left\|f_{i-1}\right\|^{2}\right)-\gamma K \cdot \mathbb{E}\left[\left(f_{i-1}+e_{i-1}\right)^{\top} C\left(f_{i-1}+e_{i-1}\right)\right] \quad \text { [by Assumption (b)] } \\
& \left.\leq(1-\gamma \mu K) \mathbb{E}\left(\| f_{i-1}\right) \|^{2}\right)-\gamma K \cdot \mathbb{E}\left(\left\|e_{i-1}\right\|_{C}^{2}\right) \\
& \leq(1-\gamma \mu K) L^{2} \mathbb{E}\left(\left\|\theta_{i-1}-\theta_{\star}\right\|^{2}\right)-\gamma \mu K \tau^{2} \quad \text { [by Lipschitz Assumption (a)] } \\
& \leq \gamma\left[(1-\gamma \mu K) L^{2} M-\mu K \tau^{2}\right] \\
& <0 . \quad \text { [by Assumption (c) and small enough } \gamma \text {] } \tag{1}
\end{align*}
$$

Remarks. Assumption (b) is a form of strong convexity. For example, suppose that $y=x^{\top} \theta_{\star}+e$, then $f(x, \theta)=x x^{\top}\left(\theta-\theta_{\star}\right)$ and $f(x, \theta-\gamma z)^{\top} z=f(x, \theta)^{\top} z-\gamma z^{\top} \mathbb{E}\left(x x^{\top}\right) z$. In this case $C=\mathbb{E}\left(x x^{\top}\right)$
is the Fisher information matrix and Assumption (b) holds for $K=1$. When γ is small enough and a Taylor approximation of $f(x, \theta-\gamma z)$ is possible, the above result still holds for $K=1$ when the Fisher information exists. Assumption (c) shows that there is a threshold value for γ below which the diagnostic cannot terminate. For example, suppose that error noise is small so that $\tau^{2} \approx 0$ and $K=1$, as argued before. Then, $\gamma>1 / \mu$, that is, the learning rate has to exceed the reciprocal of the minimum eigenvalue of the Fisher information matrix.

Theorem 3 Suppose that the loss is quadratic, $\ell\left(y, x^{\top} \theta\right)=(1 / 2)\left(y-x^{\top} \theta\right)^{2}$. Let x_{1} and x_{2} be two iid vectors from the distribution of x, and define: $\sigma^{2}=\mathbb{E}\left(\left(y-x^{\top} \theta_{\star}\right)^{2}\right) ; c^{2}=\mathbb{E}\left(\left(x_{1}^{\top} x_{2}\right)^{2}\right)$; $C=\mathbb{E}\left(x_{1} x_{2}^{\top}\left(x_{1}^{\top} x_{2}\right)\right) ; D=\mathbb{E}\left(x_{1} x_{1}^{\top}\left(x_{1}^{\top} x_{2}\right)^{2}\right)$, and suppose that all such constants are finite. Then, for $\gamma>0$,

$$
\begin{aligned}
\Delta_{n}(\theta) & =\mathbb{E}\left(S_{n+2}-S_{n+1} \mid \theta_{n}=\theta\right) \\
& =\left(\theta-\theta_{\star}\right)^{\top}(C-\gamma D)\left(\theta-\theta_{\star}\right)-\gamma c^{2} \sigma^{2} .
\end{aligned}
$$

Proof 3 For notational brevity we make the following definitions:

$$
\begin{align*}
\theta^{+} & =\theta+\gamma\left(y_{1}-x_{1}^{\top} \theta\right) x_{1} \\
\theta^{++} & =\theta^{+}+\gamma\left(y_{2}-x_{2}^{\top} \theta^{+}\right) x_{2}, \tag{2}
\end{align*}
$$

where θ is the current iterate, and θ^{+}and θ^{++}are the next two using iid data $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. For a fixed θ we understand the Pflug diagnostic through the function

$$
\begin{align*}
H(\theta) & =S_{++}-S_{+} \mid \theta=\nabla_{++} \ell^{\top} \nabla_{+} \ell=\left(\theta^{+}-\theta\right)^{\top}\left(\theta^{++}-\theta^{+}\right) / \gamma^{2} \tag{3}\\
\text { and } \Delta_{n}(\theta) & =\mathbb{E}(H(\theta))=\mathbb{E}\left(\left(\theta^{+}-\theta\right)^{\top}\left(\theta^{++}-\theta^{+}\right) / \gamma^{2}\right) . \tag{4}
\end{align*}
$$

We use Equation (2) to derive an expression for H :

$$
\begin{align*}
H(\theta) & =\left(y_{1}-x_{1}^{\top} \theta\right)\left(y_{2}-x_{2}^{\top} \theta^{+}\right) x_{1}^{\top} x_{2} \\
& =\left(y_{1}-x_{1}^{\top} \theta\right)\left[y_{2}-x_{2}^{\top} \theta-\gamma\left(y_{1}-x_{1}^{\top} \theta\right) x_{1}^{\top} x_{2}\right] x_{1}^{\top} x_{2} \\
& =\left(y_{1}-x_{1}^{\top} \theta\right)\left(y_{2}-x_{2}^{\top} \theta\right) x_{1}^{\top} x_{2}-\gamma\left(y_{1}-x_{1}^{\top} \theta\right)^{2}\left(x_{1}^{\top} x_{2}\right)^{2} . \tag{5}
\end{align*}
$$

Let $y_{i}=x_{i}^{\top} \theta_{\star}+\varepsilon_{i}$; we know that $\mathbb{E}\left(\left(y_{i}-x_{i}^{\top} \theta_{\star}\right) x_{i}\right)=0$. Now, we analyze each term individually:

$$
\begin{aligned}
\left(y_{1}-x_{1}^{\top} \theta\right)\left(y_{2}-x_{2}^{\top} \theta\right) x_{1}^{\top} x_{2} & =\left[x_{1}^{\top}\left(\theta_{\star}-\theta\right)+\varepsilon_{1}\right]\left[x_{2}^{\top}\left(\theta_{\star}-\theta\right)+\varepsilon_{2}\right] x_{1}^{\top} x_{2} \\
& =\left(\theta-\theta_{\star}\right)^{\top} x_{1} x_{2}^{\top}\left(x_{1}^{\top} x_{2}\right)\left(\theta-\theta_{\star}\right)+\varepsilon_{1} W^{(1)}+\varepsilon_{2} W^{(2)}+\varepsilon_{1} \varepsilon_{2} W^{(3)} .
\end{aligned}
$$

The W variables are conditionally independent of ε and so using the law of iterated expectations these terms vanish.

$$
\mathbb{E}\left(\left(y_{1}-x_{1}^{\top} \theta\right)\left(y_{2}-x_{2}^{\top} \theta\right) x_{1}^{\top} x_{2}\right)=\left(\theta-\theta_{\star}\right)^{\top} \mathbb{E}\left(x_{1} x_{2}^{\top}\left(x_{1}^{\top} x_{2}\right)\right)\left(\theta-\theta_{\star}\right)=\left(\theta-\theta_{\star}\right)^{\top} C\left(\theta-\theta_{\star}\right)
$$

Using a similar reasoning, for the second term we have:

$$
\begin{align*}
\left(y_{1}-x_{1}^{\top} \theta\right)^{2}\left(x_{1}^{\top} x_{2}\right)^{2} & =\left[\left(x_{1}^{\top}\left(\theta_{\star}-\theta\right)+\varepsilon_{1}\right]^{2}\left(x_{1}^{\top} x_{2}\right)^{2}\right. \\
& =\left(\theta-\theta_{\star}\right)^{\top} x_{1} x_{1}^{\top}\left(x_{1}^{\top} x_{2}\right)^{2}\left(\theta-\theta_{\star}\right)+\varepsilon_{1} W^{(4)}+\varepsilon_{1}^{2}\left(x_{1}^{\top} x_{2}\right)^{2} . \tag{6}
\end{align*}
$$

In expectation of Equation (6),

$$
\begin{align*}
\mathbb{E}\left(\left(y_{1}-x_{1}^{\top} \theta\right)^{2}\left(x_{1}^{\top} x_{2}\right)^{2}\right) & =\left(\theta-\theta_{\star}\right)^{\top} \mathbb{E}\left(x_{1} x_{1}^{\top}\left(x_{1}^{\top} x_{2}\right)^{2}\right)\left(\theta-\theta_{\star}\right)+\varepsilon_{1}^{2}\left(x_{1}^{\top} x_{2}\right)^{2} \\
& =\left(\theta-\theta_{\star}\right)^{\top} D\left(\theta-\theta_{\star}\right)+\sigma^{2} c^{2} . \tag{7}
\end{align*}
$$

By combining all results we finally get:

$$
\Delta_{n}(\theta)=\left(\theta-\theta_{\star}\right)^{\top}(C-\gamma D)\left(\theta-\theta_{\star}\right)-\gamma \sigma^{2} c^{2} .
$$

Theorem 4 Let $\lambda_{\gamma}=\mathbb{E}\left(1 /\left(1+\gamma\|x\|^{2}\right)\right) \in(0,1]$. Under the assumptions of Theorem 3 applied on the implicit procedure in Equation (9), it holds that

$$
\begin{aligned}
\Delta_{n}^{\mathrm{im}}(\theta) & =\mathbb{E}\left(S_{n+2}-S_{n+1} \mid \theta_{n}=\theta\right) \\
& =a_{\gamma} \Delta_{n}(\theta)+b_{\gamma}\left[\left(\theta-\theta_{\star}\right)^{\top} D\left(\theta-\theta_{\star}\right)+\sigma^{2} c^{2}\right]
\end{aligned}
$$

where $a_{\gamma}=\lambda_{\gamma}^{2}, b_{\gamma}=\gamma \lambda_{\gamma}^{2}\left(1-\lambda_{\gamma}\right)$.
Proof 4 We derive similar theoretical results for $H^{i m}(\theta), \Delta_{n}^{i m}(\theta)$ under the linear normal model for implicit updates. We have the implicit updates

$$
\begin{aligned}
\theta^{+} & =\theta+\gamma\left(y_{1}-x_{1}^{\top} \theta^{+}\right) x_{1} \\
\theta^{++} & =\theta^{+}+\gamma\left(y_{2}-x_{2}^{\top} \theta^{++}\right) x_{2}
\end{aligned}
$$

Also note the collinearity

$$
\begin{aligned}
\left(y_{1}-x_{1}^{\top} \theta^{+}\right) & =\lambda_{1}\left(y_{1}-x_{1}^{\top} \theta\right) \\
\left(y_{2}-x_{2}^{\top} \theta^{++}\right) & =\lambda_{2}\left(y_{2}-x_{2}^{\top} \theta^{+}\right), \\
& =\lambda_{2}\left[y_{2}-x_{2}^{\top} \theta-\gamma \lambda_{1}\left(y_{1}-x_{1}^{\top} \theta\right) x_{1}^{\top} x_{2}\right],
\end{aligned}
$$

where $\lambda_{1}=1 /\left(1+\gamma\left\|x_{1}\right\|^{2}\right)$ and $\lambda_{2}=1 /\left(1+\gamma\left\|x_{2}\right\|^{2}\right)$. We derive an expression for $H^{i m}$, with implicit updates:

$$
\begin{aligned}
H^{i m}(\theta) & =\left(\theta^{+}-\theta\right)^{\top}\left(\theta^{++}-\theta^{+}\right) / \gamma^{2} \\
& =\left(y_{1}-x_{1}^{\top} \theta^{+}\right)\left(y_{2}-x_{2}^{\top} \theta^{++}\right) x_{1}^{\top} x_{2} \\
& =\lambda_{1} \lambda_{2}\left(y_{1}-x_{1}^{\top} \theta\right)\left[y_{2}-x_{2}^{\top} \theta-\gamma \lambda_{1}\left(y_{1}-x_{1}^{\top} \theta\right) x_{1}^{\top} x_{2}\right] x_{1}^{\top} x_{2} \\
& =\lambda_{1} \lambda_{2}\left[H(\theta)+\gamma\left(1-\lambda_{1}\right)\left(y_{1}-x_{1}^{\top} \theta\right)^{2}\left(x_{1}^{\top} x_{2}\right)^{2}\right] \\
& =\lambda_{1} \lambda_{2} H(\theta)+\gamma \lambda_{1} \lambda_{2}\left(1-\lambda_{1}\right)\left(y_{1}-x_{1}^{\top} \theta\right)\left(x_{1}^{\top} x_{2}\right)^{2},
\end{aligned}
$$

where H is the function from the explicit update in Equation (5). The formula for $\Delta_{n}^{i m}(\theta)$ follows by applying expectation and the reasoning in Equation (7). Note that $\mathbb{E}\left(\lambda_{1} \lambda_{2}\right)=\lambda_{\gamma}^{2}$ since λ_{1} and λ_{2} are independent and have marginally identical distributions.

Theorem 5 Consider the GLM loss defined as $\ell\left(y, x^{\top} \theta\right)=-y \cdot x^{\top} \theta+f\left(x^{\top} \theta\right)$. Let $h(u)=f^{\prime}(u)$ and suppose that $h^{\prime}\left(x^{\top} \theta\right) \geq k>0$, almost surely for all θ. Let x_{1}, x_{2} be two iid vectors from the distribution of x. Define $\sigma^{2}=\mathbb{E}\left(\left(y-h\left(x^{\top} \theta_{\star}\right)^{2}\right) ; c^{2}=\mathbb{E}\left(\left(x_{1}^{\top} x_{2}\right)^{2}\right) ; C\left(\theta, \theta_{\star}\right)=\mathbb{E}\left(\left[h\left(x_{1}^{\top} \theta\right)-\right.\right.\right.$ $\left.\left.h\left(x_{1}^{\top} \theta_{\star}\right)\right] x_{1}\right) ; D^{2}\left(\theta, \theta_{\star}\right)=\mathbb{E}\left(\left[h\left(x_{1}^{\top} \theta\right)-h\left(x_{1}^{\top} \theta_{\star}\right)\right]^{2}\left(x_{1}^{\top} x_{2}\right)^{2}\right)$. Then, for small enough γ,

$$
\begin{aligned}
\Delta_{n}^{g l m}(\theta) & =\mathbb{E}\left(S_{n+2}-S_{n+1} \mid \theta_{n}=\theta\right) \\
& \leq\left\|C\left(\theta, \theta_{\star}\right)\right\|^{2}-\gamma k\left[\sigma^{2} c^{2}+D^{2}\left(\theta, \theta_{\star}\right)\right] .
\end{aligned}
$$

Proof 5 The updates for the GLM loss are as follows:

$$
\begin{align*}
\theta^{+} & =\theta+\gamma\left(y_{1}-h\left(x_{1}^{\top} \theta\right)\right) x_{1} \\
\theta^{++} & =\theta^{+}+\gamma\left(y_{2}-h\left(x_{2}^{\top} \theta^{+}\right)\right) x_{2}, \tag{8}
\end{align*}
$$

Note that $h\left(x_{2}^{\top} \theta^{+}\right)=h\left(x_{2}^{\top} \theta\right)+\gamma h^{\prime}\left(x_{2}^{\top} \theta\right)\left(y_{1}-h\left(x_{1}^{\top} \theta\right)\right) x_{2}^{\top} x_{1}+O\left(\gamma^{2}\right)$. We can now follow the exact same reasoning as in Theorem 3 and that $h^{\prime}\left(x^{\top} \theta\right) \geq k$ almost surely.

1 Mean squared error bound for constant learning rate ISGD

In this section, ℓ will denote likelihood, which is the negated loss (cf. Equation (9)). Thus, we have the implicit update of SGD (ISGD):

$$
\begin{equation*}
\theta_{n}=\theta_{n-1}+\gamma \nabla \ell\left(y_{n}, x_{n}^{\top} \theta_{n}\right) . \tag{9}
\end{equation*}
$$

We will operate under the following assumptions:
Assumption 1 The following assumptions are true with regard to procedure in Equation (9).
(a) Function ℓ is convex, twice differentiable almost surely with respect to $x^{\top} \theta$.
(b) For the observed Fisher information matrix $\hat{\mathcal{I}}_{n}(\theta)=\nabla^{2} \ell\left(y_{n}, x_{n}^{\top} \theta\right)$ there exists constants $b>0$ and $0<t<\infty$ such that $b \leq \operatorname{trace}\left(\hat{\mathcal{I}}_{n}(\theta)\right) \leq t$ almost surely, for all θ. The Fisher information matrix $\mathcal{I}\left(\theta_{*}\right)=\mathbb{E}\left(\hat{\mathcal{I}}_{n}\left(\theta_{*}\right)\right)$ has minimum eigenvalue $\lambda>0$.
(c) There exists $\sigma^{2}>0$ such that, for all $n, \mathbb{E}\left(\| \nabla \ell\left(y_{n}, x_{n}^{\top} \theta_{\star} \|^{2} \mid \mathcal{F}_{n-1}\right) \leq \sigma^{2}\right.$, almost surely.
(d) The function $\theta \mapsto \mathbb{E}\left(\nabla \ell\left(y, x^{\top} \theta\right)\right)$ is Lipschitz with constant L, i.e., for all $n, \theta_{1}, \theta_{2}$,

$$
\mathbb{E}\left(\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{1}\right)-\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{2}\right)\right\|^{2} \mid \mathcal{F}_{n-1}\right) \leq L^{2}\left\|\theta_{1}-\theta_{2}\right\|^{2} .
$$

(e) Learning rate $\gamma>0$ is such that $\gamma L^{2}(1+\gamma t)<\lambda(1+\gamma b)^{2}$.

To prove Theorem 8, our result for the upper bound on the MSE for constant learning rate ISGD, we first prove the following results:

Lemma 6 The gradient $\nabla \ell$ is a scaled version of covariate x, i.e., for every $\theta \in \mathbb{R}^{p}$ there is a scalar $\lambda \in \mathbb{R}$ such that

$$
\nabla \ell\left(y ; x^{\top} \theta\right)=\lambda x
$$

Thus, the gradient in the implicit update is a scaled version of the gradient calculated at the previous iterate, i.e.,

$$
\begin{equation*}
\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n}\right)=\lambda_{n} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right), \tag{10}
\end{equation*}
$$

where the scalar λ_{n} satisfies

$$
\begin{equation*}
\lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)=\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}+\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}^{\top} x_{n}\right) \tag{11}
\end{equation*}
$$

Proof 6 From the chain rule $\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n}\right)=\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n}\right) x_{n}$, and similarly $\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)=$ $\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}$. Thus the two gradients are collinear. Therefore there exists a scalar λ_{n} such that

$$
\begin{equation*}
\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n}\right) x_{n}=\lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n} \tag{12}
\end{equation*}
$$

We also have,

$$
\begin{align*}
\theta_{n} & =\theta_{n-1}+\gamma \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n}\right)[b y \text { definition of implicit SGD update Equation (9)] } \\
& =\theta_{n-1}+\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}[\text { by chain rule and Equation } 12 \mathrm{Z}] \tag{13}
\end{align*}
$$

Substituting the expression for θ_{n} in Equation (13) into Equation(12) we obtain the desired result of the theorem. From Equation(12) we get the equality

$$
\begin{equation*}
\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n}\right)=\lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) \tag{14}
\end{equation*}
$$

and substituting we get our desired result

$$
\begin{aligned}
\lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) & =\ell^{\prime}\left(y_{n} ; x_{n}^{\top}\left(\theta_{n-1}+\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}\right)\right) \\
& =\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}+\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}^{\top} x_{n}\right)
\end{aligned}
$$

Lemma 7 Suppose Assumptions 1 (a), and (b) hold. Then, almost surely it holds

$$
\begin{equation*}
\frac{1}{1+\gamma t} \leq \lambda_{n} \leq \frac{1}{1+\gamma b} \tag{15}
\end{equation*}
$$

Proof 7 From Lemma 6 we have

$$
\begin{equation*}
\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n}\right)=\lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right), \tag{16}
\end{equation*}
$$

where the derivative of ℓ is with respect to the natural parameter $x^{\top} \theta$. Using the definition of the implicit update Equation (9),

$$
\begin{equation*}
\theta_{n}=\theta_{n-1}+\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n} . \tag{17}
\end{equation*}
$$

We substitute this definition of θ_{n} into Equation (16) and perform a Taylor approximation on ℓ^{\prime}. Recall Taylor approximation for a function $f, f(x)=f(a)+f^{\prime}(\xi)(x-a)$ where ξ lies in the closed interval between a and x. From Equation (17) we let $\theta_{n-1}=a$ and $\gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}=(x-a)$. Also, by the Chain rule $\frac{\delta}{\delta \theta} \ell^{\prime}\left(y ; x^{\top} \theta\right)=\ell^{\prime \prime}\left(y ; x^{\top} \theta\right) x^{\top}$. Thus we obtain,

$$
\begin{align*}
\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n}\right) & =\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)+\ell^{\prime \prime}\left(y_{n} ; x_{n}^{\top} \tilde{\theta}\right) x_{n}^{\top} \cdot \gamma \lambda_{n} \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n} \\
& =\ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)+\gamma \lambda_{n} \ell^{\prime \prime}\left(y_{n} ; x_{n}^{\top} \tilde{\theta}\right) \ell^{\prime}\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) x_{n}^{\top} x_{n} \tag{18}
\end{align*}
$$

where $\tilde{\theta}=\delta \theta_{n-1}+(1-\delta) \theta_{n}$ and $\delta \in[0,1]$.
By combining Equation(16) with Equation(18) and cancelling out the first derivative term we get

$$
\begin{align*}
\lambda_{n} & =1+\gamma \lambda_{n} \ell^{\prime \prime}\left(y_{n} ; x_{n}^{\top} \tilde{\theta}\right) x_{n}^{\top} x_{n} \\
\lambda_{n}\left(1-\gamma \ell^{\prime \prime}\left(y_{n} ; x_{n}^{\top} \tilde{\theta}\right)\|x\|^{2}\right) & =1 \\
\left(1+\gamma \operatorname{trace}\left(\hat{\mathcal{I}}_{n}(\tilde{\theta})\right)\right) \lambda_{n} & \leq 1[\text { where } \hat{\mathcal{I}} \text { is the observed Fisher information }] \tag{19}\\
(1+\gamma b) \lambda_{n} & \leq 1[\text { By Assumption } 1 \text { (b) }] \tag{20}
\end{align*}
$$

Now we get the other bound,

$$
(1+\gamma t) \lambda_{n} \geq 1 \text { [By Assumption } 1 \text { (b)] }
$$

Theorem 8 Suppose that Assumptions 1(a) - (e) hold. Then,

$$
\begin{align*}
\mathbb{E}\left(\left\|\theta_{n}-\theta_{\star}\right\|^{2}\right) \leq & \left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{n} \mathbb{E}\left(\left\|\theta_{n-1}-\theta_{\star}\right\|^{2}\right) \tag{21}\\
& +\frac{\gamma \sigma^{2}(1+\gamma t)}{\lambda(1+\gamma b)^{2}-\gamma L^{2}(1+\gamma t)} \tag{22}
\end{align*}
$$

Proof 8 Starting from the implicit update (9), we have

$$
\begin{align*}
\theta_{n}-\theta_{*}= & \theta_{n-1}-\theta_{*}+\gamma \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n}\right) \\
\theta_{n}-\theta_{*}= & \theta_{n-1}-\theta_{*}+\gamma \lambda_{n} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)[\text { By Lemma } \boxed{6}] \\
\left\|\theta_{n}-\theta_{*}\right\|^{2}= & \left\|\theta_{n-1}-\theta_{*}\right\|^{2} \\
& +2 \gamma \lambda_{n}\left(\theta_{n-1}-\theta_{*}\right)^{\top} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) \\
& +\left\|\gamma \lambda_{n} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)\right\|^{2} \tag{23}
\end{align*}
$$

To bound the last term,

$$
\begin{aligned}
\| \gamma \lambda_{n} & \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) \|^{2} \\
& =\gamma^{2} \lambda_{n}^{2}\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)\right\|^{2} \\
& =\gamma^{2} \lambda_{n}^{2}\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)-\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)+\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2} \\
& \leq 2 \gamma^{2} \lambda_{n}^{2}\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)-\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2}+2 \gamma^{2} \lambda_{n}^{2}\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2} \\
& \leq 2\left(\frac{\gamma}{1+\gamma b}\right)^{2}\left(\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)-\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2}+\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
[B y \text { Lemma } 7 \tag{24}
\end{equation*}
$$

Taking expectation of both sides of Equation(24),

$$
\begin{align*}
\mathbb{E}\left(\| \gamma \lambda_{n}\right. & \left.\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) \|^{2}\right) \\
& \leq 2\left(\frac{\gamma}{1+\gamma b}\right)^{2}\left[\mathbb{E}\left(\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)-\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2}\right)+\mathbb{E}\left(\left\|\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{*}\right)\right\|^{2}\right)\right] \\
& \leq 2\left(\frac{\gamma}{1+\gamma b}\right)^{2}\left(L^{2}\left\|\theta_{n-1}-\theta_{*}\right\|^{2}+\sigma^{2}\right)[\text { By Lipschitz and gradient bound, Assumption } 1(c),(d)] \tag{25}
\end{align*}
$$

We can bound the expectation of the second term as

$$
\begin{align*}
\mathbb{E}\left(2 \lambda_{n}\right. & \left.\gamma\left(\theta_{n-1}-\theta_{*}\right)^{\top} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)\right) \\
& \geq \frac{2 \gamma}{1+\gamma t} \mathbb{E}\left(\left(\theta_{n-1}-\theta_{*}\right)^{\top} \nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right)\right) \quad[\text { By Lemma } 7] \\
& \geq \frac{2 \gamma}{1+\gamma t} \mathbb{E}\left(\left(\theta_{n-1}-\theta_{*}\right)^{\top} \nabla h\left(\theta_{n-1}\right)\right) \quad\left[\text { where } \nabla h\left(\theta_{n-1}\right)=\mathbb{E}\left(\nabla \ell\left(y_{n} ; x_{n}^{\top} \theta_{n-1}\right) \mid \mathcal{F}_{n-1}\right)\right] \\
& \leq-\frac{2 \gamma \lambda}{1+\gamma t} \mathbb{E}\left(\left\|\theta_{n-1}-\theta_{*}\right\|^{2}\right)[\text { By strong convexity, Assumption } 1 \text { (b) }] \tag{26}
\end{align*}
$$

Taking expectations in (23) and substituting inequalities (25) and (26) into (23), and again taking expectation, yields the recursion,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\theta_{n}-\theta_{*}\right\|^{2}\right) \leq\left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right) \mathbb{E}\left(\left\|\theta_{n-1}-\theta_{*}\right\|^{2}\right)+2\left(\frac{\gamma \sigma}{1+\gamma b}\right)^{2} \tag{27}
\end{equation*}
$$

Let $\delta_{n} \equiv \mathbb{E}\left(\left\|\theta_{n}-\theta_{*}\right\|^{2}\right)$. We can now derive the bound of the theorem as follows:

$$
\begin{aligned}
\delta_{n} & \leq\left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{n} \delta_{0}+\sum_{k=1}^{\infty} 2\left(\frac{\gamma \sigma}{1+\gamma b}\right)^{2} \cdot\left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{k} \\
& =\left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{n} \delta_{0}+2\left(\frac{\gamma \sigma}{1+\gamma b}\right)^{2} \cdot\left(\frac{2 \gamma \lambda}{1+\gamma t}-\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{-1} \\
& =\left(1-\frac{2 \gamma \lambda}{1+\gamma t}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)^{n} \delta_{0}+\frac{\gamma \sigma^{2}(1+\gamma t)}{\lambda(1+\gamma b)^{2}-\gamma L^{2}(1+\gamma t)}
\end{aligned}
$$

Lemma 9 Suppose that Assumption 1(e) holds. The discount factor of the non-asymptotic bound in Theorem 8 will be bounded $0<\cdot<1$ for all $\gamma>0$, and thus the mean squared error $\mathbb{E}\left(\left\|\theta_{n}-\theta_{*}\right\|^{2}\right)$ will contract for all possible values of γ. In addition the stationary term will be >0 for all $\gamma>0$.

Proof 9 The discount factor is bounded below by $\left(1-\frac{2 \gamma \lambda}{1+\gamma b}+\frac{2 \gamma^{2} L^{2}}{(1+\gamma b)^{2}}\right)$ because $b \leq t$. We will show that this term is bounded below by 0 .

A quick manipulation of the algebra gives us

$$
\begin{array}{rlrl}
\text { (lower bound) } & 2 \gamma \lambda(1+\gamma b)-2 \gamma^{2} L^{2} & <(1+\gamma b)^{2} \\
\text { (upper bound) } & \gamma L^{2}(1+\gamma t)<\lambda(1+\gamma b)^{2} \\
(\text { stationary bound) } & \gamma L^{2}(1+\gamma t)<\lambda(1+\gamma b)^{2} \tag{30}
\end{array}
$$

Both the upper bound and stationary bound are satisfied by Assumption 1 (e). Further manipulating the lower bound, from Equation(28),

$$
\begin{align*}
2 \gamma \lambda+2 \gamma^{2} \lambda b-2 \gamma^{2} L^{2} & <1+2 \gamma b+\gamma^{2} b^{2} \\
\gamma^{2}\left(b^{2}-2 \lambda b+2 L^{2}\right)+\gamma(2 b-2 \lambda)+1 & >0 \tag{31}
\end{align*}
$$

Solving the equality of Equation(31) (with the quadratic equation) gives us

$$
\begin{aligned}
& \frac{(2 \lambda-2 b) \pm \sqrt{(2 b-2 \lambda)^{2}-4\left(b^{2}-2 \lambda b+2 L^{2}\right)}}{2\left(b^{2}-2 \lambda b+2 L^{2}\right)} \\
& =\frac{(2 \lambda-2 b) \pm \sqrt{\left(4 b^{2}-8 \lambda b+4 \lambda^{2}\right)-4 b^{2}+8 \lambda b-8 L^{2}}}{2\left(b^{2}-2 \lambda b+2 L^{2}\right)} \\
& =\frac{(2 \lambda-2 b) \pm \sqrt{4 \lambda^{2}-8 L^{2}}}{2\left(b^{2}-2 \lambda b+2 L^{2}\right)} \\
& =\frac{(\lambda-b) \pm \sqrt{\lambda^{2}-2 L^{2}}}{\left(b^{2}-2 \lambda b+2 L^{2}\right)}
\end{aligned}
$$

Recall that for a second-degree polynomial of the form $a_{2} x^{2}+a_{1} x+1$, the convexity is determined by a_{2}. Because $L \geq \lambda$ (a standard assumption), the discriminant $\left(\lambda^{2}-2 L^{2}\right)<0$ and thus there are no real roots. Looking at the convexity,

$$
\left(b^{2}-2 \lambda b+2 L^{2}\right)>\left(b^{2}-2 \lambda b+\lambda^{2}\right)=(b-\lambda)^{2}>0
$$

The strict inequality is because of the following. For all observed Fisher information matrices, (with p the dimesnion)

$$
\operatorname{trace}\left(\hat{\mathcal{I}}_{n}(\theta)\right) \geq b \Rightarrow \mathbb{E} \operatorname{trace}\left(\hat{\mathcal{I}}_{n}(\theta)\right) \geq b \Rightarrow \lambda \cdot p \geq b
$$

Thus for all $\gamma \in \mathbb{R}$ the lower bound represented by Equation(28) is satisfied. We have zero real roots and a convex function.

References

[1] Jyrki Kivinen, Manfred K Warmuth, and Babak Hassibi. The p-norm generalization of the lms algorithm for adaptive filtering. Signal Processing, IEEE Transactions on, 54(5):1782-1793, 2006.
[2] Brian Kulis and Peter L Bartlett. Implicit online learning. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 575-582, 2010.
[3] Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In Advances in Neural Information Processing Systems, pages 451-459, 2011.
[4] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm. In Advances in Neural Information Processing Systems, pages 1017-1025, 2014.
[5] Panos Toulis, Jason Rennie, and Edoardo Airoldi. Statistical analysis of stochastic gradient methods for generalized linear models. In 31st International Conference on Machine Learning, 2014.

