Convergence diagnostics for stochastic gradient descent
with constant learning rate

Supplementary material

Theorem 1 ([3, [4]) Under certain assumptions on the loss function, there are positive constants
Ay, B such that, for every n, it holds that

E([[0n — 0.]1%) < E(|[60 — 04][*)e= " + Br.
Theorem 2 Consider SGD with constant rate,
Op =0n1 — “YVE(yn, l‘zenfl)-

Suppose that Theorem [1] holds, so that that E(||0,, — 04||?) < M, for some positive M and large
enough n. We make the following additional assumptions:

(a) Ve(y,x"0) = f(z,0) + e, where f(x,0) is L-Lipschitz, E(e|x,0) = 0 and E(||e||?) > 72.

(b) It holds B(f(x,0 —v2)"2) < E(f(x,0)"2) — vK - E(2"C%), for any 0, z, for some positive
constant K, and some positive definite matriz C with minimum eigenvalue p > 0.

(c) It holds that v > (L*M — pK7?)/uKL*M.
Then,
E(V(yn, 2y 0n-1) " VE(ynt1,74160)) < 0.

Proof 2 For brevity let lz = f(®i+1,6;) + €; = fi + e; be the stochastic gradient at iteration i+ 1.

E(lzr_lgz) =E [(fi_l + ei_l)T(fi + ei)} =E [(fi_l + ei_l)Tfl} [ because e; are zero-mean |
=E [(fz'—l +eim1) " f (Bim1 — v fim1 — 761'—1)} [ by SGD step for 6; |
<E(|fim1|[*) = 7K -E [(fifl +eim1) C(fio1 + 62‘71)] [ by Assumption (b) ]

< (1= yuEOE(||fim0)I?) = vE - E([lei-1]|2)

<(1- ”y,uK)LQIE(HHi_l — H*HQ) — yuK7? [ by Lipschitz Assumption (a) |

<A1 = yuK)LPM — pK7?)

< 0. [ by Assumption (c) and small enough v | (1)

Remarks. Assumption (b) is a form of strong convexity. For example, suppose that y = "0, +e,
then f(x,0) = zz' (0 —0,) and f(z,0 —v2) 2 = f(x,0) 2 —~v2"E(zz")z. In this case C = E(xa ")



is the Fisher information matrix and Assumption (b) holds for K = 1. When + is small enough and
a Taylor approximation of f(x,0 — vz) is possible, the above result still holds for K = 1 when the
Fisher information exists. Assumption (c) shows that there is a threshold value for v below which
the diagnostic cannot terminate. For example, suppose that error noise is small so that 72 ~ 0 and
K =1, as argued before. Then, v > 1/u, that is, the learning rate has to exceed the reciprocal of
the minimum eigenvalue of the Fisher information matrix.

Theorem 3 Suppose that the loss is quadratic, {(y,z"0) = (1/2)(y — x70)%. Let x1 and 2 be
two iid vectors from the distribution of x, and define: o = E((y — x'6,)?); ¢ = E((a] 22)?);
C = E(z2q (2] 22)); D = E(x12] (2] 22)?), and suppose that all such constants are finite. Then,
for v >0,

An(0) = E(Syi2 — Spi1l0n = 0)
=(0—0,)"(C—~D)( —0,) — 35>

Proof 3 For notational brevity we make the following definitions:

07 =0 +~(y1 — xlTG)a:l
07 =07 +y(y2 — 29 0 )aa, (2)

where 0 is the current iterate, and 0 and 0T are the next two using iid data (x1,y1) and (x2,y2).
For a fixed 0 we understand the Pflug diagnostic through the function

H(0) =514 = Si|0 =V TV L= (07 -0)T (67" —07)/y° (3)
and An(0) = E(H(9)) = E ((9+ )T (o —¢7) /72) : (4)
We use Equation to derive an expression for H:
H(0) = (y1 — =, 9)(?/2 P 9+)$1T$2
= (y1 — z, 0) {yg —x9 0 —~y(yy — xlTQ)xlTxg] x| o
= (y1 — 2{ 0)(y2 — w3 0)a] w2 — (g1 — 2] 0)* (2] 22). (5)
Let y; =z 04 +&;; we know that E((y; —z, 0x)x;) = 0. Now, we analyze each term individually:

(y1 — 2] 0)(y2 — 3 O)x] 23 = [2] (0, — 0) + £1][2g (04 — 0) + £2]a] 22
=(0— 0*)Tac1m;—(a:1Tx2)(9 —0,)+ eWW 4 W@ 4 g2,

The W wariables are conditionally independent of € and so using the law of iterated expectations
these terms vanish.

E (s — 2] 0)(yz — 23 0)a] w2) = (0 = 0.)7E (212] (2] 22)) (0 = 0.) = (0 = 0.)7C(0 ~ 6.).
Using a similar reasoning, for the second term we have:

(11— 2707 (T 2)? = [T (0, = 0) 1] (T )
=(0 — 0)T212] (2] 22)%(0 — 0,) + ey W™ + &2 (2] 25)2. (6)



In expectation of Equation @,

E (g1 — o1 0)%(x] 22)?) = (0 = 0.) (@1 (2] 22)*) (0 = 6.) + (2] 2)*
= (0 —0,)TD(0 — 0,) + 0% (7)
By combining all results we finally get:
AL (0) = (0 —0,)T(C — D) (0 — 6,) — yo?c?

Theorem 4 Let A, = E(1/(1+~||z]|?)) € (0,1]. Under the assumptions of Theorem@ applied on
the implicit procedure in Equation @, it holds that

Aivl,n(e) = E(Sn+2 — Spt1/0n = 0)
= ayAn(0) + by [(9 —9,)TD(6 - 6,) + a%ﬂ 7

where ay = A,Qy, by = ’y)\gf(l - Ay).

Proof 4 We derive similar theoretical results for H™(0), A () under the linear normal model
for implicit updates. We have the implicit updates

0 =0+ y(y1 — x] 67 )ay
9++ — 0+ + 7(?/2 _ ZL‘;H++)JI2

Also note the collinearity

(y1 = 07) = Xi(y1 — 21 0)

(Y2 — 23 07F) = Xa(yp — 3 07),
= Dolya — 23 0 — YA (y1 — 2] O)z] 2o,
where A1 = 1/(1 4+ v||x1]|?) and Ao = 1/(1 + v||22]|?). We derive an expression for H™, with
implicit updates:
H™(0) = (6" —6)T (6% — 9+)/’Y2

= (y1— {0 )(y2 — 220" )z 22

= Mde(yr — a1 O)[y2 — 23 0 — YA (y1 — x] O)ar] o] xp

=Mz [H(O) + (1= M) — o] 0)2(a] 22)?]

=AM H(0) + A A (1 — A1) (y1 — 21 0) (2] 22)?,
where H is the function from the explicit update in Equation . The formula for A" (6) follows

by applying expectation and the reasoning in FEquation . Note that E(AX2) = )\% since \1 and
Ao are independent and have marginally identical distributions.

Theorem 5 Consider the GLM loss defined as {(y, 2" 0) = —y - 270 + f(x70). Let h(u) = f'(u)
and suppose that h'(z'60) > k > 0, almost surely for all 0. Let x1,x2 be two iid vectors from
the distribution of x. Define 0> = E((y — h(z70,)2); 2 = E((z{ z2)?); C(0,0,) = E([h(z]0) —
h(z{0,)]z1); D?(0,60,) = E([h(x] 0) — h(z{ 6.))*(z] x2)2). Then, for small enough -,
A%lm(e) = E(Sh+2 — Spt1|0n = 0)
< 1C(8,0)|* — vk[o?c® + D*(0,06.)].



Proof 5 The updates for the GLM loss are as follows:
0 =0 +5(y1 — h(z]0))2:
07 =07 +5(y2 = hz30%))2, (8)
Note that h(zg 07) = h(zg 0) + vh' (x4 0)(y1 — h(z] 0))xg 21 + O(7?). We can now follow the exact
same reasoning as in Theorem@ and that h'(x70) > k almost surely.
1 Mean squared error bound for constant learning rate ISGD

In this section, ¢ will denote likelihood, which is the negated loss (cf. Equation @D) Thus, we have
the implicit update of SGD (ISGD):

On = On—1 +YVE(Yn, z, 0r). (9)
We will operate under the following assumptions:
Assumption 1 The following assumptions are true with regard to procedure in Equation @

(a) Function { is convez, twice differentiable almost surely with respect to 0.

(b) For the observed Fisher information matriz I,,(0) = V2{(y,, x,) 0) there exists constants b > 0

n
N

and 0 < t < oo such that b < trace(Z,(0)) < t almost surely, for all 8. The Fisher information
matriz Z(0,) = E (fn(&k)) has minimum eigenvalue X > 0.

(c) There exists 0> > 0 such that, for all n, E(||VE(yn, ) 0:]|?|Fn_1) < 02, almost surely.

(d) The function 6 — E(VL(y,x"0)) is Lipschitz with constant L, i.e., for all n, 01,02,

E(|V(yn; 2, 01) — VE(yn; x,, 02)]1%| Fa1) < L2]|01 — 02|

n

(e) Learning rate v > 0 is such that YL?(1 +~t) < A\(1 + ~b).

To prove Theorem [8] our result for the upper bound on the MSE for constant learning rate
ISGD, we first prove the following results:

Lemma 6 The gradient V{ is a scaled version of covariate x, i.e., for every 8 € RP there is a
scalar X € R such that

Vi(y;x'0) = \x

Thus, the gradient in the implicit update is a scaled version of the gradient calculated at the
previous iterate, i.€.,

Ve (yn; ) 0) = MV Y 2} 0n_1), (10)
where the scalar A, satisfies

)\ngl(yn; xzenfl) = El(yn; x'r—lz—enfl + ’7>\n€,(yn; xzenfl)mzxn) (11)



Proof 6 From the chain rule VL(yy; . 0,) = €' (yn; 2} 0p)z, , and similarly VE(yn; ) 0,-1) =
U (yn; x,, Y0, 1)xn. Thus the two gradients are collinear. Therefore there exists a scalar A, such that

O (yns ) 00) 20 = Ml (Y ) 0r1) (12)
We also have,
On, = On—1 + YVl yn; , T0,) [by definition of implicit SGD update Equation (9))]
= Op—1 + YAl (Yni T On—1)Ty [by chain rule and Equation(12)] (13)

Substituting the expression for 0, in Equation into Equation we obtain the desired result
of the theorem. From Equation we get the equality

' (yn; €0 0n) = Al (Yn; Ty 1) (14)
and substituting we get our desired result
Ml (Y3 @y On1) = € (Y3 2y (1 + YAl (Y3 2 On—1)20)
= ' (Yn; T o1 + VAL (Y3 T On1) 2, )
Lemma 7 Suppose Assumptions 1 (a), and (b) hold. Then, almost surely it holds

< A, <
14+~4t = "~ 1+~b

Proof 7 From Lemmal@ we have
O (Y3 2, 0n) = Al (Y3 T, 0 1), (16)

where the derivative of ¢ is with respect to the natural parameter x'6. Using the definition of
the implicit update Equation @,

Op = 0p—1+ ’Y)\ngl(yn; x;ron—l)xTW (17)

We substitute this definition of 0,, into Equatian and perform a Taylor approzimation on (.
Recall Taylor approxzimation for a function f, f(x) = f(a)+ f'(§)(x —a) wheref lies in the closed
interval between a and x. From Equation we let 0,1 = a and Yl (Yn; T, Op—1)Tn = (z — a).
Also, by the Chain rule %E’(y; x10) =0"(y;270)x". Thus we obtain,

E (y’rux 0 ) - £/<Z/n737 e’n 1) +£”(y’n7 9) fy)‘ e,(ynax 071 l)x’n
= £,<yn»$ On—1) +7An " (Yn; né)ﬁl(yn,x On— 1)xT33n (18)

where 6 = 66,1 + (1 — 6)0, and & € [0,1].

By combining Equation with Equation and cancelling out the first derivative term we
get

A =1+ (Y 9):6 Tn
An(1 =" (g3 2 0)||2]|%) = 1
(1 + tmce(fn(é))) An < 1 [where 7T is the observed Fisher information) (19)
(1 +~b)\, <1 [By Assumption 1 (b)] (20)
Now we get the other bound,
(1 +~t)\, > 1 [By Assumption 1 (b)]



Theorem 8 Suppose that Assumptions 1(a) - (e) hold. Then,
29 2v2L?
E([|0, — 6.]]*) < (1 - +
(I I )_< 1+~t  (14~b)
o?(1+~t)
A1+ 7b)2 — yL2(1 + t)
Proof 8 Starting from the implicit update @D, we have
O — 0 = Op_1 — 04 +YVL(yn; z, 0,)
On — 0s = 01 — 0. + YN VL(yn; 2, 0, 1) [By Lemmal[f
16n — 0.1 = [|6n—1 — 6.7
+ 290 (01 — 0,) TVl (yn; ) 01 1)
+ VARV (yn; 2 On1) | (23)

2) Bl .]7) (21)

_l’_

To bound the last term,
H’Y)\nw(yn;x;@n—l)HQ
= VAV (s 2 001 |1
= 72)‘%|’v£(yn7 ngn 1) vg(ynv n9 )+v£(yn7 n9 )H2
< 292N [ Ve(yn; 2, 0n-1) — VE(yn; 2 0117 + 29 X2V (yns 2, 0.) ||

2
/y T 2
<2 (Yn; T On—1) — VE(Yn; ne L(yn; ne
< (HW) (198 2] 01) — V(s 2] 001 + [ Ve ] 0.)]1)
[By Lemma[7] (24)
Taking expectation of both sides of Equatz’on,
E([vAnVE(Yn; 2, 0n-1)]1%)

IN

2
v
2(175) (B9l 80s) = Tt 61 + (Vi 0.

2
<2 (11 b) (L?|0n—1 — 0| + 0*) [ By Lipschitz and gradient bound, Assumption 1 (c), (d)]
v
(25)
We can bound the expectation of the second term as
E2Aay (01 — 0x) " VL(yn; ) 01 1))
> 2y E ((Qn_l — 0, ) Vi(yn; x, 70, 1)) [By Lemma[7 ]
T 1+t ’
2y T T
> _ _ .
> E ((en,l 0,) Vh(en,l)) [where Vh(0p_1) = E(VE(yn; 2, On_1)| Fa1)]
2
. zktIE(HGnl — 0.||*) [By strong convexity, Assumption 1 (b)] (26)
~y

Taking expectations in and substituting inequalities and imto , and again
taking expectation, yields the recursion,

29\ 2v2L? ) 9 ( ~No >2
E(||6n — 64]*) < (1 - + E(]|6p—1 — 0, 2 27
(U =007 < (1= 202+ 2 ) Bl = 017+ 2 (2 E0




Let 6, = E(||0, — 04]|?). We can now derive the bound of the theorem as follows:

29\ 272 L2 >n > ( ~o >2 < 29\ 2722 )k
op < (1-— + do + 2 1= +
_< 1+t (1+4+b)2 0 ; 1+9b 1+t (1+9b)2
2yA 24202 \" 2 29A 29202 \
(o e () (25
1+~t  (1+49b) 1+b 1+~t  (147b)
B <1 29 N 22 L2 >n N o2 (1 + ~t)
T4yt (A+0)2) 07 AL+ b2 —vL2(1 + 1)
Lemma 9 Suppose that Assumption 1(e) holds. The discount factor of the non-asymptotic bound

in Theorem@ will be bounded 0 < - < 1 for all ¥ > 0, and thus the mean squared error E(||0, — 0.]?)
will contract for all possible values of . In addition the stationary term will be > 0 for all v > 0.

Proof 9 The discount factor is bounded below by (1 A M) because b < t. We will show

T 1+9b T (149b)2
that this term is bounded below by 0.
A quick manipulation of the algebra gives us

(lower bound) 2yA\(1 + vb) — 29*L?* < (1 + vb)? (28)
(upper bound) ~L*(1+~t) < A(1 4 ~b)? (29)
(stationary bound) ~yL*(14 ~t) < A(1 + vb)* (30)

Both the upper bound and stationary bound are satisfied by Assumption 1 (e). Further manip-
ulating the lower bound, from Equation,
29\ + 2920 — 29202 < 1 + 29D + ~%b?
Y20 — 200 4 2L%) +4(2b — 2)\) +1 > 0 (31)
Solving the equality of Equation (with the quadratic equation) gives us
(2X — 2b) £ 1/(2b — 20)2 — 4(b2 — 2\b + 2L2)
2(b% — 2\b + 2L2)
(2\ — 2b) £ /(462 — 8X\b + 4)2) — 4b2 + 8\b — 8L2
2(b% — 2X\b + 2L2)
(2X — 2b) + V4X? — 8L?
2(b% — 2\b + 2L2)
(A=0) £ VA2 —2L2
(b2 — 2X\b + 2L2)

Recall that for a second-degree polynomial of the form asx®+aix+1, the convexity is determined
by as. Because L > \ (a standard assumption), the discriminant (\2 —2L?) < 0 and thus there are
no real roots. Looking at the convexity,

(b —2Xb +2L2) > (b — 200+ X%) = (b— \)? > 0

The strict inequality is because of the following. For all observed Fisher information matrices,
(with p the dimesnion)

~ ~

trace(Z,(0)) > b = Etrace(Z,(0)) >b=X-p>1b

Thus for all v € R the lower bound represented by Equatz’on is satisfied. We have zero real
roots and a convex function.
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