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Abstract

Many iterative procedures in stochastic op-
timization exhibit a transient phase followed
by a stationary phase. During the transient
phase the procedure converges towards a re-
gion of interest, and during the stationary
phase the procedure oscillates in that re-
gion, commonly around a single point. In
this paper, we develop a statistical diagnos-
tic test to detect such phase transition in the
context of stochastic gradient descent with
constant learning rate. We present theory
and experiments suggesting that the region
where the proposed diagnostic is activated
coincides with the convergence region. For a
class of loss functions, we derive a closed-form
solution describing such region. Finally, we
suggest an application to speed up conver-
gence of stochastic gradient descent by halv-
ing the learning rate each time stationarity
is detected. This leads to a new variant of
stochastic gradient descent, which in many
settings is comparable to state-of-art.

1 Introduction

We consider a classical problem in stochastic optimiza-
tion stated as

θ? = arg min
θ∈Θ

E(`(y, x>θ)), (1)

where ` is the loss function, y ∈ R denotes the re-
sponse, x ∈ Rp are the features, and θ are parameters
in Θ ⊆ Rp. For example, the quadratic loss function is
defined as `(y, x>θ) = (1/2)(y − x>θ)2. In estimation
problems we typically have a finite data set {(xi, yi)},
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i = 1, 2, . . . , N , from which we wish to estimate θ? by
solving the empirical version of Equation (1):

θ̂ = arg min
θ∈Θ

1

N

N∑
i=1

`(yi, x
>
i θ).

When data size, N , and parameter size, p, are large
classical methods for computing θ̂ fail. Stochas-
tic gradient descent (SGD) is a powerful alterna-
tive [5, 6, 24, 32] because it solves the problem in an
iterative fashion through the procedure:

θn = θn−1 − γ∇`(yn, x>n θn−1). (2)

Here, θn−1 is the estimate of θ? prior to the nth iter-
ation, (xn, yn) is a random sample from the data, and
∇` is the gradient of the loss with respect to θ. Clas-
sical stochastic approximation theory [1, 4, 21] sug-
gests that SGD converges to a value θ∞ such that
E(∇`(y, x>θ∞)) = 0, which under typical regularity
conditions is equal to θ? when N is infinite (streaming

setting), or is equal to θ̂ when N is finite. Going for-
ward we assume the streaming setting for simplicity,
but our results hold for finite N as well.

Typically, stochastic iterative procedures start from
some starting point and then move through a transient
phase and towards a stationary phase [15]. In stochas-
tic gradient descent this behavior is largely governed
by parameter γ > 0, which is known as the learning
rate, and can either be decreasing over n (e.g., ∝ 1/n),
or constant. In the decreasing rate case, the transient
phase is usually long, and can be impractically so if the
rate is slightly misspecified [17, 25], whereas the sta-
tionary phase involves SGD converging in quadratic
mean to θ?. When γ is constant the transient phase
is much shorter and less sensitive to the learning rate,
whereas the stationary phase involves SGD oscillating
within a region that contains θ?. In this paper, we focus
on statistical convergence diagnostics for constant rate
SGD because in this setting a convergence diagnostic
can be utilized to identify when there is no benefit in
running the procedure longer.
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1.1 Related work and contributions

The idea that SGD methods are composed of a tran-
sient phase and a stationary phase (also known as
search phase and convergence phase, respectively), has
been expressed before [15]. However, no principled
statistical methods have been developed to address
stationarity issues, and thereby guide empirical prac-
tice of SGD. Currently, guidance is based on heuris-
tics originating from optimization theory that aim to
evaluate the magnitude of SGD updates. For exam-
ple, a popular method is to stop when ||θn − θn−1|| is
small according to some threshold, or when updates of
the loss function have reached machine precision [7, 9].
These methods, however, do not take into account the
sampling variation in SGD estimates, and are suited
for deterministic procedures but not stochastic ones.

A more statistically motivated approach is to monitor
the test error of SGD iterates on a hold-out validation
test, concurrently with the main SGD iteration [3, 6].
One idea here is to stop the procedure when the vali-
dation error starts increasing. An important problem
with this approach is that the validation error is also
a stochastic process, and estimating when it actually
starts increasing presents similar, if not greater, chal-
lenges to the original problem of detecting convergence
to stationary phase. Furthermore, cross validation can
be computationally costly in large data sets.

In stochastic approximation, methods to detect sta-
tionarity can be traced back to classical theory of
stopping times [20, 31]. One important method, which
forms the basis of this paper, is Pflug’s procedure [20]
that keeps a running average of the inner product
of successive gradients ∇n−1`

>∇n`, where we defined
∇j` = ∇`(yj , x>j θj−1). The underlying idea is that
in the transient phase the stochastic gradients point
roughly to the same direction, and thus their inner
product is positive. In the stationary phase, SGD with
constant rate moves haphazardly around θ?, and so the
gradients point to different directions making the inner
product negative.

The intuition that a negative inner product of succes-
sive gradients indicates convergence underlies acceler-
ated methods in stochastic approximation [8, 11, 23].
The accelerated methods, however, take this intuition
as a given, whereas we develop theory for it to define
a formal convergence testing procedure. Recently, an-
other related idea is that of gradient diversity [30],
which is used to understand why speedup gains in
batch SGD saturate with increasing batch size. An
important difference is that gradient diversity calcu-
lates the inner products at a fixed parameter value θ,
whereas stochastic approximation methods, including
this paper, use successive parameter values.

1.2 Overview of results and contributions

Our contributions in this paper can be summarized as
follows. In Section 2, we develop a formal convergence
diagnostic test for SGD, which combines Pflug’s stop-
ping time procedure [20] with SGD in Equation (2) to
detect when SGD exits the transient phase and enters
the stationary phase. We note that by convergence of
SGD with constant rate we do not mean convergence
to a single point but convergence to the stationarity
region. We prove a general result that the diagnos-
tic indeed is activated almost surely. We illustrate
through an example, where conditional on the diag-
nostic being activated, the distance ||θn − θ?|| is un-
correlated with the starting distance ||θ0−θ?||, imply-
ing that the diagnostic captures the transition from
transient to stationary phase. In Section 3, we de-
velop theory for quadratic loss, and derive a closed-
form solution describing the region where the diagnos-
tic is activated. In Section 4.1, we present extensions
beyond the quadratic loss. In Section 4.2 we suggest
an application of the diagnostic in speeding up SGD
by halving the learning rate each time convergence is
detected. This leads to a new SGD procedure, named
SGD1/2, which is comparable to state-of-art procedures,
such as variance-reduced SGD [10, SVRG] and aver-
aged SGD [5, 29], in Sections 4.3 and 4.4.

2 Convergence diagnostic

Before we develop the formal diagnostic, we present
theory that supports the existence of a transient and
stationary phase of SGD. The theory suggests that
the mean squared error of SGD has a bias term from
distance to the starting point, and a variance term
from noise in stochastic gradients.

Theorem 1 ([14, 16]) Under certain assumptions
on the loss function, there are positive constants Aγ , B
such that, for every n, it holds that

E(||θn − θ?||2) ≤ E(||θ0 − θ?||2)e−Aγn +Bγ.

Remarks. The constants Aγ , B differ depending on
the analysis. For example, Bach and Moulines [14] use
Aγ ≈ γµ/4 − γ2L2, where µ is the strong convexity
constant of expected loss f(θ) = E(`(y, x>θ)|θ), and L
is the Lipschitz constant of ∇ log `(y, x>θ); and B =
σ2/µ, where σ2 is an upper bound for the variance of
||∇ log `(y, x>θ?)||2. Needell and Srebro [16] use Aγ ≈
2γµ− 2γ2µL and B = σ2/µ(1− γL).

Despite such differences, all analyses suggest that the
SGD procedure with constant rate goes through a
transient phase exponentially fast during which it for-
gets the initial conditions E(||θ0 − θ?||2), and then
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enters a stationary phase during which it oscillates
around θ?, roughly at a region of radius Rγ = O(

√
γ).

A trade-off exists here: reducing γ will make the oscil-
lation radius, Rγ , smaller but escaping the transient
phase becomes much slower; for instance, in the ex-
treme case where γ = 0 the procedure will never exit
the transient phase.

Despite the theoretical insights it offers, Theorem 1
has limited practical utility for estimating the phase
transition in SGD. One approach could be to find the
value of n for which E(||θ0 − θ?||2)e−Aγn = 0.01Bγ,
that is, the initial conditions have been discounted to
1% of the stationary variance. That, however, requires
estimating µ,L, σ2, and E(||θ0 − θ?||2), which is chal-
lenging. In the following section, we develop a concrete
statistical diagnostic to estimate the phase transition
and detect convergence of SGD in a much simpler way.

2.1 Pflug diagnostic

In this section, we develop a convergence diagnostic for
SGD procedures that relies on Pflug’s procedure [19] in
stochastic approximation. The diagnostic is presented
as Algorithm 1 and concrete instances under quadratic
loss along with theoretical analysis are presented in
Section 3, with extensions in Section 4.

The diagnostic is defined by a random variable Sn that
keeps the running sum of the inner product of succes-
sive stochastic gradients, as shown in Line 7. The idea
is that in the transient phase SGD moves towards θ? by
discarding initial conditions, and so the stochastic gra-
dients point to the same direction, on average. This
implies that the inner product of successive stochas-
tic gradients is likely positive in the transient phase.
In the stationary phase, however, SGD is oscillating
around θ? at a distance bounded by Theorem 1, and
so the gradients point to different directions. This im-
plies a negative inner product on average during the
stationary phase. When the statistic Sn changes sign
from positive to negative, this is a good signal that the
procedure has exited the transient phase.

Since our convergence diagnostic is iterative we need to
show that it eventually terminates with an answer. In
Theorem 2 that follows we prove that E(Sn−Sn−1) < 0
as n → ∞, and so Algorithm 1 indeed terminates al-
most surely. For brevity, we state the theorem without
technical details. The full assumptions and proof can
be found in the supplementary material.

Theorem 2 Under certain assumptions, the conver-
gence diagnostic in Algorithm 1 for constant rate SGD
procedure in Equation (2) satisfies E(Sn − Sn−1) < 0
as n → ∞, and so the algorithm terminates almost
surely.

Algorithm 1 Pflug diagnostic for convergence of

stochastic gradient descent.

Input: starting point θ0, data {(y1, x1), (y2, x2), . . .},
γ > 0, burnin > 0.

Output: Iteration when SGD in Equation (2) is esti-

mated to enter stationary phase.

1: S0 ← 0

2: θ1 ← θ0 − γ∇`(y1, x
>
1 θ0)

3: for all n ∈ {2, 3, · · · } do
4: Sample (xn, yn)

5: Define ∇`n = ∇`(yn, x>n θn−1).

6: θn ← θn−1 − γ∇`n.

7: Sn ← Sn−1 +∇`>n∇`n−1.

8: if n > burnin and Sn < 0 then

9: return n

10: end if

11: end for

Remarks. Theorem 2 shows that the inner product of
successive gradients is negative in expectation as the
iteration number increases. Roughly speaking, when
θn is very close to θ? the dominant force is the vari-
ance in the stochastic gradient pulling the next iter-
ates away from θ?; when θn is far from θ? the domi-
nant force is the bias in the stochastic gradient, which
instead pulls the next iterates towards θ?. This im-
plies that the running sum of successive gradients will
eventually become negative at a finite iteration num-
ber, and so by the law of large numbers the diagnostic
returns a value almost surely.

3 Quadratic loss model

In this section, we attempt to gain analytical insight
into our convergence diagnostic of Algorithm 1 by as-
suming simple quadratic loss function, i.e., `(y, x>θ) =
(1/2)(y−x>θ)2 and ∇`(y, x>θ) = −(y−x>θ)x. Con-
sider the case where θ0 = θ?, i.e., the procedure starts
in the stationary region. Let yn = x>n θ?+εn, where εn
are zero-mean random variables, E(εn|xn) = 0. Then,

θ1 = θ? + γ(y1 − x>1 θ?)x1 = θ? + γε1x1,

from which it follows that

S2 − S1 = (y2 − x>2 θ1)(y1 − x>1 θ0)x>2 x1

= (ε2 − γε1x
>
2 x1)ε1x

>
2 x1.

E(S2 − S1) = −γE(ε2
1)E((x>2 x1)2) < 0. (3)

Thus, when the procedure starts at true parameter
value, θ?, the diagnostic is decreased in expectation,
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and eventually at some iteration τ the statistic Sτ be-
comes negative and the diagnostic is activated at τ .
We generalize this result in the following theorem.

Theorem 3 Suppose that the loss is quadratic,
`(y, x>θ) = (1/2)(y − x>θ)2. Let x1 and x2 be
two iid vectors from the distribution of x, and de-
fine: σ2 = E((y − x>θ?)

2); c2 = E((x>1 x2)2); C =
E(x1x

>
2 (x>1 x2)); D = E(x1x

>
1 (x>1 x2)2), and suppose

that all such constants are finite. Then, for γ > 0,

∆n(θ) = E(Sn+2 − Sn+1|θn = θ)

= (θ − θ?)>(C − γD)(θ − θ?)− γc2σ2.

Remarks. Theorem 3 shows that the boundary surface
that separates the two regions where the test statistic
Sn increases or decreases in expectation looks like an
ellipse, for large enough γ. Regardless of the choice
of γ, when θn is close enough to θ?, the diagnostic is
guaranteed to decrease in expectation since the only
remaining term is −γc2σ2 < 0.

The result also shows the various competing forces be-
tween bias and variance in the stochastic gradients as
they relate to how the diagnostic behaves. For in-
stance, when θn is very close θ?, larger σ2 (noise in
stochastic gradient) contributes to a faster decrease of
the diagnostic in expectation, but at the cost of higher
variance. The contribution of the other term, c2, is
less clear. For instance, c is large when there is strong
collinearity in features x, which may contribute to de-
creasing Sn. But strong collinearity also implies that
C is almost positive definite which contributes positive
values to Sn, thus counteracting the contribution of c.
Note that D is a positive definite matrix but C may
not be. This implies that careful selection of γ may be
necessary for the diagnostic to work well. For example,
when γ is very small and C is positive definite, then
Sn will converge to a negative number slowly. One
way to alleviate this sensitivity to the learning rate is
through implicit updates [26], which we explore in the
following section.

3.1 Implicit update

As mentioned above the Pflug diagnostic is sensitive
to the choice of learning rate γ. When γ is small and C
is positive definite, Sn will be mostly increasing during
the transient phase, which makes convergence slower.
But choosing a large learning rate can easily lead to
numerical instability. One way to alleviate such sensi-
tivity to the learning rate is to use the SGD procedure
with an implicit update as follows:

θn = θn−1 − γ∇`(yn, x>n θn). (4)

Note that θn appears on both sides of the equation.
In the quadratic loss model we can solve exactly the
implicit equation as follows:

θn = (I + γxnx
>
n )−1(θn−1 + γynxn). (5)

Implementing the procedure in Eq. (5) is fast since it
is equivalent to θn = (θn−1 + γynxn)/(1 + γ||xn||2).
More generally, the implicit update in Equation 4 can
be computed efficiently in many settings through a
one-dimensional root-finding procedure [26]. Previ-
ous work on implicit SGD (ISGD) has shown that im-
plicit procedures have similar asymptotic properties
with standard SGD procedures with numerical stabil-
ity as an added benefit. Since most related work on
ISGD methods is with respect to decreasing learning
rate procedures [2, 12, 25, 26], we provide an analysis
for constant rate ISGD as in Equation (4) in the sup-
plementary material. We note that ISGD procedures
are related to proximal updates in stochastic optimiza-
tion [18, 22, 28], but these methods differ from ISGD
methods in that they employ a combination of classical
SGD with deterministic proximal operators, whereas
ISGD’s proximal operator is purely stochastic.

The following theorem shows that the implicit update
in the linear model mitigates the sensitivity of the
Pflug diagnostic to the choice of the learning rate.

Theorem 4 Let λγ = E(1/(1 + γ||x||2)) ∈ (0, 1]. Un-
der the assumptions of Theorem 3 applied on the im-
plicit procedure in Equation (4), it holds that

∆im
n (θ) = E(Sn+2 − Sn+1|θn = θ)

= aγ∆n(θ) + bγ
[
(θ − θ?)>D(θ − θ?) + σ2c2

]
,

where aγ = λ2
γ , bγ = γλ2

γ(1− λγ).

Remarks. Theorem 4 shows that the diagnostic is
more stable with the ISGD procedure than with the
classical SGD procedure. By stability we mean two
things. First, even when classical SGD diverges the
convergence diagnostic may still declare convergence.
Consider, for example, the simple model θn = θn−1 +
γ(yn−θn−1), where y ∼ N(θ?, 1). If γ > 1 the classical
SGD procedure will diverge. However, the diagnostic
will declare convergence almost immediately because
by Theorem 3 it decreases, in expectation, for every θ.
Such inconsistency due to instability of classical SGD
cannot happen with implicit SGD.

Second, generally speaking, empirical performance of
the diagnostic under implicit SGD matches theory bet-
ter than under classical SGD. This is illustrated in the
following section, where the region of diagnostic con-
vergence is smooth and elliptical under implicit SGD,
as predicted by Theorem 4; under classical SGD, the
corresponding region does not follow Theorem 3 as
closely due to sensitivity to learning rate specification.
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3.2 Illustration

Here, we illustrate the main results of Theorem 4
through Figure 1, which can be described as follows.
The shaded areas in the figure show how the Pflug

diagnostic changes in expectation when the SGD iter-
ate falls in the region. In other words, every point θ
in the figure is shaded by the value ∆im

n (θ), as defined
in Theorem 4.

Various shades of grey indicate the magnitude of
change. The darkest-shaded region corresponds to the
region where the diagnostic decreases in expectation,
that is, ∆im

n (θ) ≤ 0 for all θ in that region. We call this
the Pflug region. Note that the Pflug region is cen-
tered roughly around θ?, the true parameter value. In-
side the Pflug region the diagnostic is decreased in
expectation, and outside of the region it is increased.
Furthermore, the expected change in the diagnostic is
uniform in distance to the center of the Pflug region,
which is roughly θ?: the farther we move away from
the center θ? the larger the expected increase of the
diagnostic becomes.

The blue polygon shaded with diagonal lines corre-
sponds to empirical estimations of the convergence re-
gion of SGD, defined as the region where SGD iterates
have oscillated around for 95% of the time calculated
over 1000 simulations. The polygon shows that the
Pflug region approximates very well the actual con-
vergence region of SGD. This is remarkable because
the Pflug region can be calculated from data using
the convergence diagnostic, whereas by Theorem 1 the
SGD convergence region cannot be calculated without
knowledge of θ? and other unknown parameters.

3.3 Simulated example

Next, we test the Pflug diagnostic through a simu-
lated experiment. The experimental setup is as fol-
lows. We set p = 20 as the parameter dimension,
and also set N = 5000 as the data set size and fix
θ? ∈ Rp with θ?,j = 10e−0.75j ; this ensures some
variation and sparsity in the parameter values. We
sample features as xi ∼ Np(0, I), where Np denotes
a p-variate normal distribution, I is the identity ma-
trix, and i = 1, 2, . . . N . We sample outcomes as
yi = x>i θ? +N (0, σ2), where σ = 3.

For given γ we run Algorithm 1 with burnin = 0.1N ,
for various values of the starting point θ0 sampled as
Np(θ?, σ2

0I), where σ0 = 2. Let En = ||θn− θ?||2, then
for each run we store the tuple

(γ, τ, E0, Eτ/2, E2τ ),

where τ is the output of Algorithm 1, i.e., the iter-
ation at which the Pflug diagnostic detected conver-
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Figure 1: Shaded area in the center: region where
Pflug diagnostic is decreased in expectation. Poly-
gon around shaded area: convergence region of SGD
where iterates oscillate around (empirically calcu-
lated). Color legend on the right: values of expected
increase (or decrease) of the diagnostic.

gence. The idea in this experimental evaluation is that
if the convergence diagnostic detects convergence accu-
rately, iterates earlier than convergence, say, θτ/2, will
depend on the initial conditions θ0 more than iterates
later than convergence, say, θ2τ . Thus, for given γ and
τ , we should expect a much higher correlation between
Eτ/2 and E0 than between E2τ and E0. To test this
hypothesis, for a given value of γ we draw 100 indepen-
dent samples of (E0, Eτ/2, E2τ ). With these samples
we regress Eτ/2 on E0 and E2τ on E0 in two normal
linear regression models. Table 1 summarizes the re-
gression results from this experiment. In the second
and third column of Table 1 we report the regression
coefficients of E0 in the two model fits, respectively,
and also report statistical significance.

From the table, we see that the regression coefficient
corresponding to Eτ/2 is always positive and statisti-
cally significant, whereas the coefficient is mostly not
significant for E2τ . This suggests that Eτ/2 depends
on initial conditions E0, and thus stationarity has not
yet been reached at iteration τ/2. In contrast, E2τ

does not depend on initial conditions E0, and thus
stationarity has likely occurred after iteration τ . This
is evidence indicating that the Pflug diagnostic per-
forms reasonably well in estimating the switch of SGD
from its transient phase to its stationary phase.

We note that in the regression evaluation we had to
control for τ (by using it as a regressor) because the
iteration number is correlated with mean-squared error
(larger values for τ are correlated with smaller error).
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Table 1: Experimental evaluation of convergence di-
agnostic over 100 runs per learning rate value. Signif-
icance levels: *** = < 0.1%; ** = 1%; * = 5%; . =
10%

Eτ/2 = βτ/2E0 + ε E2τ = β2τE0 + ε

γ βτ/2 β2τ

0.02 0.17 ** 0.01 .

0.05 0.20 *** −0.008

0.1 0.09 ** −0.0007

0.2 0.06 ** 0.005

0.5 0.09 *** −0.008

1.0 0.06 * 0.02 *

2.0 0.06 ** 0.009

5.0 0.07 ** −0.012

4 Extensions and applications

In this section we consider extensions of the Pflug

diagnostic to a more broad family of loss functions
inspired by generalized linear models (GLMs). We also
consider an application of the diagnostic to speed up
convergence of SGD with constant learning rate.

4.1 Generalized linear loss

Here, we consider the loss based on the GLM formula-
tion [13, 26] where `(y, x>θ) = −y ·x>θ+f(x>θ). For
example, the quadratic loss is equivalent to f(u) =
u2/2. The logistic loss is when y is binary and
f(u) = log(1 + eu). In general, f cannot be chosen
arbitrarily—one standard choice is to define f such

that e−`(y,x
>θ) is a proper density, i.e., it integrates to

one. The following theorem generalizes the results in
Section 3 on the quadratic loss.

Theorem 5 Consider the GLM loss defined as
`(y, x>θ) = −y · x>θ + f(x>θ). Let h(u) = f ′(u)
and suppose that h′(x>θ) ≥ k > 0, almost surely
for all θ. Let x1, x2 be two iid vectors from the
distribution of x. Define σ2 = E((y − h(x>θ?)

2);
c2 = E((x>1 x2)2); C(θ, θ?) = E([h(x>1 θ)−h(x>1 θ?)]x1);
D2(θ, θ?) = E([h(x>1 θ)−h(x>1 θ?)]

2(x>1 x2)2). Then, for
small enough γ,

∆glm
n (θ) = E(Sn+2 − Sn+1|θn = θ)

≤ ||C(θ, θ?)||2 − γk[σ2c2 +D2(θ, θ?)].

Remarks. The result in Theorem 5 has the same struc-
ture as in Theorem 3 so a direct analogy can be help-
ful. The terms σ2, c2 in the two theorems are identi-
cal, if we consider that for the quadratic loss it holds
that h(u) = u. The term ||C(θ, θ?)||2 in Theorem 5

corresponds to the term (θ − θ?)>C(θ − θ?) in Theo-
rem 3, and D2(θ, θ?) corresponds to (θ−θ?)>D(θ−θ?).
The terms are equal when we set h(u) = u, in which
case k = 1. Thus, the diagnostic with the more gen-
eral GLM loss has familiar properties. For exam-
ple, when θ ≈ θ?, i.e., when SGD is near the truth,
||C(θ, θ?)||2 ≈ 0 and D2(θ, θ?) ≈ 0, in which case
the negative constant term dominates, and the test
statistic decreases in expectation leading to activation
of the diagnostic. One difference with the quadratic
loss, however, is that as we move farther from θ? the
statistic may change in a nonlinear way. Therefore the
boundary separating the positive and negative regions
of the diagnostic will generally not have the familiar
smooth elliptical shape as in the quadratic loss (see
Figure 1). This may lead to more complex behavior
for the diagnostic, which is open to future work.

Regarding the assumptions of Theorem 5, we note that
the constraint on derivative h′ is not particularly strict
because in the GLM formulation h′ is guaranteed to be
positive. The assumption is made to simplify the anal-
ysis, but can be improved by analyzing the quantity
h′(x>θn) through existing analyses of θn.

4.2 SGD1/2 for fast convergence

We now switch gears from analyzing the behavior of
the Pflug diagnostic to using it in a practical appli-
cation. Our suggested application is to use the diag-
nostic within a SGD loop where the learning rate is
halved and the procedure restarted each time conver-
gence is detected. We emphasize that our goal here is
to illustrate the utility of our convergence diagnostic
and not to exhaustively demonstrate the performance
of the new procedure. A full analysis of the proposed
procedure is open to future work.

More specifically, the SGD procedure with constant
rate has linear convergence to a stationary distance
from θ? of Rγ = O(

√
γ), as suggested by Theorem 1.

It would therefore be beneficial to reduce the learning
rate when we know that SGD iterates are oscillating
around θ? in a ball of radius Rγ , so that the procedure
moves to a ball with a smaller radius. To implement
such a procedure, however, would require knowing θ?,
and also knowing all parameters required to calculate
Rγ . Our solution employs the Pflug convergence di-
agnostic to detect stationarity. Algorithm 2 describes
such a procedure, named SGD1/2, where the learning
rate is halved upon detection of convergence (Line 10).

Note that implicit updates can be used in this algo-
rithm as well; we call this modified algorithm ISGD1/2.
In our experiments in the following section, we employ
ISGD1/2 because of the benefits in numerical stability
from using implicit updates, as described earlier.



Jerry Chee, Panos Toulis

Algorithm 2 Procedure SGD1/2.
Input: θ0, data {(y1, x1), (y2, x2), . . .}, γ > 0,
burnin, maxit > 0.
Output: Iteration τ > 0, when SGD is estimated to
have converged.

1: s← 0
2: τ ← 0
3: θ1 ← θ0 − γ∇`(y1, x

>
1 θ0)

4: for all n ∈ {2, 3, · · · } do
5: θn ← θn−1 − γ∇`(yn, x>n θn−1)
6: s← s+ (θn − θn−1)>(θn−1 − θn−2)/γ2

7: if n > τ + burnin and s < 0 then
8: τ ← n
9: s← 0

10: γ ← γ/2
11: if γ < 1e-10 and n > maxit then
12: return θn.
13: end if
14: end if
15: end for

4.3 Simulated data experiments

To evaluate the effectiveness of ISGD1/2, we compare
to other classical and state-of-the-art SGD methods.
We first experiment on simulated data to better un-
derstand the performance of ISGD1/2 and its competi-
tion under various parameter settings. In particular,
we compare the performance of procedure ISGD1/2 in
Algorithm 2 against SVRG and classical ISGD on sim-
ulated data. The classical ISGD uses a learning rate
of O(1/n), which is optimized through pre-processing.
The basic experimental setup is as follows.

We consider settings of high and low signal to noise
ration (SNR), and high and low dimension and test
under the four combinations of these settings. For
the high SNR case, we set SNR = 5, where SNR =
trace(V ar(x))/pV ar(y|x), and for the low SNR case
we set SNR = 2. For the high dimension case we
set p = 150 as the parameter dimension, and for the
low dimension case we set p = 10. Given p, we fix
θ∗ ∈ Rp such that θ?,j = 10e−0.75j . We set N = 5000
as the size of the data set. We sample features as
xi ∼ Np(0, I), where i = 1, 2, . . . N . We sample out-
comes as yi ∼ N (x>i θ?, σ

2) for the normal model, and
yi ∼ Binom(exp(x>i θ?)/(1+exp(x>i θ?)) for the logistic
model, where Binom(q) denotes the binomial random
variable with mean q. The learning parameters for
each SGD method were tuned to provide best perfor-
mance through pre-processing.

From simulations with the normal model in the left
half of Figure 2 we see that ISGD1/2 attains a compa-
rable performance to SVRG. In general, SVRG attains

an overall better performance for these experiments,
which we believe is related to our convergence diag-
nostic being aggressive in a couple of cases, which are
essentially cases of Type-I error.

From simulations with the logistic model in the right
half of Figure 2 we see that ISGD1/2 attains an even
better performance than before as there are fewer cases
of Type-I error. With high SNR and low dimension pa-
rameter settings, ISGD1/2 achieves consistently better
performance than SVRG. We note that such compar-
isons do not take into account the sensitivity of SVRG
to misspecifications of the learning rate (large enough
learning rates can easily make the procedure diverge);
or that SVRG requires periodic calculations over the
entire data set, which here is easy because we are us-
ing only 5,000 data points, but may be a problem in
more realistic settings. We also note that there are sev-
eral improvements available for ISGD1/2 by allowing a
larger burnin period or by discounting the learning
rate less aggressively. An interesting direction for fu-
ture work is to understand the performance of our di-
agnostic test in terms of statistical validity and power,
and thus address some of the aforementioned tuning
issues in a principled manner.

4.4 Benchmark data sets

In addition to simulated experiments we conduct ex-
periments on benchmark data sets MNIST (binary)
and COVERTYPE (binary) to evaluate real world per-
formance.1 In particular, we perform binary logistic
regression using ISGD1/2, SVRG, classical ISGD, and
averaged ISGD [27]. We plot the prediction error on a
held-out test set in Figure 3 relative to the number of
passes over the data.

Overall, we see that ISGD1/2 convergences very quickly,
after going over less than a quarter of the data, and
achieves best performance in the COVERTYPE data
set. We currently do not have a theoretical justifica-
tion for this, but we have verified that the aforemen-
tioned result is consistently observed across multiple
experiments. ISGD1/2 was also very stable to speci-
fications of the learning rate parameter, as expected
from the analysis of Theorem 4. In contrast, even
though SVRG performed comparably to ISGD1/2, its
performance was unstable, especially in the COVER-
TYPE data set, and required careful fine tuning of the
learning rate through trial and error. Averaged SGD
performed well on the MNIST data set, but flattened
out very fast in the COVERTYPE data, possibly due
to non-strong convexity of the objective function.

1Data sets can be found at https://archive.ics.uci.
edu/ml/databases/mnist/ and https://archive.ics.
uci.edu/ml/datasets/covertype, respectively.

https://archive.ics.uci.edu/ml/databases/mnist/
https://archive.ics.uci.edu/ml/databases/mnist/
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype
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Figure 2: Simulated data experiments, comparing the performance of our procedure ISGD1/2 against SVRG and
classical ISGD. The left four plots are with the normal model, the right four plots with the logistic model.
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Figure 3: Benchmark data sets with binary logistic regression using ISGD1/2, SVRG, classical ISGD, and averaged
ISGD. Prediction error on a held out test set. MNIST (binary) on the left, COVERTYPE (binary) on the right.

5 Conclusion

In this paper we focused on detecting convergence of
SGD with constant learning rate to its convergence
phase. This is an important practical task because
statistical properties of iterative stochastic procedures
are better understood under stationarity. We bor-
rowed from the theory of stopping times in stochas-
tic approximation to develop a simple diagnostic that
uses the inner product of successive gradients to detect
convergence. Theoretical and empirical results suggest
that the diagnostic reliably detects the phase transi-
tion, which can speed up classical procedures.

Future work needs to focus on analysis of errors
||θn − θ?||2 conditional on the diagnostic being acti-
vated. This could show that the error is uncorrelated
with the initial starting point conditional on the test
being activated, and so provide theoretical support to
the empirical results in Table 1. It would also be in-
teresting to focus more on ISGD1/2 and analyze its be-
havior. Another idea is to run parallel ISGD1/2 chains
and aggregate the iterates. At stationarity we expect
iterates from different chains to be uncorrelated with
each other, and so averaging may help. It would also
be interesting to use the diagnostic in problems with
non-convex loss, such as neural networks.



Jerry Chee, Panos Toulis

References

[1] Albert Benveniste, Pierre Priouret, and Michel
Métivier. Adaptive algorithms and stochastic ap-
proximations. Springer-Verlag New York, Inc.,
1990.

[2] Dimitri P Bertsekas. Incremental proximal meth-
ods for large scale convex optimization. Mathe-
matical programming, 129(2):163–195, 2011.

[3] Avrim Blum, Adam Kalai, and John Langford.
Beating the hold-out: Bounds for k-fold and
progressive cross-validation. In Proceedings of
the twelfth annual conference on Computational
learning theory, pages 203–208. ACM, 1999.

[4] Vivek S Borkar. Stochastic approximation. Cam-
bridge Books, 2008.
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