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8 Algorithm FRL

In this section, we present Algorithm FRL in detail. Given an instance (D,A,w,C) of Program 2.9, the
algorithm searches through the space of falling rule lists that are compatible with D and outputs a compatible
falling rule list that respects the constraints of Program 2.9, and whose objective value is the smallest among
all the falling rule lists that the algorithm explores. It does so by iterating over T steps, in each of which the
algorithm constructs a compatible falling rule list d, while keeping track of the falling rule list d∗ that has the
smallest objective value Lbest = L(d∗, D, 1/(1 + w), w, C) among all the falling rule lists that the algorithm
has constructed so far. At the end of T iterations, the algorithm outputs the falling rule list that has the
smallest objective value out of the T lists it has constructed.

In the process of constructing a falling rule list d, the algorithm chooses the antecedents successively: first
for the antecedent a(d)

0 in the top rule, then for the antecedent a(d)
1 in the next rule, and so forth. For each

antecedent a(d)
j chosen, the algorithm also computes its empirical positive proportion α(d,D)

j . After p rules
have been constructed so that d currently holds the prefix e = {(a(d)

0 , α
(d,D)
0 ), (a

(d)
1 , α

(d,D)
1 ), ..., (a

(d)
p−1, α

(d,D)
p−1 )},

the algorithm either: (1) terminates the construction of d by computing the empirical positive proportion
after e, α̃e,D, and then adding to d the final else clause with probability estimate α̃e,D, or (2) randomly picks
an antecedent from a candidate set S of possible next antecedents, computes its empirical positive proportion,
and uses these as the next rule (a

(d)
p , α

(d,D)
p ) for d.

The algorithm uses various properties of Program 2.9, which are presented in Section 4, to prune the search
space. More specifically, the algorithm terminates the construction of d if Inequality (9) in Theorem 4.6
holds. Otherwise it either terminates the construction of d with some probability, or proceeds to construct a
candidate set S of possible next antecedents, as follows. For every antecedent Al ∈ A that has not been chosen
before, it constructs a candidate next rule (a

(d)
p , α

(d,D)
p ) by setting a(d)

p = Al and computing α(d,D)
p using

Definition 2.5. The algorithm then checks if the monotonicity constraint α(d,D)
p ≤ α(d,D)

p−1 and the necessary
condition for optimality α(d,D)

p > 1/(1 +w) (Corollary 4.5) are satisfied, if the prefix e′ = {e, (a(d)
p , α

(d,D)
p )} is

feasible under Program 2.9 (i.e. whether there exists a compatible falling rule list that begins with the prefix
e′) using Proposition 4.2, and if the best possible objective value L∗(e′, D,w,C) achievable by any falling
rule list that begins with e′ and is compatible with D (Theorem 4.6) is less than the current best objective
value Lbest = L(d∗, D, 1/(1 + w), w, C). If all of the above conditions are satisfied, the algorithm adds Al
to S. Once the construction of S is complete, the algorithm randomly chooses an antecedent Al ∈ S with
probability P (Al|S, e,D) and uses this antecedent, together with its empirical positive proportion, as the
next rule (a

(d)
p , α

(d,D)
p ) for d. If S is empty, the algorithm terminates the construction of d.

In practice, we define the probability P (Al|S, e,D) for Al ∈ S by first defining a curiosity function fS,e,D :
S → R≥0 and then normalizing it:

P (Al|S, e,D) =
fS,e,D(Al)∑
Al′

fS,e,D(Al′)
.

A possible choice of the curiosity function fS,e,D for use in Algorithm FRL is given by

fS,e,D(Al) = λα(Al, e,D) + (1− λ)
n+(Al, e,D)

ñ+
e,D

, (11)



where α(Al, e,D) is the empirical positive proportion of Al, and n+(Al, e,D) is the number of positive
training inputs captured by Al, should Al be chosen as the next antecedent after the prefix e. The curiosity
function fS,e,D given by (11) is a weighted sum of α(Al, e,D) and n+(Al, e,D)/ñ+

e,D for each Al ∈ S: the
former encourages the algorithm to choose antecedents that have large empirical positive proportions, and
the latter encourages the algorithm to choose antecedents that have large positive supports in the training
data not captured by e. We used this curiosity function for Algorithm FRL in our experiments.

The pseudocode of Algorithm FRL is shown in Algorithm 1.

Input: an instance (D,A,w,C) of Program 2.9
Result: a falling rule list d∗ that are compatible with D and whose antecedents come from A
initialize d∗ = ∅, Lbest =∞;
for t = 1, ..., T do

set p = −1, αp = 1, d = e = ∅;
while Inequality (9) in Theorem 4.6 does not hold do

go to Terminate with some probability;
set p = p+ 1, S = ∅;
for every antecedent Al ∈ A that is not in d do

set a(d)
p = Al, compute α(d,D)

p , and let e′ = {e, (a(d)
p , α

(d,D)
p )};

if α(d,D)
p ≤ α(d,D)

p−1 , α(d,D)
p > 1/(1 + w), and e′ is feasible under Program 2.9 then

compute L∗(e′, D,w,C) using Theorem 4.6;
if L∗(e′, D,w,C) < L(d∗, D, 1/(1 + w), w, C) then

add Al to S;
end

end
end
if S 6= ∅ then

choose an antecedent Al ∈ S with probability P (Al|S, e,D) according to a discrete
probability distribution over S;
set a(d)

p = Al and add (a
(d)
p , α

(d,D)
p ) to d;

set e = d;
// save the partially constructed list d as the prefix e

else
go to Terminate

end
end
Terminate: terminate the construction of d, and compute L(d,D, 1/(1 + w), w, C);
if L(d,D, 1/(1 + w), w, C) < Lbest then

set d∗ = d, Lbest = L(d,D, 1/(1 + w), w, C);
end

end
Algorithm 1: Algorithm FRL

9 Algorithm softFRL

In this section, we present Algorithm softFRL in detail. Given an instance (D,A,w,C,C1) of Program 5.1,
the algorithm searches through the space of rule lists that are compatible with D and finds a compatible
rule list whose antecedents come from A, and whose objective value is the smallest among all the rule
lists that the algorithm explores. It does so by iterating over T steps, in each of which the algorithm
constructs a compatible rule list d, while keeping track of the rule list d∗ that has the smallest objective value
L̃best = L̃(d∗, D, 1/(1 + w), w, C,C1) among all the rule lists that the algorithm has constructed so far. At
the end of T iterations, the algorithm transforms the rule list d∗ that has the smallest objective value out of



the T lists it has constructed, into a falling rule list by setting α̂(d∗)
j = mink≤j α

(d∗,D)
k .

In the process of constructing a rule list d, the algorithm chooses the antecedents successively: first for
the antecedent a(d)

0 in the top rule, then for the antecedent a(d)
1 in the next rule, and so forth. For each

antecedent a(d)
j chosen, the algorithm also computes its empirical positive proportion α(d,D)

j . After p rules
have been constructed so that d currently holds the prefix e = {(a(d)

0 , α
(d,D)
0 ), (a

(d)
1 , α

(d,D)
1 ), ..., (a

(d)
p−1, α

(d,D)
p−1 )},

the algorithm either: (1) terminates the construction of d by computing the empirical positive proportion
after e, α̃e,D, and then adding to d the final else clause with probability estimate α̃e,D, or (2) randomly picks
an antecedent from a candidate set S of possible next antecedents, computes its empirical positive proportion,
and use these as the next rule (a

(d)
p , α

(d,D)
p ) for d.

The algorithm uses Theorem 5.2 to prune the search space. More specifically, the algorithm terminates the
construction of d if L̃∗(e,D,w,C,C1) defined by Equation (10) in Theorem 5.2 is equal to L̃(ē, D, 1/(1 +
w), w, C,C1), where ē = {e, α̃e,D} is the compatible rule list in which the prefix e is followed directly by the
final else clause. The condition L̃∗(e,D,w,C,C1) = L̃(ē, D, 1/(1 + w), w, C,C1) implies that ē is an optimal
compatible rule list that begins with e. If we have L̃∗(e,D,w,C,C1) < L̃(ē, D, 1/(1 + w), w, C,C1) instead,
the algorithm either terminates the construction of d with some probability, or it proceeds to construct a
candidate set S of possible next antecedents, as follows. For every antecedent Al ∈ A that has not been chosen
before, it constructs a candidate next rule (a

(d)
p , α

(d,D)
p ) by setting a(d)

p = Al and computing α(d,D)
p using

Definition 2.5. The algorithm then checks if the best possible objective value L̃∗(e′, D,w,C,C1) achievable
by any rule list that begins with e′ = {e, (a(d)

p , α
(d,D)
p )} and is compatible with D (Theorem 5.2) is less

than the current best objective value L̃best = L̃(d∗, D, 1/(1 + w), w, C,C1). If so, the algorithm adds Al
to S. Once the construction of S is complete, the algorithm randomly chooses an antecedent Al ∈ S with
probability P (Al|S, e,D) and uses this antecedent, together with its empirical positive proportion, as the
next rule (a

(d)
p , α

(d,D)
p ) for d. If S is empty, the algorithm terminates the construction of d.

In practice, we define the probability P (Al|S, e,D) for Al ∈ S by first defining a curiosity function fS,e,D :
S → R≥0 and then normalizing it:

P (Al|S, e,D) =
fS,e,D(Al)∑
Al′

fS,e,D(Al′)
.

A possible choice of the curiosity function fS,e,D for use in Algorithm softFRL is given by

fS,e,D(Al) = λbmin(α(Al, e,D),
1.01

0.01
α

(e,D)
min − 1

0.01
α(Al, e,D))c+ + (1− λ)

n+(Al, e,D)

ñ+
e,D

, (12)

where α(e,D)
min = mink<|e| α

(e,D)
k is the minimum empirical positive proportion of the antecedents in the prefix

e, α(Al, e,D) is the empirical positive proportion of Al, and n+(Al, e,D) is the number of positive training
inputs captured by Al, should Al be chosen as the next antecedent after the prefix e. The curiosity function
fS,e,D given by (12) is a weighted sum of bmin(α(Al, e,D), (1.01/0.01)α

(e,D)
|e|−1 − (1/0.01)α(Al, e,D))c+ and

n+(Al, e,D)/ñ+
e,D for each Al ∈ S: the former encourages the algorithm to choose antecedents that have

large empirical positive proportions but do not violate the monotonicity constraint α(Al, e,D) ≤ α
(e,D)
min

by more than 1%, and the latter encourages the algorithm to choose antecedents that have large positive
supports in the training data not captured by e. We used this curiosity function for Algorithm softFRL in
our experiments.

The pseudocode of Algorithm softFRL is shown in Algorithm 2.

10 Proofs of Theorem 2.8, Proposition 4.2, Lemma 4.4, Corollary 4.5, and
Theorem 4.6

Theorem 2.8. Given the training data D, a rule list d that is compatible with D, and the weight w for the
positive class, we have

R(d,D, 1/(1 + w), w) ≤ R(d,D, τ, w)



Input: an instance (D,A,w,C,C1) of Program 5.1
Result: a falling rule list d∗ whose antecedents come from A
initialize d∗ = ∅, L̃best =∞;
for t = 1, ..., T do

set p = −1, αp = 1, d = e = ∅;
while L̃∗(e,D,w,C,C1) < L̃(ē, D, 1/(1 + w), w, C,C1) do

go to Terminate with some probability;
set p = p+ 1, S = ∅;
for every antecedent Al ∈ A that is not in d do

set a(d)
p = Al, compute α(d,D)

p , and let e′ = {e, (a(d)
p , α

(d,D)
p )};

compute L̃∗(e′, D,w,C,C1) using Theorem 5.2;
if L̃∗(e′, D,w,C,C1) < L̃(d∗, D, 1/(1 + w), w, C,C1) then

add Al to S;
end

end
if S 6= ∅ then

choose an antecedent Al ∈ S with probability P (Al|S, e,D) according to a discrete
probability distribution over S;
set a(d)

p = Al and add (a
(d)
p , α

(d,D)
p ) to d;

set e = d;
// save the partially constructed list d as the prefix e

else
go to Terminate

end
end
Terminate: terminate the construction of d, and compute L̃(d,D, 1/(1 + w), w, C,C1);
if L̃(d,D, 1/(1 + w), w, C,C1) < L̃best then

set d∗ = d, L̃best = L̃(d,D, 1/(1 + w), w, C,C1);
end

end
transform d∗ into a falling rule list by setting α̂(d∗)

j = mink≤j α
(d∗,D)
k ;

Algorithm 2: Algorithm softFRL



for all τ ≥ 0.

Proof. Suppose τ > 1/(1 + w). Consider the j-th rule (a
(d)
j , α

(d,D)
j ) in d, whose antecedent captures

α
(d,D)
j nj,d,D positive training inputs and (1−α(d,D)

j )nj,d,D negative training inputs. Let Rj(d,D, τ, w) denote
the contribution by the j-th rule to R(d,D, τ, w), i.e.

Rj(d,D, τ, w) =
1

n

w ∑
i:yi=1∧

capt(xi,d)=j

1[α
(d,D)
j ≤ τ ] +

∑
i:yi=−1∧

capt(xi,d)=j

1[α
(d,D)
j > τ ]

 =

{
1
nn
−
j,d,D if α(d,D)

j > τ
w
nn

+
j,d,D otherwise.

(13)

Case 1. 1/(1 + w) < α
(d,D)
j ≤ τ . In this case, we have

Rj(d,D, 1/(1 + w), w) =
1

n
n−j,d,D (by the definition of Rj in Equation (13))

=
1

n
(nj,d,D − n+

j,d,D) (by the definition of n+
j,d,D, n

−
j,d,D, nj,d,D in Definition 2.5)

=
1

n
(nj,d,D − α(d,D)

j nj,d,D) (by the definition of α(d,D)
j in Definition 2.5)

=
1

n
(1− α(d,D)

j )nj,d,D

<
1

n

(
1− 1

1 + w

)
nj,d,D

=
w

n

1

1 + w
nj,d,D

<
w

n
α

(d,D)
j nj,d,D

=
w

n
n+
j,d,D (by the definition of α(d,D)

j in Definition 2.5)

= Rj(d,D, τ, w). (by the definition of Rj in Equation (13))

Case 2. α(d,D)
j > τ . In this case, both Rj(d,D, 1/(1 + w), w) and Rj(d,D, τ, w) are equal to 1

nn
−
j,d,D.

Case 3. α(d,D)
j ≤ 1/(1 +w). In this case, both Rj(d,D, 1/(1 +w), w) and Rj(d,D, τ, w) are equal to w

nn
+
j,d,D.

Hence, given τ > 1/(1 + w), we have

R(d,D, 1/(1 + w), w) =

|d|∑
j=0

Rj(d,D, 1/(1 + w), w) ≤
|d|∑
j=0

Rj(d,D, τ, w) = R(d,D, τ, w).

The proof for R(d,D, 1/(1 + w), w) ≤ R(d,D, τ, w) given τ < 1/(1 + w) is similar.

Proposition 4.2. Given the training data D, the set of antecedents A, and a prefix e that is compatible
with D and satisfies a(e)

j ∈ A for all j ∈ {0, 1, ..., |e| − 1} and α(e,D)
k−1 ≥ α

(e,D)
k for all k ∈ {1, 2, ..., |e| − 1}, the

following statements are equivalent: (1) e is feasible for Program 2.9 under D and A; (2) α̃e,D ≤ α(e,D)
|e|−1 holds;

(3) ñ−e,D ≥ ((1/α
(e,D)
|e|−1)− 1)ñ+

e,D holds.

Proof. (1) ⇒ (3): Suppose that Statement (1) holds. Then there exists a falling rule list

d = {e, (a(d)
|e| , α

(d,D)
|e| ), ..., (a

(d)
|d|−1, α

(d,D)
|d|−1), α

(d,D)
|d| }



that is compatible with D, and we have

ñ−e,D = ñe,D − ñ+
e,D

= n|e|,d,D + ...+ n|d|,d,D − ñ+
e,D

=
1

α
(d,D)
|e|

n+
|e|,d,D + ...+

1

α
(d,D)
|d|

n+
|d|,d,D − ñ

+
e,D (by Definition 2.5)

≥ 1

α
(d,D)
|e|−1

n+
|e|,d,D + ...+

1

α
(d,D)
|e|−1

n+
|d|,d,D − ñ

+
e,D (by the monotonicity constraint)

=
1

α
(d,D)
|e|−1

(n+
|e|,d,D + ...+ n+

|d|,d,D)− ñ+
e,D

=
1

α
(d,D)
|e|−1

ñ+
e,D − ñ

+
e,D

= ((1/α
(d,D)
|e|−1 )− 1)ñ+

e,D

= ((1/α
(e,D)
|e|−1)− 1)ñ+

e,D.

(3) ⇒ (2): Suppose that Statement (3) holds. Then we have

α̃e,D =
ñ+
e,D

ñe,D
(by Definition 2.5)

=
ñ+
e,D

ñ+
e,D + ñ−e,D

≤
ñ+
e,D

ñ+
e,D + ((1/α

(d,D)
|e|−1 )− 1)ñ+

e,D

(by Statement (3))

=
ñ+
e,D

(1 + (1/α
(d,D)
|e|−1 )− 1)ñ+

e,D

= α
(d,D)
|e|−1 .

(2) ⇒ (1): Suppose that Statement (2) holds. Then the falling rule list d = {e, α̃e,D} begins with e and is
compatible with D. By Definition 4.1, e is feasible for Program 2.9 under the training data D.

Before we proceed with proving Lemma 4.4, we make the following observation.

Observation 10.1 For any rule list

d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), ..., (a

(d′)
|d′|−1, α̂

(d′)
|d′|−1), α̂

(d′)
|d′| }

that begins with a given prefix e, we have

ñ+
e,D = n+

|e|,d′,D + ...n+
|d′|,d′,D, (14)

ñ−e,D = n−|e|,d′,D + ...n−|d′|,d′,D, (15)

and
ñe,D = n|e|,d′,D + ...n|d′|,d′,D. (16)

Proof. Any positive training input xi that is not captured by the prefix e must be captured by some antecedent
a

(d′)
j with |e| ≤ j < |d′| in d′, or the final else clause in d′. Conversely, any positive training input xi that

is captured by some antecedent a(d′)
j with |e| ≤ j < |d′| in d′, or the final else clause in d′, must not satisfy



any antecedent in the prefix e and is consequently not captured by the prefix e. This means that the set
of positive training inputs that are not captured by e is exactly the set of positive training inputs that are
captured by some antecedent a(d′)

j with |e| ≤ j < |d′| in d′, or the final else clause in d′. It then follows that
these two sets have the same number of elements. The former set has ñ+

e,D number of elements, and the latter
has n+

|e|,d′,D + ...+ n+
|d′|,d′,D number of elements. This establishes Equation (14).

We can establish Equations (15) and (16) using essentially the same argument.

We now prove Lemma 4.4.

Lemma 4.4. Suppose that we are given an instance (D,A,w,C) of Program 2.9, a prefix e that is feasible
for Program 2.9 under the training data D and the set of antecedents A, and a (possibly hypothetical) falling
rule list d that begins with e and is compatible with D. Then there exists a falling rule list d′, possibly
hypothetical with respect to A, such that d′ begins with e, has at most one more rule (excluding the final
else clause) following e, is compatible with D, and satisfies

L(d′, D, 1/(1 + w), w, C) ≤ L(d,D, 1/(1 + w), w, C).

Moreover, if either α(d,D)
j > 1/(1 + w) holds for all j ∈ {|e|, |e|+ 1, ..., |d|}, or α(d,D)

j ≤ 1/(1 + w) holds for
all j ∈ {|e|, |e|+ 1, ..., |d|}, then the falling rule list ē = {e, α̃e,D} (i.e. the falling rule list in which the final
else clause immediately follows the prefix e, and the probability estimate of the final else clause is α̃e,D) is
compatible with D and satisfies L(ē, D, 1/(1 + w), w, C) ≤ L(d,D, 1/(1 + w), w, C).

Proof. Case 1. There exists some k ∈ {|e|+1, ..., |d|} that satisfies α(d,D)
k−1 > 1/(1+w) but α(d,D)

k ≤ 1/(1+w).
For any j ∈ {|e|, ..., k − 1}, we have α(d,D)

j > 1/(1 + w), and the contribution Rj(d,D, 1/(1 + w), w) by the
j-th rule to R(d,D, 1/(1 + w), w), defined by Equation (13) with τ = 1/(1 + w), is given by

Rj(d,D, 1/(1 + w), w) =
1

n
n−j,d,D. (17)

For any j ∈ {k, ..., |d|}, we have α(d,D)
j ≤ 1/(1 + w), and the contribution Rj(d,D, 1/(1 + w), w) by the j-th

rule to R(d,D, 1/(1 + w), w) is given by

Rj(d,D, 1/(1 + w), w) =
w

n
n+
j,d,D. (18)

The rest of the proof for this case proceeds in three steps.

Step 1. Construct a hypothetical falling rule list d′ that begins with e, has exactly one more rule (excluding
the final else clause) following e, and is compatible with D. In later steps, we shall show that the falling rule
list d′ constructed in this step satisfies L(d′, D, 1/(1 + w), w, C) ≤ L(d,D, 1/(1 + w), w, C).

Let d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), α̂

(d′)
|e|+1} be the falling rule list of size |d′| = |e|+ 1 that is compatible with D, such

that
a

(d′)
|e| = a

(d)
|e| ∨ ... ∨ a

(d)
k−1

is the antecedent given by the logical or’s of the antecedents a(d)
|e| through a

(d)
k−1 in d.

Step 2. Show that the empirical risk of misclassification by the falling rule list d′ is the same as that by the
falling rule list d.

To see this, we observe that the training instances captured by a(d′)
|e| in d′ are exactly those captured by the

antecedents a(d)
|e| through a

(d)
k−1 in d, and the training instances captured by a(d′)

|e|+1 (i.e. the final else clause) in

d′ are exactly those captured by the antecedents a(d)
k through a(d)

|d| in d. This observation implies

n+
|e|,d′,D = n+

|e|,d,D + ...+ n+
k−1,d,D, (19)



n−|e|,d′,D = n−|e|,d,D + ...+ n−k−1,d,D, (20)

n|e|,d′,D = n|e|,d,D + ...+ nk−1,d,D, (21)

n+
|e|+1,d′,D = n+

k,d,D + ...+ n+
|d|,d,D, (22)

and
n|e|+1,d′,D = nk,d,D + ...+ n|d|,d,D. (23)

Since d′ is compatible with D, using the definition of a compatible rule list in Definition 2.6 and the definition
of the empirical positive proportion in Definition 2.5, together with (19), (21), (22), and (23), we must have

α̂
(d′)
|e| = α

(d′,D)
|e| =

n+
|e|,d′,D

n|e|,d′,D
=
n+
|e|,d,D + ...+ n+

k−1,d,D

n|e|,d,D + ...+ nk−1,d,D

=
α

(d,D)
|e| n|e|,d,D + ...+ α

(d,D)
k−1 nk−1,d,D

n|e|,d,D + ...+ nk−1,d,D
>

1

1 + w
,

and

α̂
(d′)
|e|+1 = α

(d′,D)
|e|+1 =

n+
|e|+1,d′,D

n|e|+1,d′,D
=
n+
k,d,D + ...+ n+

|d|,d,D

nk,d,D + ...+ n|d|,d,D

=
α

(d,D)
k nk,d,D + ...+ α

(d,D)
|d| n|d|,d,D

nk,d,D + ...+ n|d|,d,D
≤ 1

1 + w
.

This means that the contribution R|e|(d′, D, 1/(1 +w), w) by the |e|-th rule to R(d′, D, 1/(1 +w), w) is given
by

R|e|(d
′, D, 1/(1 + w), w) =

1

n
n−|e|,d′,D =

1

n
(n−|e|,d,D + ...+ n−k−1,d,D),

where we have used (20), and the contribution R|e|+1(d′, D, 1/(1 + w), w) by the (|e|+ 1)-st “rule” (i.e. the
final else clause) to R(d′, D, 1/(1 + w), w) is given by

R|e|+1(d′, D, 1/(1 + w), w) =
w

n
n+
|e|+1,d′,D =

w

n
(n+
k,d,D + ...+ n+

|d|,d,D),

where we have used (22).

It then follows that the empirical risk of misclassification by the rule list d′ is the same as that by the rule
list d:

R(d′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w) +R|e|(d
′, D, 1/(1 + w), w) +R|e|+1(d′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w) +
1

n
(n−|e|,d,D + ...+ n−k−1,d,D) +

w

n
(n+
k,d,D + ...+ n+

|d|,d,D)

= R(e,D, 1/(1 + w), w) +

|d|∑
j=|e|

Rj(d,D, 1/(1 + w), w)

= R(d,D, 1/(1 + w), w). (24)

Step 3. Put everything together.

Using (24), together with the observation |d′| = |e|+ 1 ≤ |d|, we must also have

L(d′, D, 1/(1 + w), w, C) = R(d′, D, 1/(1 + w), w) + C|d′|
≤ R(d,D, 1/(1 + w), w) + C|d| = L(d,D, 1/(1 + w), w, C),



as desired.

Case 2. α(d,D)
j > 1/(1 +w) holds for all j ∈ {|e|, |e|+ 1, ..., |d|}. Then the contribution Rj(d,D, 1/(1 +w), w)

by the j-th rule to R(d,D, 1/(1 + w), w), for all j ∈ {|e|, |e| + 1, ..., |d|}, is given by Equation (17). Let
d′ = {e, α̂(d′)

|e| } be the falling rule list of size |d′| = |e| that is compatible with D. Then the instances captured

by a(d′)
|e| (i.e. the final else clause) in d′ are exactly those that are not captured by e, or equivalently, those

that are captured by a(d)
|e| through a

(d)
|d| . This implies

n+
|e|,d′,D = n+

|e|,d,D + ...+ n+
|d|,d,D, (25)

n−|e|,d′,D = n−|e|,d,D + ...+ n−|d|,d,D, (26)

and
n|e|,d′,D = n|e|,d,D + ...+ n|d|,d,D. (27)

Since d′ is compatible with D, using the definition of a compatible rule list in Definition 2.6 and the definition
of the empirical positive proportion in Definition 2.5, together with (25) and (27), we must have

α̂
(d′)
|e| = α

(d′,D)
|e| =

n+
|e|,d′,D

n|e|,d′,D

=
n+
|e|,d,D + ...+ n+

|d|,d,D

n|e|,d,D + ...+ n|d|,d,D
(28)

=
α

(d,D)
|e| n|e|,d,D + ...+ α

(d,D)
|d| n|d|,d,D

n|e|,d,D + ...+ n|d|,d,D
>

1

1 + w
. (29)

Note that the right-hand side of Equality (28) is equal to ñ+
e,D/ñe,D = α̃e,D, by Equations (14) and (16) in

Observation 10.1. Therefore, we also have α̂(d′)
|e| = α̃e,D.

Inequality (29) implies that the contribution R|e|(d′, D, 1/(1 + w), w) by the |e|-th “rule” (i.e. the final else
clause) to R(d′, D, 1/(1 + w), w) is given by

R|e|(d
′, D, 1/(1 + w), w) =

1

n
n−|e|,d′,D =

1

n
(n−|e|,d,D + ...+ n−|d|,d,D),

where we have used (26).

It then follows that the empirical risk of misclassification by the rule list d′ is the same as that by the rule
list d:

R(d′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w) +R|e|(d
′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w) +
1

n
(n−|e|,d,D + ...+ n−|d|,d,D)

= R(e,D, 1/(1 + w), w) +

|d|∑
j=|e|

Rj(d,D, 1/(1 + w), w)

= R(d,D, 1/(1 + w), w).

Since we clearly have |d′| = |e| ≤ |d|, we must also have

L(d′, D, 1/(1 + w), w, C) = R(d′, D, 1/(1 + w), w) + C|d′|
≤ R(d,D, 1/(1 + w), w) + C|d| = L(d,D, 1/(1 + w), w, C),



as desired.

Case 3. α
(d,D)
j ≤ 1/(1 + w) holds for all j ∈ {|e|, |e| + 1, ..., |d|}. The proof is similar to Case 2, with

Rj(d,D, 1/(1 + w), w) for all j ∈ {|e|, |e|+ 1, ..., |d|} given by Equation (18), the “greater than” in Inequality
29 replaced by “less than or equal to”, and R|e|(d′, D, 1/(1 + w), w) given by

R|e|(d
′, D, 1/(1 + w), w) =

w

n
n+
|e|,d′,D =

w

n
(n+
|e|,d,D + ...+ n+

|d|,d,D).

Corollary 4.5. If d∗ is an optimal solution for a given instance (D,A,w,C) of Program 2.9, then we must
have α(d∗,D)

j > 1/(1 + w) for all j ∈ {0, 1, ..., |d∗| − 1}.

Proof. Suppose that d∗ were an optimal solution for a given instance (D,A,w,C) of Program 2.9, such that
α

(d∗,D)
k ≤ 1/(1 + w) form some k ∈ {0, 1, ..., |d∗| − 1}. Let

e = {(a(d∗)
0 , α

(d∗,D)
0 ), ..., (a

(d∗)
k−1, α

(d∗,D)
k−1 )}

be a prefix consisting of the top k rules in d∗. By Lemma 4.4, the falling rule list ē = {e, α̃e,D} satisfies
L(ē, D, 1/(1 + w), w, C) ≤ L(d∗, D, 1/(1 + w), w, C). In fact, the inequality is strict because the size of ē is
strictly less than that of d∗. This contradicts the optimality of d∗.

Before we proceed with proving Theorem 4.6, we make two other observations.

Observation 10.2. For any rule list d′, we have

n−|e|,d′,D =

 1

α
(d′,D)
|e|

− 1

n+
|e|,d′,D, (30)

Proof. By Definition 2.5, we have
α

(d′,D)
|e| = n+

|e|,d′,D/n|e|,d′,D.

Since n|e|,d′,D denotes the total number of training inputs captured by the |e|-th antecedent in d′, which is
exactly the sum of the number of positive training inputs captured by that antecedent (denoted n+

|e|,d′,D),
and the number of negative training inputs captured by the same antecedent (denoted n−|e|,d′,D), we have

α
(d′,D)
|e| =

n+
|e|,d′,D

n+
|e|,d′,D + n−|e|,d′,D

.

The desired equation follows from rearranging the terms.

Observation 10.3. For any rule list

d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), α̂

(d′)
|e|+1}

that has exactly one rule (excluding the final else clause) following a given prefix e, we have

n+
|e|+1,d′,D = ñ+

e,D − n
+
|e|,d′,D, (31)

n−|e|+1,d′,D = ñ−e,D − n
−
|e|,d′,D, (32)

and
n|e|+1,d′,D = ñe,D − n|e|,d′,D. (33)

Note that since n+
|e|+1,d′,D, n

−
|e|+1,d′,D, and n|e|+1,d′,D are non-negative, Equations (63), (64), and (65) imply

n+
|e|,d′,D ≤ ñ

+
e,D, n

−
|e|,d′,D ≤ ñ

−
e,D, and n|e|,d′,D ≤ ñe,D.



Proof. Applying Observation 10.1 with |d′| = |e|+ 1, we have

ñ+
e,D = n+

|e|,d′,D + n+
|e|+1,d′,D,

ñ−e,D = n−|e|,d′,D + n−|e|+1,d′,D,

and
ñe,D = n|e|,d′,D + n|e|+1,d′,D.

Equations (31), (32), and (33) follow from rearranging the terms in the above equations.

We now prove Theorem 4.6.

Theorem 4.6. Suppose that we are given an instance (D,A,w,C) of Program 2.9 and a prefix e that is
feasible for Program 2.9 under the training data D and the set of antecedents A. Then any falling rule list d
that begins with e and is compatible with D satisfies

L(d,D, 1/(1 + w), w, C) ≥ L∗(e,D,w,C),

where

L∗(e,D,w,C) = L(e,D, 1/(1 + w), w, C) + min

 1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D + C,

w

n
ñ+
e,D,

1

n
ñ−e,D


is a lower bound on the objective value of any compatible falling rule list that begins with e, which we call a
prefix bound for e, under the instance (D,A,w,C) of Program 2.9. Furthermore, if

C ≥ min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
− 1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D (34)

holds, then the falling rule list ē = {e, α̃e,D} satisfies L(ē, D, 1/(1 + w), w, C) = L∗(e,D,w,C).

Proof. Let F(X , D, e) be the set of (hypothetical and non-hypothetical) falling rule lists that begin with e
and are compatible with D, and let F(X , D, e, k) be the subset of F(X , D, e), consisting of those falling rule
lists in F(X , D, e) that have exactly k rules (excluding the final else clause) following the prefix e.

Let d ∈ F(X , D, e).

Case 1. α(e,D)
|e|−1 > 1/(1 + w).

In this case, Lemma 4.4 implies

L(d,D, 1/(1 + w), w, C) ≥ inf
d′∈F(X ,D,e,1)∪F(X ,D,e,0)

L(d′, D, 1/(1 + w), w, C). (35)

Note that we have F(X , D, e, 0) = {ē}, where ē = {e, α̃e,D} is the falling rule list in which the final else clause
immediately follows the prefix e, and the probability estimate of the final else clause is α̃e,D. To see this, we
first observe ē ∈ F(X , D, e, 0). This is because:
(i) ē clearly begins with e, and has no additional rules (excluding the final else clause) following the prefix e;
(ii) the feasibility of e implies α(e,D)

k−1 ≥ α
(e,D)
k for all k ∈ {1, 2, ..., |e|−1} (otherwise we could not possibly have

a falling rule list that begins with e, and we would violate Definition 4.1), and α̃e,D ≤ α(e,D)
|e|−1 (by Proposition

4.2), which together imply that ē is indeed a falling rule list; and
(iii) we have

α̃e,D =
ñ+
e,D

ñe,D
(by the definition of α̃e,D in Definition 2.5)

=
n+
|ē|,ē,D

n|ē|,ē,D
(by Equations (14) and (16) in Observation 10.1, applied to ē)

= α
(ē,D)
|ē| , (by the definition of the empirical positive proportion in Definition 2.5)



which implies that ē is indeed compatible with D.

Conversely, for any d0 = {e, α̂(d0)
|e| } ∈ F(X , D, e, 0), we must have

α̂
(d0)
|e| = α

(d0,D)
|e| (because d0 must be compatible with D)

=
n+
|e|,d0,D

n|e|,d0,D
(by the definition of the empirical positive proportion in Definition 2.5)

=
ñ+
e,D

ñe,D
(by Equations (14) and (16) in Observation 10.1, applied to d0 here)

= α̃e,D,

which implies d0 = ē. This establishes F(X , D, e, 0) = {ē}.

Let F ′(X , D, e, 1) be the subset of F(X , D, e, 1), consisting of those falling rule lists

d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ F(X , D, e, 1)

with α
(d′,D)
|e| > 1/(1 + w) and α

(d′,D)
|e|+1 ≤ 1/(1 + w). Note that for any d1 = {e, (a(d1)

|e| , α
(d1,D)
|e| ), α

(d1,D)
|e|+1 } ∈

F(X , D, e, 1)−F ′(X , D, e, 1), we have either α(d1,D)
|e| ≥ α(d1,D)

|e|+1 > 1/(1 +w) or α(d1,D)
|e|+1 ≤ α

(d1,D)
|e| ≤ 1/(1 +w),

and Lemma 4.4 implies L(d1, D, 1/(1 + w), w, C) ≥ L(ē, D, 1/(1 + w), w, C). This means

inf
d′∈F(X ,D,e,1)−F ′(X ,D,e,1)

L(d′, D, 1/(1 + w), w, C) ≥ L(ē, D, 1/(1 + w), w, C). (36)

Using F(X , D, e, 0) = {ē} and (36), we can write the right-hand side of (35) as

inf
d′∈F(X ,D,e,1)∪F(X ,D,e,0)

L(d′, D, 1/(1 + w), w, C)

= inf
d′∈F ′(X ,D,e,1)∪(F(X ,D,e,1)−F ′(X ,D,e,1))∪{ē}

L(d′, D, 1/(1 + w), w, C)

= min

(
inf

d′∈F ′(X ,D,e,1)
L(d′, D, 1/(1 + w), w, C),

inf
d′∈F(X ,D,e,1)−F ′(X ,D,e,1)

L(d′, D, 1/(1 + w), w, C), L(ē, D, 1/(1 + w), w, C)

)
= min

(
inf

d′∈F ′(X ,D,e,1)
L(d′, D, 1/(1 + w), w, C), L(ē, D, 1/(1 + w), w, C)

)
. (37)

The rest of the proof for this case proceeds in three steps.

Step 1. Compute L(ē, D, 1/(1 + w), w, C).

Since the contribution by the final else clause to L(ē, D, 1/(1 + w), w, C) is given by

R|e|(ē, D, 1/(1 + w), w) =

{
1
nn
−
|e|,ē,D if α̃e,D > 1/(1 + w)

w
nn

+
|e|,ē,D otherwise,

where we have used Equation (13), and since Observation 10.1 implies ñ+
e,D = n+

|e|,ē,D and ñ−e,D = n−|e|,ē,D, it
is not difficult to see

L(ē, D, 1/(1 + w), w, C) =

{
L(e,D, 1/(1 + w), w, C) + 1

n ñ
−
e,D if α̃e,D > 1/(1 + w)

L(e,D, 1/(1 + w), w, C) + w
n ñ

+
e,D otherwise.



Since α̃e,D > 1/(1 + w) is equivalent to ñ+
e,D/(ñ

+
e,D + ñ−e,D) > 1/(1 + w), or wñ+

e,D > ñ−e,D, and similarly
α̃e,D ≤ 1/(1 + w) is equivalent to wñ+

e,D ≤ ñ
−
e,D, we can write

L(ē, D, 1/(1 + w), w, C) = min

(
L(e,D, 1/(1 + w), w, C) +

1

n
ñ−e,D,

L(e,D, 1/(1 + w), w, C) +
w

n
ñ+
e,D

)
.

(38)

Step 2. Determine a lower bound of L(d′, D, 1/(1 + w), w, C) for all d′ ∈ F ′(X , D, e, 1).

Let d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ F

′(X , D, e, 1). Since the contribution by both the |e|-th rule and the
final else clause to L(d′, D, 1/(1+w), w, C) is given by R|e|(d′, D, 1/(1+w), w)+R|e|+1(d′, D, 1/(1+w), w)+C,
where R|e|(d′, D, 1/(1 + w), w) and R|e|+1(d′, D, 1/(1 + w), w) are defined by Equation (13) and are given by

R|e|(d
′, D, 1/(1 + w), w) =

1

n
n−|e|,d′,D and R|e|+1(d′, D, 1/(1 + w), w) =

w

n
n+
|e|+1,d′,D

(because we have α(d′,D)
|e| > 1/(1 +w) and α(d′,D)

|e|+1 ≤ 1/(1 +w) for d′ ∈ F ′(X , D, e, 1)), it is not difficult to see

L(d′, D, 1/(1 + w), w, C) = L(e,D, 1/(1 + w), w, C) +
1

n
n−|e|,d′,D +

w

n
n+
|e|+1,d′,D + C. (39)

Substituting (30) in Observation 10.2 and (31) in Observation 10.3 into Equation (39), we have

L(d′, D, 1/(1 + w), w, C)

= L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(d′,D)
|e|

− 1

n+
|e|,d′,D +

w

n
(ñ+
e,D − n

+
|e|,d′,D) + C

= L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(d′,D)
|e|

− 1− w

n+
|e|,d′,D + wñ+

e,D

+ C. (40)

Note that Equation (40) shows that given the prefix e, L(d′, D, 1/(1 + w), w, C) is a function of α(d′,D)
|e| and

of n+
|e|,d′,D. Since we have

∂L(d′, D, 1/(1 + w), w, C)

∂n+
|e|,d′,D

=
1

n

 1

α
(d′,D)
|e|

− 1− w

 < 0

because α(d′,D)
|e| > 1/(1 + w) holds for any d′ ∈ F ′(X , D, e, 1), and

∂L(d′, D, 1/(1 + w), w, C)

∂α
(d′,D)
|e|

= −
n+
|e|,d′,D

n

1

(α
(d′,D)
|e| )2

≤ 0,

we see that L(d′, D, 1/(1 + w), w, C) is indeed a monotonically decreasing function of both n+
|e|,d′,D and

α
(d′,D)
|e| . Thus, we can obtain a lower bound of L(d′, D, 1/(1 + w), w, C) by substituting n+

|e|,d′,D and α(d′,D)
|e|

with their respective upper bound. The inequality n+
|e|,d′,D ≤ ñ

+
e,D in Observation 10.3 gives an upper bound

for n+
|e|,d′,D, and the inequality α(d′,D)

|e| ≤ α
(d′,D)
|e|−1 = α

(e,D)
|e|−1 from d′ being a falling rule list gives an upper

bound for α(d′,D)
|e| . Substituting these upper bounds into (40), we obtain the following inequality, which gives



a lower bound of L(d′, D, 1/(1 + w), w, C):

L(d′, D, 1/(1 + w), w, C)

≥ L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(e,D)
|e|−1

− 1− w

 ñ+
e,D + wñ+

e,D

+ C

= L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D

+ C.

This means

inf
d′∈F ′(X ,D,e,1)

L(d′, D, 1/(1 + w), w, C) ≥ L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D

+ C. (41)

Step 3. Put everything together.

Using (35), (37), (38), and (41), we have

L(d,D, 1/(1 + w), w, C)

≥ min

(
inf

d′∈F ′(X ,D,e,1)
L(d′, D, 1/(1 + w), w, C), L(ē, D, 1/(1 + w), w, C)

)

≥ min

L(e,D, 1/(1 + w), w, C) +
1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D

+ C,

min

(
L(e,D, 1/(1 + w), w, C) +

1

n
ñ−e,D, L(e,D, 1/(1 + w), w, C) +

w

n
ñ+
e,D

)
= L(e,D, 1/(1 + w), w, C) + min

 1

n

 1

α
(e,D)
|e|−1

− 1

 ñ+
e,D

+ C,
w

n
ñ+
e,D,

1

n
ñ−e,D

 ,

as desired.

Case 2. α(e,D)
|e|−1 ≤ 1/(1 + w).

This implies α(d,D)
j ≤ 1/(1 + w) for all j ∈ {|e|, ..., |d|}. By Lemma 4.4, we have

L(d,D, 1/(1 + w), w, C) ≥ L(ē, D, 1/(1 + w), w, C).

Since L(ē, D, 1/(1 + w), w, C) is given by Equation (38), we have

L(d,D, 1/(1 + w), w, C) ≥ L(e,D, 1/(1 + w), w, C) + min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
. (42)

Given α(e,D)
|e|−1 ≤ 1/(1 + w), we must also have

1

n

 1

α
(d′,D)
|e|−1

− 1

 ñ+
e,D

+ C ≥ w

n
ñ+
e,D + C ≥ w

n
ñ+
e,D,

which means

min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
= min

 1

n

 1

α
(d′,D)
|e|−1

− 1

 ñ+
e,D

+ C,
w

n
ñ+
e,D,

1

n
ñ−e,D

 . (43)



Substituting (43) into (42) completes the proof for Case 2.

Finally, if Inequality (34) holds, then we have

1

n

 1

α
(d′,D)
|e|−1

− 1

 ñ+
e,D

+ C ≥ min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
,

which implies

L∗(e,D,w,C) = L(e,D, 1/(1 + w), w, C) + min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
= L(ē, D, 1/(1 + w), w, C).

11 Proof of Theorem 5.2

Theorem 5.2. Suppose that we are given an instance (D,A,w,C,C1) of Program 5.1 and a prefix e that is
compatible with D. Then any rule list d that begins with e and is compatible with D satisfies

L̃(d,D, 1/(1 + w), w, C,C1) ≥ L̃∗(e,D,w,C,C1),

where

L̃∗(e,D,w,C,C1) = L̃(e,D, 1/(1 + w), w, C,C1)

+ min

(
1

n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C + C1bα̃e,D − α(e,D)

min c+ +
w

n
ñ+
e,D1[α̃e,D ≥ α(e,D)

min ],

inf
β:ζ<β≤1

g(β),
w

n
ñ+
e,D + C1bα̃e,D − α(e,D)

min c+,
1

n
ñ−e,D + C1bα̃e,D − α(e,D)

min c+


(44)

is a lower bound on the objective value of any compatible rule list that begins with e, under the instance
(D,A,w,C,C1) of Program 5.1. In Equation (44), α(e,D)

min , ζ, and g are defined by

α
(e,D)
min = min

k<|e|
α

(e,D)
k , ζ = max(α

(e,D)
min , α̃e,D, 1/(1 + w)),

g(β) =
1

n

(
1

β
− 1

)
ñ+
e,D + C + C1(β − α(e,D)

min ).

Note that infβ:ζ<β≤1 g(β) can be computed analytically: infβ:ζ<β≤1 g(β) = g(β∗) if β∗ =
√
ñ+
e,D/(C1n)

satisfies ζ < β∗ ≤ 1, and infβ:ζ<β≤1 g(β) = min(g(ζ), g(1)) otherwise.

To prove Theorem 5.2, we need the following lemma:

Lemma. Suppose that we are given an instance (D,A,w,C,C1) of Program 5.1, a prefix e that is compatible
with D, and a (possibly hypothetical) rule list d that begins with e and is compatible with D. Then there
exists a rule list d′, possibly hypothetical with respect to A, such that d′ begins with e, has at most one more
rule (excluding the final else clause) following e, is compatible with D, and satisfies

L̃(d′, D, 1/(1 + w), w, C,C1) ≤ L̃(d,D, 1/(1 + w), w, C,C1). (45)

Moreover, if either α(d,D)
j > 1/(1 +w) holds for all j ∈ {|e|, |e|+ 1, ..., |d|}, or α(d,D)

j ≤ 1/(1 +w) holds for all
j ∈ {|e|, |e|+ 1, ..., |d|}, then the rule list ē = {e, α̃e,D} (i.e. the rule list in which the final else clause follows
immediately the prefix e, and the probability estimate of the final else clause is α̃e,D) is compatible with D
and satisfies L̃(ē, D, 1/(1 + w), w, C,C1) ≤ L̃(d,D, 1/(1 + w), w, C).



Proof. Case 1. There exists some k ∈ {|e|, ..., |d|} that satisfies α(d,D)
k > 1/(1+w) and some k′ ∈ {|e|, ..., |d|}

that satisfies α(d,D)
k′ ≤ 1/(1 + w). For any j ∈ {|e|, ..., |d|} with α

(d,D)
j > 1/(1 + w), the contribution

Rj(d,D, 1/(1 + w), w) by the j-th rule to R(d,D, 1/(1 + w), w), defined by the right-hand side of Equation
(13) with τ = 1/(1 + w), is given by

Rj(d,D, 1/(1 + w), w) =
1

n
n−j,d,D.

For any j ∈ {|e|, ..., |d|} with α(d,D)
j ≤ 1/(1 + w), the contribution Rj(d,D, 1/(1 + w), w) by the j-th rule to

R(d,D, 1/(1 + w), w) is given by

Rj(d,D, 1/(1 + w), w) =
w

n
n+
j,d,D.

The rest of the proof for this case proceeds in four steps.

Step 1. Construct a hypothetical rule list d′ that begins with e, has exactly one more rule (excluding the
final else clause) following e, and is compatible with D. In later steps, we shall show that the rule list d′
constructed in this step satisfies (45).

Let d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), α̂

(d′)
|e|+1} be the hypothetical rule list of size |d′| = |e|+ 1 that is compatible with D,

and whose |e|-th antecedent a(d′)
|e| is defined by

a
(d′)
|e| (x) = 1[α

(d,D)
capt(x,d) > 1/(1 + w)] · 1[|e| ≤ capt(x, d) ≤ |d|].

Step 2. Show that the empirical risk of misclassification by the rule list d′ is the same as that by the rule
list d.

To see this, we observe that the training instances in D captured by a(d′)
|e| in d′ are exactly those captured by

the antecedents a(d)
j , |e| ≤ j ≤ |d|, in d whose empirical positive proportion satisfies α(d,D)

j > 1/(1 + w), and

the training instances in D captured by a(d′)
|e|+1 (i.e. the final else clause) in d′ are exactly those captured by

the antecedents a(d)
j , |e| ≤ j ≤ |d|, in d whose empirical positive proportion satisfies α(d,D)

j ≤ 1/(1 +w). This
observation implies

n+
|e|,d′,D =

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)

n+
j,d,D, (46)

n−|e|,d′,D =
∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

n−j,d,D, (47)

n|e|,d′,D =
∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D, (48)

n+
|e|+1,d′,D =

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)

n+
j,d,D (49)

and
n|e|+1,d′,D =

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)

nj,d,D. (50)

Since d′ is compatible with D, using the definition of a compatible rule list in Definition 2.6 and the definition



of the empirical positive proportion in Definition 2.5, together with (46), (48), (49), and (50), we must have

α̂
(d′)
|e| = α

(d′,D)
|e| =

n+
|e|,d′,D

n|e|,d′,D
=

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)
n+
j,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D

=

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)
α

(d,D)
j nj,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D
>

1

1 + w
,

and

α̂
(d′)
|e|+1 = α

(d′,D)
|e|+1 =

n+
|e|+1,d′,D

n|e|+1,d′,D
=

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)
n+
j,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j ≤1/(1+w)

nj,d,D

=

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)
α

(d,D)
j nj,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j ≤1/(1+w)

nj,d,D
≤ 1

1 + w
.

This means that the contribution R|e|(d′, D, 1/(1 +w), w) by the |e|-th rule to R(d′, D, 1/(1 +w), w) is given
by

R|e|(d
′, D, 1/(1 + w), w) =

1

n
n−|e|,d′,D =

1

n

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)

n−j,d,D,

where we have used (47), and the contribution R|e|+1(d′, D, 1/(1 + w), w) by the (|e|+ 1)-st “rule” (i.e. the
final else clause) to R(d′, D, 1/(1 + w), w) is given by

R|e|+1(d′, D, 1/(1 + w), w) =
w

n
n+
|e|+1,d′,D =

w

n

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)

n+
j,d,D,

where we have used (49).

It then follows that the empirical risk of misclassification by the rule list d′ is the same as that by the rule
list d:

R(d′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w) +R|e|(d
′, D, 1/(1 + w), w) +R|e|+1(d′, D, 1/(1 + w), w)

= R(e,D, 1/(1 + w), w)

+
1

n

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)

n−j,d,D +
w

n

∑
j:|e|≤j≤|d|∧α(d,D)

j ≤1/(1+w)

n+
j,d,D

= R(e,D, 1/(1 + w), w) +

|d|∑
j=|e|

Rj(d,D, 1/(1 + w), w)

= R(d,D, 1/(1 + w), w). (51)

Step 3. Show that the monotonicity penalty of the rule list d′ is at most that of d.

Let S(d,D) =
∑|d|
j=0bα

(d,D)
j −mink<j α

(d,D)
k c+ be the monotonicity penalty of the rule list d. We now show

S(d′, D) ≤ S(d,D). Let Sj(d,D) = bα(d,D)
j −mink<j α

(d,D)
k c+ be the monotonicity penalty for the j-th rule

in d.

Let l ∈ {|e|, ..., |d|} be any integer with

α
(d,D)
l = max

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

α
(d,D)
j . (52)



Then the total monotonicity penalty for all the rules (a
(d)
j , α

(d,D)
j ) in d with |e| ≤ j ≤ |d| and α(d,D)

j > 1/(1+w)
satisfies ∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

Sj(d,D) ≥ Sl(d,D) (because Sl(d,D) is included in the sum on the left)

= bα(d,D)
l −min

k<l
α

(d,D)
k c+

≥ bα(d,D)
l − min

k<|e|
α

(d,D)
k c+. (53)

On the other hand, the monotonicity penalty for the |e|-th rule in d′ satisfies

S|e|(d
′, D) = bα(d′,D)

|e| − min
k<|e|

α
(d′,D)
k c+ ≤ bα(d,D)

l − min
k<|e|

α
(d,D)
k c+, (54)

because we have mink<|e| α
(d′,D)
k = mink<|e| α

(d,D)
k (d and d′ begin with the same prefix e), and

α
(d′,D)
|e| =

n+
|e|,d′,D

n|e|,d′,D
(by the definition of the empirical positive proportion in Definition 2.5)

=

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)
n+
j,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D
(by Equations (46) and (48))

=

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)
α

(d,D)
j nj,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D
(by the definition of α(d,D)

j in Definition 2.5)

≤

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)
α

(d,D)
l nj,d,D∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

nj,d,D
(by the definition of l in (52))

= α
(d,D)
l .

Combining (53) and (54), we have

S|e|(d
′, D) ≤

∑
j:|e|≤j≤|d|∧α(d,D)

j >1/(1+w)

Sj(d,D). (55)

A similar argument will show

S|e|+1(d′, D) ≤
∑

j:|e|≤j≤|d|∧α(d,D)
j ≤1/(1+w)

Sj(d,D). (56)

It then follows from (55) and (56) that the monotonicity penalty of d′ is at most that of d:

S(d′, D) =

|e|−1∑
j=0

Sj(d
′, D)

+ S|e|(d
′, D) + S|e|+1(d′, D)

≤

|e|−1∑
j=0

Sj(d,D)

+
∑

j:|e|≤j≤|d|∧α(d,D)
j >1/(1+w)

Sj(d,D) (57)

+
∑

j:|e|≤j≤|d|∧α(d,D)
j ≤1/(1+w)

Sj(d,D)

= S(d,D). (58)



Step 4. Put everything together.

Using (51) and (58), together with the observation |d′| = |e|+ 1 ≤ |d|, we must also have

L̃(d′, D, 1/(1 + w), w, C,C1) = R(d′, D, 1/(1 + w), w) + C|d′|+ C1S(d′, D)

≤ R(d,D, 1/(1 + w), w) + C|d|+ C1S(d,D)

= L̃(d,D, 1/(1 + w), w, C,C1).

Case 2. Either α(d,D)
j > 1/(1 + w) holds for all j ∈ {|e|, ..., |d|}, or α(d,D)

j ≤ 1/(1 + w) holds for all
j ∈ {|e|, ..., |d|}. The construction of d′ = ē and the proof for R(d′, D, 1/(1 + w), w) = R(d,D, 1/(1 + w), w)
is similar to those given in the proof of Lemma 4.4. The proof for S(d′, D) ≤ S(d,D) is similar to that in
Case 1. The desired inequality then follows from |d′| = |e| ≤ |d|.

Before we proceed with proving Theorem 5.2, we make the following four observations. Observations 11.1,
11.2, and 11.3 are the same as Observations 10.1, 10.2 and 10.3. They are repeated here for convenience.

Observation 11.1 For any rule list

d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), ..., (a

(d′)
|d′|−1, α̂

(d′)
|d′|−1), α̂

(d′)
|d′| }

that begins with a given prefix e, we have

ñ+
e,D = n+

|e|,d′,D + ...n+
|d′|,d′,D, (59)

ñ−e,D = n−|e|,d′,D + ...n−|d′|,d′,D, (60)

and
ñe,D = n|e|,d′,D + ...n|d′|,d′,D. (61)

Proof. Same as Observation 10.1.

Observation 11.2. For any rule list d′, we have

n−|e|,d′,D =

 1

α
(d′,D)
|e|

− 1

n+
|e|,d′,D, (62)

Proof. Same as Observation 10.2.

Observation 11.3. For any rule list

d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), α̂

(d′)
|e|+1}

that has exactly one rule (excluding the final else clause) following a given prefix e, we have

n+
|e|+1,d′,D = ñ+

e,D − n
+
|e|,d′,D, (63)

n−|e|+1,d′,D = ñ−e,D − n
−
|e|,d′,D, (64)

and
n|e|+1,d′,D = ñe,D − n|e|,d′,D. (65)

Note that since n+
|e|+1,d′,D, n

−
|e|+1,d′,D, and n|e|+1,d′,D are non-negative, Equations (63), (64), and (65) imply

n+
|e|,d′,D ≤ ñ

+
e,D, n

−
|e|,d′,D ≤ ñ

−
e,D, and n|e|,d′,D ≤ ñe,D.



Proof. Same as Observation 10.3.

Observation 11.4. For any rule list

d′ = {e, (a(d′)
|e| , α̂

(d′)
|e| ), α̂

(d′)
|e|+1}

that has exactly one rule (excluding the final else clause) following a given prefix e, we have

α
(d′,D)
|e|+1 =

ñ+
e,D − n

+
|e|,d′,D

ñ+
e,D + ñ−e,D −

1

α
(d′,D)

|e|

n+
|e|,d′,D

. (66)

Proof. By Definition 2.5, we have

α
(d′,D)
|e|+1 =

n+
|e|+1,d′,D

n|e|+1,d′,D
=

n+
|e|+1,d′,D

n+
|e|+1,d′,D + n−|e|+1,d′,D

.

Applying Equations (63) and (64) in Observation 11.3, we have

α
(d′,D)
|e|+1 =

ñ+
e,D − n

+
|e|,d′,D

(ñ+
e,D − n

+
|e|,d′,D) + (ñ−e,D − n

−
|e|,d′,D)

=
ñ+
e,D − n

+
|e|,d′,D

ñ+
e,D + ñ−e,D − n

+
|e|,d′,D − n

−
|e|,d′,D

.

Applying Equation (62) in Observation 11.2, we have

α
(d′,D)
|e|+1 =

ñ+
e,D − n

+
|e|,d′,D

ñ+
e,D + ñ−e,D − n

+
|e|,d′,D −

(
1

α
(d′,D)

|e|

− 1

)
n+
|e|,d′,D

=
ñ+
e,D − n

+
|e|,d′,D

ñ+
e,D + ñ−e,D −

1

α
(d′,D)

|e|

n+
|e|,d′,D

.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let D(X , D, e) be the set of (hypothetical and non-hypothetical) rule lists that begin
with e and are compatible with D, and let D(X , D, e, k) be the subset of D(X , D, e), consisting of those
rule lists in D(X , D, e) that have exactly k rules (excluding the final else clause) following the prefix e. Let
S(X , D, e, 1) be the subset of D(X , D, e, 1), consisting of those rule lists

d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ D(X , D, e, 1)

with α(d′,D)
|e| > 1/(1 + w) and α(d′,D)

|e|+1 ≤ 1/(1 + w).

Note that we have D(X , D, e, 0) = {ē}, where ē = {e, α̃e,D} is the rule list in which the final else clause
immediately follows the prefix e, and the probability estimate of the final else clause is α̃e,D, by a similar
argument as that given in the proof of Theorem 4.6 for F(X , D, e, 0) = {ē}.

Let d ∈ D(X , D, e).

The lemma that we have proved in this section, along with its proof, implies

L̃(d,D, 1/(1 + w), w, C,C1) ≥ inf
d′∈S(X ,D,e,1)

⋃
D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1). (67)



This is because if d obeys Case 1 in the proof of the lemma, then using the same argument as in the proof of
the lemma we can construct a rule list d1 = {e, (a(d1)

|e| , α
(d1,D)
|e| ), α

(d1,D)
|e|+1 } ∈ S(X , D, e, 1) that satisfies

L̃(d,D, 1/(1 + w), w, C,C1) ≥ L̃(d1, D, 1/(1 + w), w, C,C1). (68)

Since d1 must also obey

L̃(d1, D, 1/(1 + w), w, C,C1) ≥ inf
d′∈S(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ inf
d′∈S(X ,D,e,1)

⋃
D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1), (69)

combining the inequalities in (68) and (69) gives us (67). On the other hand, if d obeys Case 2 in the proof
of the lemma, then by the lemma itself we know

L̃(d,D, 1/(1 + w), w, C,C1) ≥ L̃(ē, D, 1/(1 + w), w, C,C1). (70)

Since we have D(X , D, e, 0) = {ē}, it is straightforward to see

L̃(ē, D, 1/(1 + w), w, C,C1) = inf
d′∈D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ inf
d′∈S(X ,D,e,1)

⋃
D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1). (71)

Combining the inequalities in (70) and (71) again gives us (67).

Note that if S(X , D, e, 1) is not empty, then the right-hand side of (67) can be expressed as

inf
d′∈S(X ,D,e,1)

⋃
D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1)

= inf
d′∈S(X ,D,e,1)

⋃
{ē}

L̃(d′, D, 1/(1 + w), w, C,C1)

= min

(
inf

d′∈S(X ,D,e,1)
L̃(d′, D, 1/(1 + w), w, C,C1), L̃(ē, D, 1/(1 + w), w, C,C1)

)
. (72)

The rest of the proof proceeds in six steps.

Step 1. Compute L̃(ē, D, 1/(1 + w), w, C,C1).

Since the contribution by the final else clause to L̃(ē, D, 1/(1 + w), w, C,C1) is given by R|e|(ē, D, 1/(1 +

w), w) + bα̃e,D − α(e,D)
min c+, where R|e|(ē, D, 1/(1 + w), w) is defined by Equation (13) and is given by

R|e|(ē, D, 1/(1 + w), w) =

{
1
nn
−
|e|,ē,D if α̃e,D > 1/(1 + w)

w
nn

+
|e|,ē,D otherwise,

and since Observation 11.1 implies ñ+
e,D = n+

|e|,ē,D and ñ−e,D = n−|e|,ē,D, it is not difficult to see

L̃(ē, D, 1/(1 + w), w, C,C1)

=

{
L̃(e,D, 1/(1 + w), w, C,C1) + 1

n ñ
−
e,D + C1bα̃e,D − α(e,D)

min c+ if α̃e,D > 1/(1 + w)

L̃(e,D, 1/(1 + w), w, C,C1) + w
n ñ

+
e,D + C1bα̃e,D − α(e,D)

min c+ otherwise.

Since α̃e,D > 1/(1 + w) is equivalent to ñ+
e,D/(ñ

+
e,D + ñ−e,D) > 1/(1 + w), or wñ+

e,D > ñ−e,D, and similarly
α̃e,D ≤ 1/(1 + w) is equivalent to wñ+

e,D ≤ ñ
−
e,D, we can write

L̃(ē, D, 1/(1 + w), w, C,C1)

= min

(
L̃(e,D, 1/(1 + w), w, C,C1) +

1

n
ñ−e,D + C1bα̃e,D − α(e,D)

min c+,

L̃(e,D, 1/(1 + w), w, C,C1) +
w

n
ñ+
e,D + C1bα̃e,D − α(e,D)

min c+
)

= L̃(e,D, 1/(1 + w), w, C,C1) + min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
+ C1bα̃e,D − α(e,D)

min c+.

(73)



Step 2. Partition the set S(X , D, e, 1) into three subsets based on how the softly falling objective is computed.

For any d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S(X , D, e, 1), the softly falling objective is given by

L̃(d′, D, 1/(1 + w), w, C,C1)

= L̃(e,D, 1/(1 + w), w, C,C1) +
1

n
n−|e|,d′,D +

w

n
n+
|e|+1,d′,D + C

+ C1bα(d′,D)
|e| − α(e,D)

min c+ + C1bα(d′,D)
|e|+1 − α

(e,D)
min c+. (74)

This is because for any d′ ∈ S(X , D, e, 1), the contribution by both the |e|-th rule and the final else clause to
L̃(d′, D, 1/(1 + w), w, C,C1) is given by

R|e|(d
′, D, 1/(1 + w), w) +R|e|+1(d′, D, 1/(1 + w), w) + C + C1bα(d′,D)

|e| − α(e,D)
min c+ + C1bα(d′,D)

|e|+1 − α
(e,D)
min c+,

where R|e|(d′, D, 1/(1 + w), w) and R|e|+1(d′, D, 1/(1 + w), w) are defined by Equation (13) and are given by

R|e|(d
′, D, 1/(1 + w), w) =

1

n
n−|e|,d′,D and R|e|+1(d′, D, 1/(1 + w), w) =

w

n
n+
|e|+1,d′,D

(because we have α(d′,D)
|e| > 1/(1 + w) and α(d′,D)

|e|+1 ≤ 1/(1 + w) for d′ ∈ S(X , D, e, 1)).

Let

S1(X , D, e, 1) = {d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S(X , D, e, 1) : α

(e,D)
min ≥ α(d′,D)

|e| > α
(d′,D)
|e|+1 },

S2(X , D, e, 1) = {d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S(X , D, e, 1) : α

(d′,D)
|e| > α

(e,D)
min ≥ α(d′,D)

|e|+1 },

and

S3(X , D, e, 1) = {d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S(X , D, e, 1) : α

(d′,D)
|e| > α

(d′,D)
|e|+1 > α

(e,D)
min },

It is easy to see
S(X , D, e, 1) = S3(X , D, e, 1) ∪ S1(X , D, e, 1) ∪ S2(X , D, e, 1).

We observe here that given the prefix e, we can write L̃(d′, D, 1/(1 + w), w, C,C1) as a function of n+
|e|,d′,D

and α(d′,D)
|e| , by substituting (62), (63), and (66) in Observations 11.1, 11.2, and 11.3 into (74).

Step 3. Determine a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1) for all d′ ∈ S1(X , D, e, 1).

Let d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S1(X , D, e, 1). By the definition of S1(X , D, e, 1), we have

α
(e,D)
min ≥ α(d′,D)

|e| >
1

1 + w
≥ α(d′,D)

|e|+1 (75)

We first prove the following inequality

α
(e,D)
min ≥ α(d′,D)

|e| > max(1/(1 + w), α̃e,D), (76)

which will be useful later.

To prove (76), we use Definition 2.5 as well as (63) and (65) in Observation 11.3 to obtain

α̃e,D =
ñ+
e,D

ñe,D
=
n+
|e|,d′,D + n+

|e|+1,d′,D

n|e|,d′,D + n|e|+1,d′,D
=
α

(d′,D)
|e| n|e|,d′,D + α

(d′,D)
|e|+1 n|e|+1,d′,D

n|e|,d′,D + n|e|+1,d′,D
. (77)

Substituting α(d′,D)
|e|+1 < α

(d′,D)
|e| from (75) into (77), we obtain α̃e,D < α

(d′,D)
|e| . Combining this inequality with

α
(e,D)
min ≥ α(d′,D)

|e| > 1
1+w from (75), we obtain (76), as desired.



Note that since (76) has to hold for any d′ ∈ S1(X , D, e, 1), if α(e,D)
min ≤ max(1/(1 + w), α̃e,D) is true for the

given prefix e, then S1(X , D, e, 1) is empty.

We now show that given the prefix e, the softly falling objective L̃(d′, D, 1/(1 + w), w, C,C1) for d′ is a
monotonically decreasing function of both n+

|e|,d′,D and α(d′,D)
|e| .

To do so, we substitute (62) and (63) in Observations 11.1 and 11.2 into (74) to obtain

L̃(d′, D, 1/(1 + w), w, C,C1)

= L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

 1

α
(d′,D)
|e|

− 1− w

n+
|e|,d′,D + wñ+

e,D

+ C. (78)

Note that Equation (78) shows that given the prefix e, L̃(d′, D, 1/(1 + w), w, C,C1) is a function of n+
|e|,d′,D

and α(d′,D)
|e| . Since we have

∂L̃(d′, D, 1/(1 + w), w, C,C1)

∂n+
|e|,d′,D

=
1

n

 1

α
(d′,D)
|e|

− 1− w

 < 0

because α(d′,D)
|e| > 1/(1 + w) holds for any d′ ∈ S1(X , D, e, 1), and

∂L̃(d′, D, 1/(1 + w), w, C,C1)

∂α
(d′,D)
|e|

= −
n+
|e|,d′,D

n

1

(α
(d′,D)
|e| )2

≤ 0,

we see that L̃(d′, D, 1/(1 + w), w, C,C1) is indeed a monotonically decreasing function of both n+
|e|,d′,D and

α
(d′,D)
|e| . Thus, we can obtain a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1) by substituting n+

|e|,d′,D and

α
(d′,D)
|e| with their respective upper bound. The inequality n+

|e|,d′,D ≤ ñ+
e,D in Observation 11.3 gives an

upper bound for n+
|e|,d′,D, and the inequality α(d′,D)

|e| ≤ α
(e,D)
min from (75) gives an upper bound for α(d′,D)

|e| .
Substituting these upper bounds into (78), we obtain the following inequality, which gives a lower bound of
L̃(d′, D, 1/(1 + w), w, C,C1):

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

((
1

α
(e,D)
min

− 1− w

)
ñ+
e,D + wñ+

e,D

)
+ C

= L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C.

Step 4. Determine a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1) for all d′ ∈ S2(X , D, e, 1).

Let d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S2(X , D, e, 1). By the definition of S2(X , D, e, 1), we have

α
(d′,D)
|e| >

1

1 + w
(79)

and
α

(d′,D)
|e| > α

(e,D)
min ≥ α(d′,D)

|e|+1 (80)

We first prove the following inequality

1 ≥ α(d′,D)
|e| > max(α

(e,D)
min , α̃e,D, 1/(1 + w)) = ζ, (81)



which will be useful later.

To prove (81), we use Definition 2.5 as well as (63) and (65) in Observation 11.3 to obtain (77). Substituting
α

(d′,D)
|e|+1 < α

(d′,D)
|e| from (75) into (77), we obtain α̃e,D < α

(d′,D)
|e| . Combining this inequality with (79) and

α
(d′,D)
|e| > α

(e,D)
min from (80), we obtain (81), as desired.

We now show that given the prefix e and a particular value of α(d′,D)
|e| that obeys (81), the softly falling

objective L̃(d′, D, 1/(1 + w), w, C,C1) for d′ is a decreasing function of n+
|e|,d′,D.

To do so, we substitute (62) and (63) in Observations 11.1 and 11.2 into (74) to obtain

L̃(d′, D, 1/(1 + w), w, C,C1)

= L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

 1

α
(d′,D)
|e|

− 1− w

n+
|e|,d′,D + wñ+

e,D

+ C

+ C1(α
(d′,D)
|e| − α(e,D)

min ). (82)

Note that Equation (82) shows that given the prefix e, L̃(d′, D, 1/(1 + w), w, C,C1) is a function of n+
|e|,d′,D

and α(d′,D)
|e| . Differentiating L̃(d′, D, 1/(1 + w), w, C,C1) given in (82) with respect to n+

|e|,d′,D, we obtain

∂L̃(d′, D, 1/(1 + w), w, C,C1)

∂n+
|e|,d′,D

=
1

n

 1

α
(d′,D)
|e|

− 1− w

 . (83)

Since α(d′,D)
|e| obeys (81), in particular, it obeys α(d′,D)

|e| > 1/(1 + w), we have

1

α
(d′,D)
|e|

− 1− w < 0,

which then gives ∂L̃(d′, D, 1/(1 + w), w, C,C1)/∂n+
|e|,d′,D < 0. This means that given the prefix e and a

particular value of α(d′,D)
|e| that obeys (81), L̃(d′, D, 1/(1 + w), w, C,C1) is a decreasing function of n+

|e|,d′,D.

Thus, given the prefix e and a particular value of α(d′,D)
|e| that obeys (81), we can obtain a lower bound of

L̃(d′, D, 1/(1 +w), w, C,C1) by substituting n+
|e|,d′,D with its upper bound. The inequality n+

|e|,d′,D ≤ ñ
+
e,D in

Observation 11.3 gives an upper bound for n+
|e|,d′,D. Substituting n+

|e|,d′,D with its upper bound ñ+
e,D into

(82), we obtain a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1), denoted by g̃(α(d′,D)
|e| ), when α(d′,D)

|e| is held
constant:

g̃(α
(d′,D)
|e| ) = L̃(e,D, 1/(1 + w), w, C,C1) +

1

n

 1

α
(d′,D)
|e|

− 1

 ñ+
e,D + C + C1(α

(d′,D)
|e| − α(e,D)

min )

= L̃(e,D, 1/(1 + w), w, C,C1) + g(α
(d′,D)
|e| )

where g is defined in the statement of the theorem. In other words, given the prefix e and a particular
value of α(d′,D)

|e| that obeys (81), we have L̃(d′, D, 1/(1 + w), w, C,C1) ≥ g̃(α
(d′,D)
|e| ). Since (81) is true for any

d′ ∈ S2(X , D, e, 1), we always have L̃(d′, D, 1/(1 +w), w, C,C1) ≥ g̃(α
(d′,D)
|e| ) for any d′ ∈ S2(X , D, e, 1). This

implies

L̃(d′, D, 1/(1 + w), w, C,C1) ≥ inf
α

(d′,D)

|e| :ζ<α
(d′,D)

|e| ≤1

g̃(α
(d′,D)
|e| )

= L̃(e,D, 1/(1 + w), w, C,C1) + inf
α

(d′,D)

|e| :ζ<α
(d′,D)

|e| ≤1

g(α
(d′,D)
|e| ).



Step 5. Determine a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1) for all d′ ∈ S3(X , D, e, 1).

Let d′ = {e, (a(d′)
|e| , α

(d′,D)
|e| ), α

(d′,D)
|e|+1 } ∈ S3(X , D, e, 1). By the definition of S3(X , D, e, 1), we have

α
(d′,D)
|e| >

1

1 + w
≥ α(d′,D)

|e|+1 > α
(e,D)
min . (84)

We first prove the following inequality

1 ≥ α(d′,D)
|e| > max(α

(e,D)
min , α̃e,D, 1/(1 + w)) = ζ, (85)

which will be useful later.

To prove (85), we use Definition 2.5 as well as (63) and (65) in Observation 11.3 to obtain (77). Substituting
α

(d′,D)
|e|+1 < α

(d′,D)
|e| from (84) into (77), we obtain α̃e,D < α

(d′,D)
|e| . Combining this inequality with α(d′,D)

|e| >

1
1+w > α

(e,D)
min from (84), we obtain (85), as desired.

To determine a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1), we observe

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ L̃(e,D, 1/(1 + w), w, C,C1) +
1

n
n−|e|,d′,D +

w

n
n+
|e|+1,d′,D + C + C1bα(d′,D)

|e| − α(e,D)
min c+ (86)

= L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

 1

α
(d′,D)
|e|

− 1− w

n+
|e|,d′,D + wñ+

e,D

+ C

+ C1(α
(d′,D)
|e| − α(e,D)

min ) (87)

where the last equality follows by substituting (62) and (63) in Observations 11.1 and 11.2 into (86). Using
(85) and applying the same argument as in Step 4, the quantity labeled (87) is also lower-bounded by

L̃(e,D, 1/(1 + w), w, C,C1) + inf
α

(d′,D)

|e| :ζ<α
(d′,D)

|e| ≤1

g(α
(d′,D)
|e| ),

so that we again have

L̃(d′, D, 1/(1 + w), w, C,C1) ≥ L̃(e,D, 1/(1 + w), w, C,C1) + inf
α

(d′,D)

|e| :ζ<α
(d′,D)

|e| ≤1

g(α
(d′,D)
|e| ).

Step 6. Put everything together.

Suppose, first, that S(X , D, e, 1) is not empty.

In the case where S1(X , D, e, 1) is not empty, we observe the following inequality

inf
d′∈S1(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1) ≥ L̃(e,D, 1/(1 + w), w, C,C1) +
1

n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C, (88)

which follows from the definition of inf being the greatest lower bound, as well as the lower bound of
L̃(d′, D, 1/(1 + w), w, C,C1) for d′ ∈ S1(X , D, e, 1), which we have derived in Step 3.

In the case where S2(X , D, e, 1) ∪ S3(X , D, e, 1) is not empty, we observe the following inequality

inf
d′∈S2(X ,D,e,1)∪S3(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1) ≥ L̃(e,D, 1/(1 + w), w, C,C1) + inf
β:ζ<β≤1

g(β), (89)

which follows from the definition of inf being the greatest lower bound, as well as the lower bound of
L̃(d′, D, 1/(1 + w), w, C,C1) for d′ ∈ S2(X , D, e, 1), which we have derived in Step 4, and the lower bound of
L̃(d′, D, 1/(1 + w), w, C,C1) for d′ ∈ S3(X , D, e, 1), which we have derived in Step 5.



To derive a lower bound of L̃(d′, D, 1/(1 + w), w, C,C1) for d′ ∈ S(X , D, e, 1), we further observe that if
α

(e,D)
min ≤ max(1/(1 +w), α̃e,D) holds, then by our remark in Step 3, S1(X , D, e, 1) is empty, and consequently,

using (89), we have

inf
d′∈S(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1) = inf
d′∈S2(X ,D,e,1)∪S3(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ L̃(e,D, 1/(1 + w), w, C,C1) + inf
β:ζ<β≤1

g(β). (90)

On the other hand, if α(e,D)
min > max(1/(1 + w), α̃e,D) holds, then S1(X , D, e, 1) may or may not be empty. If,

in addition, both S1(X , D, e, 1) and S2(X , D, e, 1) ∪ S3(X , D, e, 1) are not empty, then using (88) and (89),
we have

inf
d′∈S(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1)

= min

(
inf

d′∈S1(X ,D,e,1)
L̃(d′, D, 1/(1 + w), w, C,C1), inf

d′∈S2(X ,D,e,1)∪S3(X ,D,e,1)
L̃(d′, D, 1/(1 + w), w, C,C1)

)
≥ L̃(e,D, 1/(1 + w), w, C,C1) + min

(
1

n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C, inf

β:ζ<β≤1
g(β)

)
. (91)

If either S1(X , D, e, 1) or S2(X , D, e, 1)∪S3(X , D, e, 1) is empty, then infd′∈S(X ,D,e,1) L̃(d′, D, 1/(1+w), w, C,C1)
is given by either

inf
d′∈S2(X ,D,e,1)∪S3(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1) or inf
d′∈S1(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1),

both of which are lower-bounded by the quantity labeled (91) because of (89) and (88).

Putting these cases together, we have

inf
d′∈S(X ,D,e,1)

L̃(d′, D, 1/(1 + w), w, C,C1)

≥ L̃(e,D, 1/(1 + w), w, C,C1)

+

min

(
1
n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C, infβ:ζ<β≤1 g(β)

)
if α(e,D)

min > max(1/(1 + w), α̃e,D),

infβ:ζ<β≤1 g(β) otherwise.
(92)

Combining (67), (72), (73), and (92), we have

L̃(d,D, 1/(1 + w), w, C,C1)

≥ L̃(e,D, 1/(1 + w), w, C,C1)

+



min

(
1
n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C, infβ:ζ<β≤1 g(β), wn ñ

+
e,D + C1bα̃e,D − α(e,D)

min c+,

1
n ñ
−
e,D + C1bα̃e,D − α(e,D)

min c+
)

if α(e,D)
min > max(1/(1 + w), α̃e,D),

min
(

infβ:ζ<β≤1 g(β), wn ñ
+
e,D + C1bα̃e,D − α(e,D)

min c+,
1
n ñ
−
e,D + C1bα̃e,D − α(e,D)

min c+
)

otherwise.

(93)

Note that the quantity labeled (93) is precisely equal to L̃∗(e,D,w,C,C1) given by Equation (44) in the
statement of the theorem, because:
(i) if α(e,D)

min > max(1/(1 + w), α̃e,D) holds, then the first term in the minimum on the right-hand side of

Equation (44) is precisely 1
n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D + C;



(ii) if α(e,D)
min > max(1/(1 + w), α̃e,D) does not hold, then we have α(e,D)

min ≤ 1/(1 + w) or α(e,D)
min ≤ α̃e,D) – in

the former case where α(e,D)
min ≤ 1/(1 + w) holds, we have

1

n

(
1

α
(e,D)
min

− 1

)
ñ+
e,D ≥

w

n
ñ+
e,D,

which implies that the first term in the minimum on the right-hand side of Equation (44) is bounded below
by w

n ñ
+
e,D + C1bα̃e,D − α(e,D)

min c+, and thus has no influence over the computation of the minimum; in the

latter case where α(e,D)
min ≤ α̃e,D) holds, the first term in the minimum on the right-hand side of Equation (44)

is clearly bounded below by w
n ñ

+
e,D + C1bα̃e,D − α(e,D)

min c+, and again has no influence over the computation
of the minimum.

This proves that L̃∗(e,D,w,C,C1) given by Equation (44) is indeed a lower bound of L̃(d,D, 1/(1 +
w), w, C,C1) for d ∈ D(X , D, e), in the case where S(X , D, e, 1) is not empty. In the case where S(X , D, e, 1)
is empty, using (67) and (73), along with the fact D(X , D, e, 0) = {ē}, we have

L̃(d,D, 1/(1 + w), w, C,C1) ≥ inf
d′∈D(X ,D,e,0)

L̃(d′, D, 1/(1 + w), w, C,C1)

= L̃(ē, D, 1/(1 + w), w, C,C1)

= L̃(e,D, 1/(1 + w), w, C,C1) + min

(
w

n
ñ+
e,D,

1

n
ñ−e,D

)
+ C1bα̃e,D − α(e,D)

min c+,

where the last quantity is clearly lower-bounded by L̃∗(e,D,w,C,C1) defined in Equation (44). We have
now proven that L̃∗(e,D,w,C,C1) given by Equation (44) is a lower bound of L̃(d,D, 1/(1 + w), w, C,C1)
for d ∈ D(X , D, e).

Finally, we compute infβ:ζ<β≤1 g(β) analytically. Since the derivative of g is given by

g′(β) = −
ñ+
e,D

nβ2
+ C1,

and β must be positive, the only stationary point β∗ of g that could satisfy the constraint ζ < β∗ ≤ 1 is given
by

β∗ =

√
ñ+
e,D

C1n
,

and the second derivative test confirms that β∗ is a local minimum of g. It then follows that infβ:ζ<β≤1 g(β)
is given by

inf
β:ζ<β≤1

g(β) =

{
g(β∗) if ζ < β∗ ≤ 1

min(g(ζ), g(1)) otherwise.

12 Additional Rule Lists Demonstrating the Effect of Varying Parameter
Values

In this section, we include some additional rule lists created using Algorithm FRL and Algorithm softFRL
with varying parameter values. The default parameter values we used in creating these rule lists are w = 7,
C = 0.000001, and C1 = 0.5. In each of the following subsections, the rule lists were created with default
parameter values, other than the parameter that was being varied.

12.1 Effect of Varying w on Algorithm FRL

Running Algorithm FRL with w = 1 on the bank-full dataset produces the following falling rule list:



antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 934 495
AND loan=no

ELSE IF poutcome=success THEN success prob. is 0.62 31 19
AND marital=married

ELSE IF poutcome=success THEN success prob. is 0.56 9 7
AND campaign=1

ELSE success prob. is 0.10 4315 39401

Table 2: Falling rule list for bank-full dataset, created using Algorithm FRL with w = 1

Running Algorithm FRL with w = 3 on the bank-full dataset produces the following falling rule list:

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 677 361
AND previous ≥ 2

ELSE IF poutcome=success THEN success prob. is 0.65 185 99
AND campaign=1

ELSE IF poutcome=success THEN success prob. is 0.63 111 65
AND loan=no

ELSE IF poutcome=success THEN success prob. is 0.56 5 4
AND marital=married

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.30 390 919
AND housing=no

ELSE success prob. is 0.09 3921 38474

Table 3: Falling rule list for bank-full dataset, created using Algorithm FRL with w = 3

Running Algorithm FRL with w = 5 on the bank-full dataset produces the following falling rule list:

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030
AND loan=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1539
AND housing=no

ELSE IF previous ≥ 2 THEN success prob. is 0.23 242 796
AND housing=no

ELSE success prob. is 0.08 3139 36026

Table 4: Falling rule list for bank-full dataset, created using Algorithm FRL with w = 5

Running Algorithm FRL with w = 7 on the bank-full dataset produces the following falling rule list:



antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.28 434 1113
AND default=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1539
AND housing=no

ELSE IF previous ≥ 2 THEN success prob. is 0.23 242 794
AND housing=no

ELSE IF campaign=1 THEN success prob. is 0.14 658 4092
AND housing=no

ELSE IF previous ≥ 2 AND THEN success prob. is 0.13 108 707
education=tertiary

ELSE success prob. is 0.07 2365 31146

Table 5: Falling rule list for bank-full dataset, created using Algorithm FRL with w = 7

As the positive class weight w increases, the falling rule list created using Algorithm FRL tends to have
rules whose probability estimates are smaller. This is not surprising – a larger value of w means a smaller
threshold τ = 1/(1 + w), and by including rules whose probability estimates are not much larger than the
threshold, the falling rule list produced by the algorithm will more likely predict positive, thereby reducing
the (weighted) empirical risk of misclassification. Note that Algorithm FRL will never include rules whose
probability estimates are less than the threshold (see Corollary 4.5).

12.2 Effect of Varying w on Algorithm softFRL

Running Algorithm softFRL with w = 1 on the bank-full dataset produces the following softly falling rule list:

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.67 0.67 557 280
AND campaign=1

ELSE IF poutcome=success THEN prob. is 0.65 0.65 263 143
AND marital=married

ELSE IF poutcome=success THEN prob. is 0.61 0.61 154 98
AND loan=no

ELSE prob. is 0.10 0.10 4315 39401

Table 6: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with w = 1

Note that there is an extra column “positive proportion” in a table showing a softly falling rule list. This
column gives the empirical positive proportion of each antecedent in the softly falling rule list. When the
probability estimate of a rule is less than the positive proportion of the antecedent in the same rule, we know
that the softly falling rule list has been transformed from a non-falling compatible rule list, and that the
monotonicity penalty has been incurred in the process of running Algorithm softFRL.

Running Algorithm softFRL with w = 3 on the bank-full dataset produces the following softly falling rule list:



antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 547 289
AND marital=married

ELSE IF poutcome=success THEN prob. is 0.65 0.65 418 225
AND loan=no

ELSE IF poutcome=success THEN prob. is 0.56 0.56 9 7
AND campaign=1

ELSE IF poutcome=success THEN prob. is 0.33 0.33 4 8
AND previous ≥ 2

ELSE IF 60 ≤ age < 100 THEN prob. is 0.30 0.30 390 919
AND housing=no

ELSE IF previous ≥ 2 THEN prob. is 0.15 0.15 281 1559
AND campaign=1

ELSE prob. is 0.09 0.09 3640 36915

Table 7: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with w = 3

Running Algorithm softFRL with w = 5 on the bank-full dataset produces the following softly falling rule list:

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 533
ELSE IF 60 ≤ age < 100 THEN prob. is 0.29 0.29 426 1030

AND loan=no
ELSE IF poutcome=unknown THEN prob. is 0.11 0.11 2380 18659

AND contact=cellular
ELSE prob. is 0.07 0.07 1505 19700

Table 8: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with w = 5

Running Algorithm softFRL with w = 7 on the bank-full dataset produces the following softly falling rule list:

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 533
ELSE IF 60 ≤ age < 100 THEN prob. is 0.28 0.28 435 1120
ELSE IF marital=single THEN prob. is 0.18 0.18 970 4504

AND housing=no
ELSE IF contact=cellular THEN prob. is 0.10 0.10 2255 19970

AND default=no
ELSE prob. is 0.05 0.05 651 13795

Table 9: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with w = 7

As the positive class weight w increases, the softly falling rule list created using Algorithm softFRL also
tends to have rules whose probability estimates are smaller. This is again not surprising – a larger value
of w means a smaller threshold τ = 1/(1 + w), and by including rules whose probability estimates are not
much larger than the threshold, the softly falling rule list produced by the algorithm will more likely predict
positive, thereby reducing the (weighted) empirical risk of misclassification.



12.3 Effect of Varying C on Algorithm FRL

Running Algorithm FRL with C = 0.000001 on the bank-full dataset produces the following falling rule list:

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.28 434 1113
AND default=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1539
AND housing=no

ELSE IF previous ≥ 2 THEN success prob. is 0.23 242 794
AND housing=no

ELSE IF campaign=1 THEN success prob. is 0.14 658 4092
AND housing=no

ELSE IF previous ≥ 2 AND THEN success prob. is 0.13 108 707
education=tertiary

ELSE success prob. is 0.07 2365 31146

Table 10: Falling rule list for bank-full dataset, created using Algorithm FRL with C = 0.000001

Running Algorithm FRL with C = 0.01 on the bank-full dataset produces the following falling rule list:

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030
AND loan=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.20 653 2621
AND contact=cellular

ELSE IF campaign=1 THEN success prob. is 0.15 803 4634
AND housing=no

ELSE success prob. is 0.07 2429 31106

Table 11: Falling rule list for bank-full dataset, created using Algorithm FRL with C = 0.01

Running Algorithm FRL with C = 0.1 on the bank-full dataset produces the following falling rule list:

antecedent probability positive negative
support support

IF housing=no THEN success prob. is 0.20 2883 11799
AND contact=cellular

ELSE success prob. is 0.08 2406 28123

Table 12: Falling rule list for bank-full dataset, created using Algorithm FRL with C = 0.1

As the cost C of adding a rule increases, the size of the falling rule list created by Algorithm FRL decreases,
as expected.



12.4 Effect of Varying C on Algorithm softFRL

Running Algorithm softFRL with C = 0.000001 on the bank-full dataset produces the following softly falling
rule list:

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 533
ELSE IF 60 ≤ age < 100 THEN prob. is 0.28 0.28 435 1120
ELSE IF marital=single THEN prob. is 0.18 0.18 970 4504

AND housing=no
ELSE IF contact=cellular THEN prob. is 0.10 0.10 2255 19970

AND default=no
ELSE prob. is 0.05 0.05 651 13795

Table 13: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C = 0.000001

Running Algorithm softFRL with C = 0.01 on the bank-full dataset produces the following softly falling rule
list:

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 934 495
AND loan=no

ELSE IF housing=no THEN prob. is 0.16 0.16 2245 11535
AND contact=cellular

ELSE IF housing=yes THEN prob. is 0.07 0.07 1677 22591
AND default=no

ELSE prob. is 0.07 0.08 433 5301

Table 14: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C = 0.01

Running Algorithm softFRL with C = 0.1 on the bank-full dataset produces the following softly falling rule
list:

antecedent probability positive positive negative
proportion support support

IF housing=no THEN prob. is 0.20 0.20 2883 11799
AND contact=cellular

ELSE prob. is 0.08 0.08 2406 28123

Table 15: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C = 0.1

As the cost C of adding a rule increases, the size of the softly falling rule list created by Algorithm softFRL
decreases, as expected.

12.5 Effect of Varying C1 on Algorithm softFRL

Running Algorithm softFRL with C1 ∈ {0.005, 0.05, 0.5} on the bank-full dataset produces the softly falling
rule lists shown in Tables 16, 17, and 18.

When the monotonicity penalty C1 is small, the softly falling rule list created by Algorithm softFRL exhibits
the “pulling down” of the empirical positive proportion for a substantial number of rules, because with little
monotonicity penalty the algorithm will more likely choose a rule list that frequently violates monotonicity



antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 533
ELSE IF 60 ≤ age < 100 THEN prob. is 0.30 0.30 599 1177

AND housing=no
ELSE IF marital=single THEN prob. is 0.18 0.18 970 4504

AND housing=no
ELSE IF marital=single THEN prob. is 0.08 0.08 456 4936

AND previous=0
ELSE IF campaign ≥ 3 THEN prob. is 0.06 0.06 323 5294

AND education=secondary
ELSE IF 30 ≤ age < 40 THEN prob. is 0.06 0.08 568 6849

AND previous=0
ELSE IF education=tertiary THEN prob. is 0.06 0.14 361 2237

AND housing=no
ELSE IF loan=yes THEN prob. is 0.05 0.05 106 1972

AND previous=0
ELSE IF education=secondary THEN prob. is 0.05 0.09 595 5779

AND default=no
ELSE IF campaign=1 THEN prob. is 0.05 0.08 233 2564
ELSE IF housing=no THEN prob. is 0.05 0.05 68 1176

AND previous=0
ELSE IF job=management THEN prob. is 0.05 0.10 75 693

AND contact=cellular
ELSE IF job=technician THEN prob. is 0.05 0.07 10 143

AND poutcome=unknown
ELSE IF marital=married THEN prob. is 0.05 0.06 110 1841
ELSE IF campaign ≥ 3 THEN prob. is 0.05 0.06 16 238

AND housing=yes
ELSE IF marital=single THEN prob. is 0.05 0.13 13 91

AND housing=yes
ELSE IF housing=yes THEN prob. is 0.05 0.10 8 69

AND contact=cellular
ELSE IF job=blue-collar THEN prob. is 0.05 0.16 4 21

AND loan=no
ELSE prob. is 0.05 0.07 5 63

Table 16: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C1 = 0.005



antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 531
AND default=no

ELSE IF housing=yes THEN prob. is 0.07 0.07 1686 22974
ELSE IF 50 ≤ age < 60 THEN prob. is 0.07 0.09 367 3806

AND poutcome=unknown
ELSE IF contact=cellular THEN prob. is 0.07 0.18 1927 8961

AND default=no
ELSE IF campaign=1 THEN prob. is 0.07 0.08 126 1374

AND poutcome=unknown
ELSE IF campaign ≥ 3 THEN prob. is 0.07 0.08 93 1110

AND loan=no
ELSE IF campaign=2 THEN prob. is 0.07 0.09 18 192

AND education=tertiary
ELSE IF loan=no THEN prob. is 0.07 0.10 72 648
ELSE prob. is 0.06 0.06 22 326

Table 17: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C1 = 0.05

antecedent probability positive positive negative
proportion support support

IF poutcome=success THEN prob. is 0.65 0.65 978 533
ELSE IF 60 ≤ age < 100 THEN prob. is 0.28 0.28 435 1120
ELSE IF marital=single THEN prob. is 0.18 0.18 970 4504

AND housing=no
ELSE IF contact=cellular THEN prob. is 0.10 0.10 2255 19970

AND default=no
ELSE prob. is 0.05 0.05 651 13795

Table 18: Softly falling rule list for bank-full dataset, created using Algorithm softFRL with C1 = 0.5

but that has a small empirical risk on the training set, in the hope of getting more of the training instances
“right”. This is also why the softly falling rule list tends to be longer when C1 is small: in minimizing the
empirical risk on the training set with little regularization (the default C = 0.000001 is very small), the
algorithm tends to overfit the training data.

When C1 becomes larger, the softly falling rule list created by Algorithm softFRL exhibits less “pulling down”
of the empirical positive proportion. This is consistent with our expectation that when C1 is larger, the
penalty for violating monotonicity is higher and the algorithm will less likely choose a rule list that frequently
violates monotonicity.

13 Additional Experiments Comparing Algorithm FRL and Algorithm
softFRL to Other Classification Algorithms

Figure 3 shows the ROC curves on the test set using different values of w, for four additional training-test
splits. As we can see, the curves in Figure 3 lie close to each other, again demonstrating the effectiveness of
our algorithms in producing falling rule lists that, when used as classifiers, are comparable with classifiers
produced by other widely used classification algorithms, in a cost-sensitive setting.



(a) ROC curves on the test set using different w values
for the first additional training-test split

(b) ROC curves on the test set using different w values
for the second additional training-test split

(c) ROC curves on the test set using different w values
for the third additional training-test split

(d) ROC curves on the test set using different w values
for the fourth additional training-test split

Figure 3: ROC curves on the test set using different w values for four additional training-test splits

14 Additional Experiments Comparing Bayesian Approach to Our
Optimization Approach

We conducted a set of experiments comparing the Bayesian approach to our optimization approach. We
trained falling rule lists on the entire bank-full dataset using both the Bayesian approach and our optimization
approach (Algorithm FRL), and plotted the weighted training loss over real runtime. In particular, for
each positive class weight w ∈ {1, 3, 5, 7}, we set the threshold to 1/(1 + w) (By Theorem 2.8, this is the
threshold with the least weighted training loss for any given rule list), and computed the weighted training
loss using this threshold. For the Bayesian approach, we recorded the runtime and computed the weighted
training loss for every 100 iterations of Markov chain Monte-Carlo sampling with simulated annealing, up
to 6000 iterations. For our optimization approach, we ran Algorithm FRL for 3000 iterations and recorded
the runtime and the weighted training loss whenever the algorithm finds a falling rule list with a smaller
(regularized) weighted training loss. Since we want to focus our experiments on the efficiency of searching the
model space, the runtimes recorded do not include the time for mining the antecedents. Due to the random
nature of both approaches, the experiments were repeated several times.

Figures 4 to 7 show the plots of the weighted training loss over real runtime for the Bayesian approach and
our optimization approach (Algorithm FRL), for four additional runs of the same algorithms. Due to the
random nature of both approaches, it is sometimes possible that our approach (Algorithm FRL) may find
in 3000 iterations a falling rule list with a slightly larger weighted training loss, compared to the Bayesian



approach with 6000 iterations (see Figure 6d). However, in general, our approach tends to find a falling rule
list with a smaller weighted training loss faster, due to aggressive pruning of the search space.

(a) positive class weight w = 1 (b) positive class weight w = 3

(c) positive class weight w = 5 (d) positive class weight w = 7

Figure 4: Plots of the weighted training loss over real runtime for the Bayesian approach and our optimization
approach (Algorithm FRL): first additional run

It is worth pointing out that both the Bayesian approach and our optimization approach produce similar
falling rule lists. Table 19 shows a falling rule list for the bank-full dataset, obtained in a particular run of
the Bayesian approach with 6000 iterations. Table 20 shows a falling rule list for the same dataset, obtained
in a particular run of Algorithm FRL with 3000 iterations and the positive class weight w = 7. As we can
see, the top four rules in both falling rule lists are identical. Tables 21 and 22 show another pair of falling
rule lists obtained using both approaches in different runs, and in this case, both approaches have identified
some common rules for a high chance of marketing success. This means that both the Bayesian approach and
our optimization approach tend to identify similar conditions that are significant, but our approach has the
added advantage of faster training convergence over the Bayesian approach in general.



(a) positive class weight w = 1 (b) positive class weight w = 3

(c) positive class weight w = 5 (d) positive class weight w = 7

Figure 5: Plots of the weighted training loss over real runtime for the Bayesian approach and our optimization
approach (Algorithm FRL): second additional run

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030
AND loan=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1539
AND housing=no

ELSE IF campaign=1 THEN success prob. is 0.15 787 4471
AND housing=no

ELSE IF education=tertiary THEN success prob. is 0.12 460 3313
AND housing=no

ELSE IF marital=single THEN success prob. is 0.11 550 4331
AND contact=cellular

ELSE IF contact=cellular THEN success prob. is 0.08 1080 12709
ELSE success prob. is 0.04 504 11998

Table 19: Falling rule list for bank-full dataset, trained using the Bayesian approach with 6000 iterations.



(a) positive class weight w = 1 (b) positive class weight w = 3

(c) positive class weight w = 5 (d) positive class weight w = 7

Figure 6: Plots of the weighted training loss over real runtime for the Bayesian approach and our optimization
approach (Algorithm FRL): third additional run

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.65 978 531
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030
AND loan=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1539
AND housing=no

ELSE IF campaign=1 THEN success prob. is 0.15 787 4471
AND housing=no

ELSE success prob. is 0.07 2594 32351

Table 20: Falling rule list for bank-full dataset, trained using the optimization approach (Algorithm FRL)
with 3000 iterations and the positive class weight w = 7.



(a) positive class weight w = 1 (b) positive class weight w = 3

(c) positive class weight w = 5 (d) positive class weight w = 7

Figure 7: Plots of the weighted training loss over real runtime for the Bayesian approach and our optimization
approach (Algorithm FRL): fourth additional run



antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.70 729 311
AND housing=no

ELSE IF poutcome=success THEN success prob. is 0.53 249 222
ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030

AND loan=no
ELSE IF 17 ≤ age < 30 THEN success prob. is 0.25 504 1538

AND housing=no
ELSE IF education=tertiary THEN success prob. is 0.14 790 4750

AND housing=no
ELSE IF marital=single THEN success prob. is 0.12 648 4754

AND contact=cellular
ELSE IF 1000 ≤ balance < 2000 THEN success prob. is 0.11 135 1061

AND housing=no
ELSE IF campaign=1 THEN success prob. is 0.10 571 4904

AND contact=cellular
ELSE IF contact=cellular THEN success prob. is 0.08 587 6800

AND loan=no
ELSE success prob. is 0.04 650 14552

Table 21: Falling rule list for bank-full dataset, trained using the Bayesian approach with 6000 iterations.

antecedent probability positive negative
support support

IF poutcome=success THEN success prob. is 0.70 729 311
AND housing=no

ELSE IF poutcome=success THEN success prob. is 0.55 185 154
AND previous ≥ 2

ELSE IF poutcome=success THEN success prob. is 0.48 64 68
AND default=no

ELSE IF 60 ≤ age < 100 THEN success prob. is 0.29 426 1030
AND loan=no

ELSE IF previous ≥ 2 THEN success prob. is 0.25 302 921
AND housing=no

ELSE IF 17 ≤ age < 30 THEN success prob. is 0.24 444 1413
AND housing=no

ELSE IF education=tertiary THEN success prob. is 0.13 671 4435
AND housing=no

ELSE success prob. is 0.07 2468 31590

Table 22: Falling rule list for bank-full dataset, trained using the optimization approach (Algorithm FRL)
with 3000 iterations and the positive class weight w = 7.


	Algorithm FRL
	Algorithm softFRL
	Proofs of Theorem 2.8, Proposition 4.2, Lemma 4.4, Corollary 4.5, and Theorem 4.6
	Proof of Theorem 5.2
	Additional Rule Lists Demonstrating the Effect of Varying Parameter Values
	Effect of Varying w on Algorithm FRL
	Effect of Varying w on Algorithm softFRL
	Effect of Varying C on Algorithm FRL
	Effect of Varying C on Algorithm softFRL
	Effect of Varying C1 on Algorithm softFRL

	Additional Experiments Comparing Algorithm FRL and Algorithm softFRL to Other Classification Algorithms
	Additional Experiments Comparing Bayesian Approach to Our Optimization Approach

