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Abstract

Crowdclustering is a practical way to incor-
porate domain knowledge into clustering, by
combining opinions from multiple domain ex-
perts. Existing crowdclustering methods an-
alyze binary pairwise similarity labels. How-
ever, in some applications, experts might pro-
vide partition labels. If we convert partition
labels into pairwise similarity, then it would
be difficult to understand the relationships
between clustering solutions from different
experts. In this paper, we propose a crowd-
clustering model that directly analyzes par-
tition labels. The proposed model adopts a
novel approach based on a modified multino-
mial logistic regression model, which simul-
taneously learns the number of clusters and
determines hyper-planes that partition sam-
ples into clusters. The proposed model also
learns a mapping between the latent clusters
and expert labels, revealing the agreements
and disagreements between experts. Experi-
ments on benchmark data demonstrate that
the proposed model simultaneously learns the
number of clusters and discovers the cluster-
ing structure. An experiment on disease sub-
typing problem illustrates that the proposed
model helps us understand the agreement and
disagreement between experts.

1 Introduction

Clustering is a task of grouping objects into several
categories, such that objects in the same category are
similar; while objects from different categories are dis-
similar. Because high-dimensional data is usually richly

Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

structured, there might exist multiple meaningful clus-
tering solutions for the same data set[1, 2]. However,
domain experts are oftentimes only interested in one
particular solution for a specific purpose. Therefore,
allowing domain experts to provide knowledge under
semi-supervised settings is helpful in clustering tasks [3–
5].

Due to the exploratory nature of clustering tasks, do-
main experts might not completely agree with each
other. Therefore, one practical way to incorporate
expert knowledge is to collect opinions from multiple
experts and combine these opinions into a consensus
clustering solution. Methods that find such consensus
is known as crowdclustering [6–10].

Although crowdclustering methods have succeeded in
practice; as far as we know, all existing methods analyze
binary pairwise similarity labels, indicating whether a
pair of samples are similar and should belong to the
same cluster or not. But in some applications, domain
experts directly give partition labels. Although it is
straightforward to convert partition labels into pairwise
similarity labels, using pairwise similarity labels might
be less favoured; because in exploratory discovery tasks,
we are usually not only interested in finding consensus
that summarizes all expert opinions, we also want to
understand the agreement and disagreement between
experts, and how the consensus clusters learned are
related to the observed expert labels. If we convert par-
tition labels into pairwise similarity, it is more difficult
to recover this information.

In this paper, we propose a probabilistic clustering
model to overcome the limitations of existing methods.
Unlike existing crowdclustering models, the proposed
model directly makes use of partition labels rather than
pairwise similarity. In the proposed model, we devel-
oped a novel approach based on a modified multinomial
logistic regression model to generate the latent cluster
memberships given observed features. This approach si-
multaneously determines the number of clusters, based
on a “rich get richer” fashion; and partitions samples
into clusters with hyper-planes. The proposed model
also learns the mapping between the latent clusters
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Figure 1: The problem setup.

and expert labels, with a variant of Bayesian Classifier
Combination (BCC) model, revealing the agreement
and disagreement between experts.

We illustrate the problem setup in Figure 1. Given the
features for samples and partition labels from 3 experts,
the proposed model automatically discovers that there
are 4 latent clusters and finds the hyper-planes that
define these clusters. It also learns the relationships
between the discovered clusters and each expert label,
as described in the table.

1.1 Related Work

Several crowdclustering methods have been proposed
in recent years. [6] and [7] analyze pairwise similar-
ity labels given by the experts without accessing the
features of the samples. [8–10] make use of both the
pairwise similarity labels and the sample features to
generate a clustering solution. Unlike these methods
that analyze the pairwise similarity labels, the proposed
method directly analyzes the partition labels. Since
the proposed method learns a mapping between the
clusters and the expert labels, it reveals the agreement
and disagreement between experts.

Clustering ensemble [11–18] is also closely related to
this topic, since it involves generating a consensus clus-
tering result from several clustering solutions. Unlike
crowdclustering methods, where clustering solutions
are provided by domain experts, clustering ensemble
methods analyze the clustering solutions generated by
basic clustering models such as k-means. Although
clustering ensemble techniques can also be used to gen-
erate consensus results based on the expert labels; these
methods have difficulties in out-of-sample prediction,
because the expert labels are oftentimes not available
for test samples. The proposed method learns a linear
discriminative model and can be used to predict test
samples based on the observed features.

1.2 Contributions

The contributions of this paper are summarized as
follows:

1. The proposed model makes use of partition labels
rather than pairwise similarity labels. This al-
lows us to better understand the relations between
labels from different experts.

2. We developed a novel approach to generate latent
clusters given the observed features. This approach
simultaneously determines the number of clusters
and partitions samples into clusters.

3. We test the proposed method on both benchmark
data sets and a real-world data set to demonstrate
its effectiveness and usefulness.

2 Method

In this section we introduce the proposed model. We
first introduce some notations used in this paper in Sec-
tion 2.1. Then, we introduce the modified multinomial
logistic regression model in Section 2.2. This model si-
multaneously determines the number of clusters, based
on a “rich get richer” fashion; and partitions samples
into clusters with hyper-planes. We explain the detail
about the “rich get richer” property in Section 2.3. In
Section 2.4, we introduce how we generate the expert
labels, based on a variant of Bayesian Classifier Combi-
nation (BCC) model. The overall model is summarized
in Section 2.5.

2.1 Notations

We start by introducing some notations. We assume
that the data set contains N samples with D features.
We let φn ∈ RD+1 be a (D+1)-dimensional vector asso-
ciated with each sample n ∈ {1 . . . N}, where the first
D dimensions in this vector are the observed features
for the n-th sample, and the (D + 1)-th dimension is a
constant 1. We will train a linear model with φn and
the corresponding weight parameter for the (D + 1)th
dimension plays a role of the bias term. We denote
features for all samples as Φ = {φn}Nn=1.

We assume that labels are provided by M experts.

We let y
(m)
n ∈ {1 . . . Jm} with m ∈ {1 . . .M} be the

labels given by the m-th expert for the n-th sample,
where Jm represents the number of clusters the m-th
expert chooses to partition the data set. Note that Jm
might differ across m ∈ {1 . . .M}, since experts might
choose to partition the data set into different number of

clusters. We let Y = {{y(m)
n }Nn=1}Mm=1 represent labels

from all experts.

2.2 Modified Multinomial Logistic
Regression

Now we introduce how we generate the latent cluster
indicators, such that we simultaneously determine the
number of clusters and partition samples into clusters.

The number of clusters is usually a predefined parame-
ter for clustering algorithms, including several crowd-
clustering methods [7–10]. This number might not be
easy to determine for crowdclustering, especially when
experts partition data into different number of clusters.
One possible way to automatically determine this num-
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ber is to apply Dirichlet Process (DP) [19, 20] as a prior
for the cluster indicators in a generative model. How-
ever, a generative model requires strong assumptions
about the distribution of the observed samples, but
these assumptions are usually inaccurate in practice.
Therefore, we decide to develop a discriminative model.

It is not straightforward to incorporate DP in a discrim-
inative model. Therefore, we develop a novel approach,
based on a modified multinomial logistic regression
model, to automatically learn the number of clusters.
This approach is inspired from the “rich get richer”
fashion adopted by DP, such that big clusters that
already have many members are more likely to be as-
signed more new members. To achieve this, we define
zn ∈ {1 . . .K} to be the cluster indicator for the n-th
sample, where K is a predefined integer parameter that
represents the maximum possible number of clusters.
We let K have a large value such that K = 50 in the
experiment, i.e., samples can potentially be partitioned
into up to 50 clusters. Because of the “rich get richer”
property as we describe in details in Section 2.3, only
a few clusters will remain non-empty after we train the
model.

We let zn follow a categorical distribution such that

zn|W,Φ ∼ Categorical(πn). (1)

In this equation, πn is a K dimensional non-negative
vector, such that

∑K
k=1 πnk = 1. πnk gives the proba-

bility that the n-th sample belongs to cluster k, which
is defined as

πnk =
exp(wT

k φn + λwT
k wk)∑K

i=1 exp(wT
i φn + λwT

i wi)
(2)

where wk ∈ RD+1 with k ∈ {1 . . .K} is a (D + 1)-
dimensional vector, each element of which represents
the weight for each feature in φn and λ is a predefined
non-negative parameter. In equation (1), we use W to
denote all the weight vectors {wk}Kk=1.

We assign a Gaussian prior for each wk such that

wk ∼ N (0, σ2I), (3)

where σ2 is the variance parameter.

Note that if we let λ = 0, then the model becomes
the regular logistic regression. We modified logistic
regression by introducing an additional λwT

k wk term
with λ > 0, such that the model exhibits the “rich-get-
richer” property as described in Section 2.3.

2.3 The “Rich-Get-Richer” Property

We determine the number of clusters via the “rich-get-
richer” property, i.e., big clusters that already have
many members are more likely to be assigned more
new members; because we modified the loss function of
the logistic regression model as shown in Equation (2).

Equation (2) indicates that given the same prediction
performance of the linear model (determined by wT

k φn),

a sample is more likely to be assigned to a cluster with
larger wT

k wk. Note that λwT
k wk is not a function of the

features φn; and serves as an additional non-negative
bias term.

Now if we apply the Expectation Maximization
(EM) [21] to learn the maximum a posteriori probability
(MAP) estimator for W, then the derived maximization
step that updates W is given as

Ŵ = arg max
W

−
K∑
k=1

(
1

2σ2
− λ

N∑
n=1

E[1(zn = k)]

)
wT
k wk

+

K∑
k=1

N∑
n=1

E[1(zn = k)]wT
k φn −

N∑
n=1

log

K∑
i=1

exp

(
wT
i φn + λwT

i wi

)
.

(4)

where E represents an expected value is taken with
respect to the posterior distribution of zn. 1(zn = k)
is an indicator function that returns 1, only if zn = k;
and returns 0, otherwise. Note that

∑N
n=1 E[1(zn = k)]

represents the expected number of samples assigned to
cluster k. By observing the first term in Equation (4),
we conclude that for the cluster k that contains more
members, the model penalizes less with respect to
wT
k wk. Therefore, if a cluster k has more members, it

tends to have a larger wT
k wk value.

From Equation (4), we see that big clusters with more
members tend to have larger wT

k wk. As shown in
Equation (2), samples are more likely to be assigned to
clusters with larger wT

k wk. Therefore, in the EM iter-
ations, large clusters that already have many members
are more likely to be assigned more new members. This
exhibits the “rich get richer” property. This property
allows us to initialize the model with a large number of
clusters (50 in our experiments). Similar to the updates
in variational inference of Dirichlet process [20], only a
few clusters remain non-empty when the optimization
converges. The number of these non-empty clusters is
the number of clusters that is automatically determined
by the model.

In Equation (2), λ is a parameter that controls the
trade off between prediction accuracy and cluster size.
Larger λ makes Equation (2) depend more on the clus-
ter size (represented by wT

k wk), but less on prediction
accuracy (represented by wT

k φn) . In the experiments,
we choose λ = 1/(2Nσ2) to ensure that the coeffi-
cients for wT

k wk in Equation (4) are non-positive and
introduce l2 regularization for the optimization.

2.4 Generating Expert Labels

Now, we introduce how we model the expert labels
Y given Z, by learning a mapping from Z to Y, with
a variant of Bayesian Classifier Combination (BCC)
model [17, 18].

Unlike the traditional BCC model that learns confusion
matrices that describe the mapping between the clus-
ters and expert labels, we model such relationship by
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assigning the cluster to the expert labels. This allows
us to better understand the relationship between the
cluster and the expert labels, as illustrated in the table

shown in Figure 1. We let t
(m)
k ∈ {1 . . . Jm} indicate

which label the cluster k is assigned to for expert m,

such that t
(m)
k = j implies that cluster k is assigned to

the j-th label given by expert m. We assign a uniform

prior for t
(m)
k , such that

t
(m)
k ∼ Categorical

([
1

Jm
, . . . ,

1

Jm

])
, (5)

Note that for each expert m, each cluster k is assigned
to exactly one label j, but this label j might be associ-
ated with multiple clusters, as illustrated in the table of
Figure 1. This differs from traditional BCC model that
describes such relationships with confusion matrices,
and it would be difficult to interpret the relationships.

After assigning the cluster to the labels, we want to
make sure that expert labels can be accurately pre-
dicted with the observed cluster indicator zn. For
example, if cluster k is assigned to label j for expert m

and sample n belongs to cluster k, such that t
(m)
k = j

and zn = k, then it should be very likely that expert
m gives the label j for the n-th sample, i.e., the proba-

bility that y
(m)
n = j is high. Therefore, if we define a

non-negative Jm-dimensional vector η(mj) with each

element
∑Jm
l=1 η

(mj)
l = 1, to represent the conditional

probability

η
(mj)
l

def
= p

(
y(m)
n = l|zn = k and t

(m)
k = j

)
, (6)

then it must be true that
η
(mj)
j � η

(mj)
l , for all l 6= j. (7)

Note that Equation (6) is equivalent to letting y
(m)
n

follow a mixture of categorical distribution such that

y
(m)
n |zn,T ∼

∏K
k=1

∏Jm
j=1

{
Categorical

(
η(mj)

)}1(t
(m)
k

=j)1(zn=k)

.

(8)
We enforce Condition (7) by assigning a Dirichlet dis-
tribution prior for η(mj), such that

η(mj) ∼ Dirichlet
(
Ψ(m)

)
, (9)

where Ψ(m) = {Ψ(m)
l }Jml=1 is a Jm-elemental vector,

each of whose elements defined as

Ψ
(m)
l =

{
α, if l = j

β, if l 6= j.
(10)

α and β are concentration parameters for the Dirich-
let distribution. In order to make Condition (7) be
satisfied, we chose α� β.

In the experiments, we choose α = 40(J (m) − 1)
and β = 10. With these chosen parameters, we
are able to estimate the expected value for each el-

ement of η(mj), which is given by E[η
(mj)
j ] = 0.8

and E[η
(mj)
l ] = 0.2/(Jm − 1) for all l 6= j, satisfy-

ing E[η
(mj)
j ] � E[η

(mj)
l ]. We want to emphasize that

these are the expected values of the prior distribution;
and the posterior distribution for η is learned through
training.

φn zn y
(m)
n t

(m)
k

η(mj)wk

α

β

σ2
λ

N

K

K
M

Jm

Figure 2: The graphical model.

2.5 Overall Model

We have described the proposed discriminative proba-
bility model. The joint distribution conditioned on the
observed features Φ is given by

p(Y,W,Z,T,η|Φ) =
K∏
k=1

p(wk|σ2)
M∏
m=1

Jm∏
j=1

p
(
η(mj)|α, β

)
M∏
m=1

K∏
k=1

p
(
t
(m)
k

) N∏
n=1

p (zn|W,φn)
M∏
m=1

N∏
n=1

p
(
y(m)
n |zn,η,T

)
.

(11)
The proposed model is summarized using a graphical
model in Figure 2.

3 Maximum a Posteriori Probability

In Section 2, we have presented our model. In this
section, we introduce how we train the model. In
this paper, we learn the maximum a posteriori prob-
ability (MAP) estimator for W through Expectation
Maximization (EM) [21]. In the expectation step,
we first compute the expected value of the logarithm
of the joint distribution (i.e., the logarithm of Equa-
tion (11)) with respect to the posterior distribution

p(Z,T,η|Φ,Y,Ŵ), where Ŵ is the current estimate
of W. Then, in the maximization step, we update the
estimate of W to maximize this expected value, i.e.,

Ŵ = arg max
W

E[log p(Y,W,Z,T,η|Φ)] (12)

We have already derived the objective function of the
maximization step in Equation (4). We obtain the

optimal Ŵ using conjugate gradient method [22].

We have derived the maximization step. However, we
have a problem in the expectation step, because the

posterior distribution p(Z,T,η|Φ,Y,Ŵ) is computa-
tionally intractable. Therefore, we use a variational
distribution q(Z,T,η) to approximate it such that

q(Z,T,η) ≈ p(Z,T,η|Φ,Y,Ŵ). (13)

To ensure q(Z,T,η) is tractable, we apply mean-field
approximation such that

q(Z,T,η) =
∏N
n=1 q(zn)

∏M
m=1

∏K
k=1 q

(
t
(m)
k

)∏M
m=1

∏Jm
j=1 q

(
η(mj)

)
.

(14)
In the inference, we derive an optimal variational distri-
bution that minimizes the KL divergence between the
variational distribution and the posterior distribution.
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As described in [23], it is straightforward to derive the
updates for the variational distribution by applying
variational calculus. We omit the details of derivation,
and list the update equations as follows:

q(zn) ∼ Categorical(ρn) (15)

where ρn is a k-dimensional vector, each element of
which is given by

ρnk ∝ exp

{ M∑
m=1

Jk∑
j=1

Eq[1(t
(m)
k = j)]

Jk∑
l=1

1(y(m)
n = l)Eq[log η

(mj)
l ]

+ ŵT
k φn + λwŵT

k ŵk − log
K∑
i=1

exp

(
ŵT
i φn + λwŵT

i ŵi

)}
.

(16)

ρn is normalized such that
∑K
k=1 ρnk = 1.

q
(
t
(m)
k

)
∼ Categorical

(
ζ(mk)

)
, (17)

where ζ(mk) is a Jm dimensional vector, each element
of which is given by

ζ
(mk)
j ∝ exp

{∑N
n=1 Eq[1(zn = k)]

∑Jm
l=1 1(y

(m)
n = l)Eq[log η

(mj)
l ]

}
, (18)

ζ(mk) is normalized such that
∑Jm
j=1 ζ

(mk)
j = 1.

q
(
η(mj)

)
∼ Dirichlet(αη(mj)), (19)

where αη(mj) is a Jm dimensional vector defined as

α
η

(mj)
l

=


α+

N∑
n=1

K∑
k=1

Jk∑
j=1

Eq[1(zn = k)]Eq[1(t
(m)
k = j)]1(y(m)

n = l), if l = j

β +
N∑
n=1

K∑
k=1

Jk∑
j=1

Eq[1(zn = k)]Eq[1(t
(m)
k = j)]1(y(m)

n = l), if l 6= j.

(20)

In the update equations, Eq represents that the ex-
pected value is taken with respect to the variational
distribution q. The expected values involved are given
as follows:

Eq[1(zn = k)] = ρnk, (21)

Eq[1(t
(m)
k ) = j] = ζ

(mk)
j , (22)

Eq[log η
(mj)
l ] = ψ

(
α
η
(mj)
l

)
− ψ

(∑Jm
i=1 αη(mj)

i

)
, (23)

where ψ is the digamma function, i.e. the logarithmic
derivative of the gamma function.

We summarize the training process in Algorithm 1.

4 Experiments

In this section, we first present the experimental results
on benchmark data. We demonstrate that the proposed
method is able to learn the number of clusters and
reveal the clustering structure by applying the method
on benchmark data. Then we further illustrate the
usefulness of the method with a real-world application.

4.1 Benchmark Data

We test the proposed method with 5 UCI data sets[24]:
iris data set that collects 150 samples with 4 features
from 3 different iris plants; seeds data set contains

Algorithm 1 Variational Expectation Maximization

repeat
for n← 1 to N do

update q(zn) according to Equation (15).
end for
for m← 1 to M do

for k ← 1 to K do
update q(t

(m)
k ) according to Equation (17).

end for
end for
for m← 1 to M do

for j ← 1 to Jm do
update q(η(mj)) according to Equation (19).

end for
end for
Update Ŵ based on the Equation (4) using conjugate
gradient method.

until Ŵ converges

210 samples described by 7 geometric parameters of
kernels belonging to 3 varieties of wheats; breast data
set contains the impedance measurements of 106 breast
tissue samples from 6 classes; glass data set contains
the 10 oxide content features of 214 glass samples from
6 types; steel data set contains 27 features of 1, 941
samples of steel plates faults from 7 types. We also
test on 3 face recognition data sets: Yale data set
contains 165 face images of 32 × 32 pixels from 15
persons; warpAR10P data set contains 130 face images
of 40 × 60 pixels from 10 persons; warpPIE10P data
set contains 210 face images of 44× 55 pixels from 10
persons.

For benchmark data, we only have access to the ground-
truth cluster labels, but multi-expert labels are not
available. Therefore, we generate labels for 10 syn-
thetic experts, based on the ground-truth labels. For
each expert, we first randomly partition the ground-
truth cluster labels into 3 sets. For samples whose
labels are in each of the 3 sets, we assume the expert
gives positive labels, negative labels and decides to not
provide a label, respectively. This simulates the situ-
ation that each expert is interested in one particular
binary classification task related to the ground-truth
clusters. The expert might be uncertain what label
should be given for samples from certain ground-truth
clusters, and decides to not provide a label. We ran-
domly flip 10% of the labels to simulate the error of
expert labels. We generate binary expert labels only,
such that the ground-truth number of clusters is not
obvious by observing the number of clusters from each
expert.

In the experiments, we vary the percentage of the labels
observed from each expert from 10% to 100%. To
achieve this, we randomly pick a subset of labels from
each expert independently. We conduct 5-fold cross
validation, and measure the performance by comparing
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Normalized Mutual Information (NMI) [11] between
the learned cluster indicators and the ground-truth
labels in both training and validation sets. NMI is the
normalized version of mutual information such that
it has a value between 0 and 1, where a larger value
indicates a better performance.

Competing Methods
We compare the proposed methods with the following
methods:

K-Means-Based Consensus Clustering (KCC) [15] is a
cluster ensemble method that learns a median consen-
sus clustering solution such that the similarity between
consensus result and all given clustering solutions is
maximized. This method uses partition expert labels
only, without accessing the features. It can not di-
rectly predict out-of-bag validation samples. Therefore,
we train a multinomial logistic regression using the
features and learned cluster labels in the training set.
Then, we predict the cluster assignment in the valida-
tion set using the trained logistic regression model. We
denote this method using KCC+LR.

Metric Pairwise Constrained KMeans
(MPCKMeans)[25] is a semi-supervised learning
algorithm that combines constrained clustering and
metric learning. We generate pairwise must link and
cannot link between two samples, if 80% of synthetic
experts agree that they should be in the same cluster
and in different clusters, respectively. Since we include
some high-dimensional data, we apply a scalable
version that learns diagonal covariance matrices,
ignoring the covariance between features.

Semi-crowdsourced Clustering (SemiCrowd)[8] is a
crowd clustering method that first completes the simi-
larity matrix via convex optimization and then learns
a distance metric that makes use of observed features.
It is not straightforward to predict out-of-bag samples
with this model, and the matrix-completion optimiza-
tion is not scalable. We are not able to apply this
method to data sets with more than 500 samples.

Multi-Expert Constrained Clustering (MECC) [9] is a
crowd clustering method that fit a multinomial logistic
regression model to generate a clustering result that
best predicts the observed pairwise similarity labels.

In addition, we apply k-means [26] as a baseline, which
makes use of observed features only, without using
the expert labels. We also include Dirichlet Process
Gaussian Mixture Model (DPGMM) [19] because it
automatically learns the number of clusters.

Experimental Results
We report NMI in training and validation sets in Fig-
ure 3. We observe from this figure that the proposed

method is one of the best performers in terms of NMI
in both training and validation set. Note that all other
methods, except for DPGMM, are provided with the
ground-truth number of clusters as a given parameter.
The proposed method is at a disadvantage, because it
automatically learns the number of clusters, and thus
is provided with less ground-truth information.

KCC performs badly when less labels are observed in
the training data, because it only makes use of the
observed expert labels without accessing the features.
The proposed method is able to combine expert labels
with observed features, which makes it perform bet-
ter when less expert labels are given. In the training
set of seeds and steel, KCC gives a higher NMI than
the proposed method when more labels are observed.
However, in the validation sets, KCC+LR does not
outperform the proposed method. This suggests that
when features are noisy, expert labels might be more
trustworthy. The proposed method might be negatively
influenced by the noisy features in the training results.
However, because of the noisy features, KCC+LR does
not generalized better in the validation set.

We can also observed in the figure that the pairwise sim-
ilarity based methods, including MPCKMeans, semi-
crowd and MECC, usually perform worse. Note that
in the experiments we convert the partition labels into
pairwise similarity labels. This results in dense pairwise
similarity matrices. These methods might not perform
well on dense similarity matrices.

As mentioned previously, the proposed method is able
to automatically determine the number of clusters. We
summarize the mean and standard deviation of the
number of clusters discovered by the proposed method
for different tasks in Table 1. We also report the
results of DPGMM for comparison. It can be concluded
from the table that the proposed method is able to
recover the number of clusters pretty accurately in
most of the data sets. We also observed that, the
proposed method overestimates the numbers of clusters
for steel and warpPIE10P data set, probably because
the features in these data sets are more noisy. Note
that as shown in Figure 3, the proposed method still
performs comparably with other methods on these two
tasks in terms of NMI. DPGMM does not make use of
the expert-label information, and performs worse. In
steel, Yale and warpPIE10P data sets, DPGMM fails
probably because each cluster in these data sets does
not follow a Gaussian distribution.

4.2 COPD Application

The proposed method is developed to solve a real-world
crowd-clustering problem, the Chronic Obstructive Pul-
monary Disease (COPD) subtyping problem. COPD
is a common lung disease related to cigarette smok-
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(a) Training set for iris (b) Validation set for iris (c) Training sets for seeds (d) Validation sets for seeds

(e) Training sets for breast (f) Validation sets for breast (g) Training sets for glass (h) Validation sets for glass

(i) Training sets for steel (j) Validation sets for steel (k) Training sets for Yale (l) Validation sets for Yale

(m) Training sets for
warpAR10P

(n) Validation sets for
warpAR10P

(o) Training sets for warp-
PIE10P

s

(p) Validation sets for warp-
PIE10P

Figure 3: Normalized Mutual Information (NMI) in training and validation sets.

Table 1: Number of Clusters Discovered

data sets Gound Truth DPGMM
Proposed method with different precentage of labels observed

10% 30% 50% 70% 90% 100%
iris 3 3.4 (0.4) 3.0 (0.0) 3.0 (0.0) 3.2 (0.4) 3.4(0.5) 3.2 (0.4) 3.2 (0.4)

seeds 3 5.8 (0.4) 3.0 (0.0) 3.6 (0.5 3.8 (0.4) 4.4(0.5) 4.4 (0.5) 4.6 (0.5)
breast 6 10.6(1.7) 3.8 (0.4) 4.8 (0.4) 4.8 (0.4) 5.4 (0.8) 5.8 (0.4) 5.8 (0.4)
glass 6 16.8 (1.5) 4.6 (0.5) 7.0 (0.6) 6.4(1.5) 8.4 (0.8) 8 (0.8) 8.4 (0.8)
steel 7 1.8(1.9) 23.2 (2.8) 28.4(3.8) 31.0 (1.1) 31.4 (1.5) 30.4 (1.4) 30.0(2.8)
Yale 15 1.8 (0.4) 16.4(1.6) 14.6 (1.5) 13.2 (2.6) 14.6 (1.9) 16.4 (2.1) 15.8 (1.2)

warpAR10P 10 21.4 (11.1) 11.0 (1.9) 11.8 (2.8) 11.8 (1.7) 14.8(1.9) 13.2 (1.2) 14.2 (1.6)
warpPIE10P 10 1.2 (0.4) 20.2 (1.3) 17.2 (2.9) 14.8 (1.7) 16.4 (1.6) 16.0 (2.3) 19.4 (1.7)

ing. It is characterized by chronic, progressive, and
irreversible lung airflow obstruction. It is predicted to
be the third leading cause of death worldwide by the
year of 2020 [27]. COPD is a clinically heterogeneous
disease that may be separated into multiple subtypes
(clusters) relevant to disease prognosis and treatment.

We try to discover the subtypes using a COPD data set.
This data set contains 2, 109 subjects with 39 features.
The subjects include heavy cigarette smokers with and
without COPD. The features are collected based on
clinical information, lung function, and measures from
computed tomography (CT) chest imaging. We col-
lected 63 clustering solutions provided by a cohort of
COPD researchers, including pulmonologists, radiolo-
gists and data analysts. In each clustering solution, a
subset (ranging from 85 to 2, 109 samples) of the sub-
jects are partitioned into different number of clusters
(ranging from 2 to 10).

We randomly split the data set into training and vali-
dation sets of equal sizes. We first train the proposed
model using the training set. The proposed model finds

4 clusters in the data set. Note that since the number
of clusters varies across different expert solutions, it
is not easy to choose the number of clusters for the
consensus result by hand. The proposed method is
able to automatically determine the number of clusters,
which is useful in this application.

We also train the competing methods to partition sam-
ples into 4 clusters. We predict clusters in the valida-
tion set using the trained models to check how well the
learned clustering solution generalizes for out-of-bag
samples. Since we do not have the ground-truth labels,
we are not able to compute NMI. Rather, we check
whether subjects in different clusters differ in terms
the following 4 genetic risk scores [28, 29]: copdScore,
lungfxScore, emphScore and airScore. These genetic
risk scores measure the accumulation of genetic risk to
different aspects of COPD and differences in genetic
risk between COPD clusters may highlight biologic dif-
ferences between clusters. Genetic risk score differences
were evaluated via Kruskal-Wallis one-way analysis of
variance [30], which is a non-parametric method for
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Table 2: p-values in Kruskal-Wallis test
copdScore lungfxScore emphScore airScore

Proposed 3.73E-07 1.52E-02 1.89E-04 1.18E-02
KCC+LR 1.14E-07 3.61E-01 2.44E-03 2.43E-02

MPCKMeans 1.96E-05 9.92E-01 6.64E-03 7.81E-01
MECC 7.45E-05 6.27E-01 5.61E-02 6.01E-02
kmeans 3.38E-01 3.29E-02 7.07E-01 1.06E-01

testing whether samples in different groups originate
from the same distribution. Note that the 39 features
we used to train the models do not directly contain gene
features. We summarize the p-value of Kruskal-Wallis
test in Table 2.

In the table, we bold all p-values that are less than 0.05,
which implies statistical significance. The proposed
method is the only method that achieves statistical
significance in all 4 genetic risk scores. This suggests
that the proposed method outperforms other methods,
in terms of discovering clusters that are more correlated
with the COPD-relevant genetic information of the
subjects.

In this application, we are not only interested in finding
a clustering solution. We also want to understand how
the expert labels are related, and what the experts
agree or disagree with each other.

We first summarize the mean and standard deviation of
some important features for each learned cluster in Ta-
ble 3. In this table, we observe that Cluster 1 contains
subjects that are more resistant to cigarette smoking,
which is characterized by a high FEV 1pp utah value.
Cluster 2 corresponds to airway disease predominant
group, which is characterize by low FEV 1pp utah,
and high WallAreaPct seg. Cluster 3 corresponds
to resistant cigarette smoker with mild emphysema,
which is characterized by high FEV 1pp utah and mild
pctEmph. Cluster 4 corresponds to the sickest sub-
jects, with low FEV 1pp utah, high pctEmph and high
WallAreaPct seg.

Now we analyze the relationship between the clustering
results and expert labels. We pick the expert solutions
that are accurately predicted based on learned cluster-
ing results, such that the prediction accuracy is above
80% in the training set, where the predicted labels are

given by estimating Eq[p(y(m)
n |zn,T)], i.e., the expected

value of Equation (8).

Then, we analyze q(T) to observe the mapping between
the learned clusters and the observed labels, where we
use alphabet letters to represent the experts. The
results are summarized using 6 groups, as shown in
Table 4. We observe in the table that Groups 1 con-
tains 9 solutions. These solutions agree to separate
the cluster 4 from the the rest, i.e., they separate the
sickest subjects from the healthier subjects. Group 2
agrees with Group 1, but with positive and negative
labels flipped. Group 3 separates the airway disease
predominant group from the rest. Both Groups 4 and 5

Table 3: Clustering Results
No. samples FEV1pp utah pctEmph WallAreaPct seg Emph UL LL ratio

1 382 93.6 (14.6) 1.8 (1.7) 59.9 (2.5) 1.6 (1.2)
2 137 65.7 (16.9) 1.9 (1.9) 65.4 (2.3) 2.3 (2.2)
3 139 91.0 (13.5) 7.6 (4.0) 59.1 (2.3) 2.4 (3.6)
4 311 44.9 (18.6) 22.2 (12.1) 62.4 (2.7) 2.0 (2.3)

Table 4: Mapping between Clusters and Expert Labels
Solutions Mapping

1
A, B, C, D, E Label 0: Cluster 1, 2 & 3
F, G, H, I Label 1: Cluster 4

2 J
Label 0: Cluster 4
Label 1: Cluster 1 , 2 & 3

3 K
Label 0: Cluster 2
Label 1: Cluster 1 , 3 & 4

4 L, M
Label 0: Cluster 1 & 3
Label 1: Cluster 2 & 4

5 N
Label 0: Cluster 2 & 4
Label 1: Cluster 1 & 3

6 O
Label 0: Cluster 1 & 3
Label 1: Cluster 2
Label 3: Cluster 4

separate clusters 1 and 3 from clusters 2 and 4, with la-
bels flipped. They separate the more resistant cigarette
smokers from the sicker subjects. Expert O in fact par-
tition the subjects into 5 groups, but label 2 and label
4 are not matched by any learned clusters. Labels 0, 1,
and 3 in this solution corresponds to resistant cigarette
smokers, airway disease predominant subjects and the
sickest subjects, respectively.

As shown in this table, the proposed method helps us
better understand the expert labels. Existing crowd-
clustering methods analyze the pairwise similarity la-
bels and it would be more difficult to reveal such rela-
tionship between expert solutions.

5 Conclusion

In this paper, we proposed a crowdclustering model
that directly analyzes partition labels. The proposed
model adopts a novel approach to generate latent clus-
ter indicators, such that it simultaneously determines
the number of clusters and partitions samples into
clusters. The proposed model also learns a mapping
between the latent clusters and expert labels, revealing
the relationships between labels from different experts.
Experiments on benchmark data demonstrates that
the proposed model simultaneously learns the number
of clusters and discovers the clustering structure. An
experiment on a real-world disease subtyping problem
illustrates that the proposed model helps us understand
the agreement and disagreement between experts.
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