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1 Proof of Lemma[2

Statement of Lemma: The transformed population K-
endall’s tau correlation vector (3 satisfies
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where 05 is the variance of y. The transformed sample

Kendall’s tau correlation vector ,C:}', with probability at least

1-—- %, satisfies
A logp
18— Bl < 2my [ B2

Proof: By definition, 8 = E[yx] = Ex[x - E,[y|X]] =
]E[fcché] = 36. Given that Ami, > 0 and the properties of
elliptical distribution (T3), we have E[x] = 0, rank(A) =
rank(X) = p and Cov[X] = X. Since %, y are jointly
elliptical and 3 is invariant to f, using Theorem 2 in [3]],
we have for each 3;,
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which implies (S.I). Using Hoeffding’s inequality for U-
statistics [2]], we have for each 3; and 3;
)
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Letting € = 274/ 10% and taking union bound, we obtain
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which completes the proof. ]
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2  Proof of Lemma[3

Statement of Lemma: Define the descent cone for any s-
sparse vector 8* € RP,

C={veRP| |0+ v <01} - (S.3)
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If x ~ TE(X,(f) and n > (24—”) s2logp =
O(s?logp), with probability at least 1 — p~2°, the fol-
lowing RE condition holds for ¥ in C,

inf vI3v>
veCnsp—1

(S.4)

where Amin s the smallest eigenvalue of 3.
Proof:  Let S be the support of 8*, then we have

velnsTt = 105+ vsli+lvsell < (07
= 05l = llvslli + [[vse

1 < [|0%]1 =

[vselli < lvsll = [Ivllh < 2[vsly < 2Vs]vs]2 < 2V/s

With probability at least 1 — p~2'5, we have for any v €
cnsr-t
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where we use Lemma |1| and the fact that ||v||; < 24/s.

Since we choose n > (fi) 52 log p, we have

s2logp > A — Amin _ Amin

e
3V > Apin — 12 i
v Xv > ™ - > 5

which completes the proof.

3  Proof of Theorem

Statement of Theorem: Let X = [x1,Xa,..., %] be
i.i.d. samples of x ~ TE(X, ¢, f) for which the sign sub-
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Gaussian condition holds with constant k. Define the con-

stant
320k |Z)3 w2
€p = max
0 )\2 ’)\min )

min

in which Amin is the smallest eigenvalue )3} If n >
12800 1ogp = O(slogp), with probability at least 1 —

% - satisfies the following RE condition,

inf viZv>
vecnse—1 2

where C is defined in (21).

; (8.5)

To prove Theoreml we first formally state below the con-
vergence result for 3 and S in [L].

Lemma A (Theorem 4.10 in [1]) Let X =
[x1,Xa,...,x,|T beiid. samples of x ~ TE(Z,¢,f) for
which the sign sub-Gaussian condition holds with constant
k. With probability at least 1 — 20 — o, 3 constructed
from X satisfies

A - solo
nzzh%£*<°ﬁw+

2\/%”2”2\/50 (3+10g(p/50))+10g(1/0‘)) . (S.6)
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where | Al|z.s, = SUDyesr—1 ||vlo<so vl Av.

The next step for showing Theorem [2]is to extend the RE
condition on all sg-sparse unit vectors (sy needs to be ap-
propriately specified) to all unit vectors inside the targeted
descent cone C. Lemma [B]accomplishes this goal.

Lemma B Given 3 constructed from X whose rows are
generated from x ~ TE(SJ7 &, 1), we assume that for ev-
ery So-sparse unit vector v, the condition visv > s
satisfied. Then we have for any u € C N SP~1,

ul'Su>pu—

(L—p) . (8.7
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Proof: Forany u € CNSP~L, let z € R? be a random
vector defined by

(s = lullsign(u) -e) = 14 (58
[[ully
where {e;}?_, is the canonical basis of R?. Therefore,

E[z] = u. Let 21,29, ...,2;, be independent copies of
z and setz = 1 ZZ 1 Zi- Therefore Z is an sg-sparse vec-
tor, and by our assumptlon on quadratic forms on sg-sparse
vectors

2"$2 > pl7lly = E|o"Sa] = uE [|2]3] . S9)

where the expectation is taken w.a.t z. Since z =
+ 252, i, we have
T 1 e
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above expression by the identity matrix I € RP*P, we have

since 64; = 1, and Y7 = 1. Replacing 3 in the

1 J[u?

_ S0 —
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Plugging both these expressions back in (S.9), we have
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where we use the facts that [[u]ls = 1 and |Jul]; < 24/s.
That completes the proof. ]

Equipped with Lemma [A] and [B] we present the proof of
Theorem 2]

Proof of Theorem @
Gs

For Lemma , weset = 1
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n> 1}\2@5 log p = 8cysg log p, by Lemma we have
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with probability at least 1 —
Sp-sparse unit vector v,

2 _ % It follows that for any
P

visv > viyy — ’vT (2 — 2) v’
- ~ 3
Z )\min - ||E - E||2,so Z zAmin )

which satisfies the assumption in Lemma [B] with ;1 =
%)\min. With the same sy = 165 by Lemma . we have

forany v € CNSP~L,
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which completes the proof. ]

4 Proof of Theorem

Statement of Theorem: Given any monotone cone M, the
following equality holds

= Ps(Pc(Prm()
where Pr(z) = z— % -1 and Pg(z) = min{ﬁ, 1}z

Prncrs(+) (S.10)

Proof: It is easy to verify the the analytic expression for
P(-) and Pg(-). To show (S.10), we let x* = P(z) and
x* = Pymncns(z). We assume w.l.o.g. that the monotone
coneis M = {x|x; > 2o > ... > z,}. By introducing

the Lagrange multipliers A = [A1,..., \,_1]7, the isoton-
ic regression Py(z) can be casted as
gl_zjxmln g(x,A) = f||x z|3 + Z AT — xi41)

where we use the strong duality. The optimum x* has to
satisfy the stationarity Vx g(x,A) =0, i.e.,
SCT — 21+ Al =0 5
x;—ZQ—/\l—f—)\Q:O,
(S.11)

*
Tp_1— Zn—-1— )\n—2 + )\n—l =0,

Ty —2n — A1 =0.

Using (S.I1) to express x* in terms of X, we denote
miny g(x,A) by another function h(\), and the optimal
dual variables A* satisfies

A* = argmax h(\) .
A=<0

For the standardized isotonic regression Paqnrcns(z),
we can also introduce the Lagrange multipliers A =
A, .. -s An_1]T, B and 7, and obtain the following opti-
mization problem

1
. ~ A _ = . 2
Hg}ggoﬁngn 9 A B,7) = SlIx — 23

+Z)\

— Tit1) +5Z%+’Y (n—11x]13) -
i=1
(S.12)

Again the optimum X* has to satisfy Vy g(X*, A, 8,7),

(1=29)2 -2+ B+ M =0,
(172’7)12';722+ﬂ*)\1+>\2:0,

(1 - 27)5::1—1 — Zn—1+ 6 - )\71,—2 + )\n—l =0 B
(1—29)F% — 20+ B — An1 = 0.
(S.13)

By substituting X* for A, 3 and 7, we have

2
min g(x, A, 5,7) 27 Z ( i)

n—1 n - ,

=1

_ N = X (= B)?

_1,274' 5 2(11727) +9n,

in which we note that the last three terms are free of A.
Hence the optimal A for standardized isotonic regression,

. Z?:1(Zi - ﬁ)Q
2(1 —2v)

- h(A 2
X" — argmax (A) | llzl3
a<o 1—2v 2

= argmax h(A)
X=0

+yn

is the same as the one for isotonic regression. Thus, com-
bining (S:11)) and (S.13)), we have

* . 1
groX 61 (S.14)
1—2y
On the other hand, by summing up the equations respec-
tively in (S-11) and (S:13) and using the primal feasibility
S @F =0, we have

1T>¢<

X
Z:r —sz Zzi:nﬁ = f= n

=1

which implies that
x" — B -1 = PE(X*) = PE(PM(Z)) .

Denoting x* — 3 - 1 by X*, we now show that scaling x*
by — ~ is exactly the projection onto B. If [|X*[|2 > /n,

(S.15)

1-2
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then v < 0 due to (S.I4) and primal feasibility ||x*[|2 <
v/n. By complementary slackness y(n — [|X*[|3) = 0, we
have ||x*|2 = /. If ||X*||2 < /n, then ||X*]| < /n
due to (S.14) and dual feasibility v < 0. It follows from
complementary slackness that v = 0, which result in x* =
x*. If || x*||2 = v/n, by similar argument, we have X* = x*
as well. In a word, we have

i X", if [|x*]2 < vn
H:):/*ﬁzf(*’ if ||)A<*||2 > \/H 7

which matches the expression for Pg(+). Thus we complete
the proof by noting X* = Pg(x*) = Pg(Pz(Pm(z))). =
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