Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, Patrick van der Smagt

A Detalils of the training procedure

To avoid local minima with narrow spikes of velocity
but low overall length, we validate the result during
training based on the maximum velocity of Eq. (11)
and the path length L 4+ Ay max; ¢(t), where Ay is a
hyperparameter.

We found that training with batch gradient descent
and the loss defined in Eq. (10) is prone to local min-
ima. Therefore, we pre-train the neural network g,
on n random parametric curves. As random curves
we chose Bézier curves [De Casteljau, 1986] of which
the control points are obtained as follows: We take
zok/K + 2, (K — k)/K, k = 1,2,...,K — 1 as the
centers of a uniform distribution, with its support or-
thogonal to the straight line between z¢ and z; and
the range (z; — z0)/2. For each of those random uni-
forms, we sample once, to obtain a set of K —1 random
points zj;. Together with zo and z;, these define the
control points of the Bézier curve. For each of the n
random curves, we fit a separate g, (t) to the points
of the curve and select the model g, with the lowest
validation value as the pre-trained model. Afterwards,
we proceed with the optimization of the loss Eq. (10).

B Gradients of piecewise linear
activation functions

Note that calculating dL(g,,(t))/0w involves calculat-
ing the gradients of the Jacobian 9x/0z as well. There-
fore optimization with gradient-based methods is not
possible when the generative model uses piecewise lin-
ear units. This can be illustrated with an example of
a neural network with one hidden layer:

903 _0Joh _ ﬁ(ajih)‘lh
9z 0hdz 0Oh\dh dz/ oz
B 0?x0hoh 9x 9%*h oh

"~ 0h20z 0z ©h0zdh Oz’

Both terms in Eq. (19) contain a term that involves
twice differentiating a layer with an activation func-
tion. In the case of piecewise linear units, the deriva-
tive is a constant and hence the second differentiation
yields zero.

(19)

C Gradients of sigmoid, tanh and
softplus activation functions

We can easily get the Jacobian using sigmoid, tanh
and softplus activation functions. Take one layer with
the sigmoid or tanh activation function as an example,
the Jacobian is written as

6.%‘i

J,‘ = E = {L‘I(I — .Ti)Wi, (20)

where w; is the weights.
With a softplus activation function, the Jacobian is

Wi

Ji=—--—.
1+ e2wi

(21)

Consequently, the derivative of Jacobian is straightfor-
ward.

D Experiment setups

We used Adam optimizer [Kingma and Ba, 2014] for
all experiments. FC in the tables refers to fully-
connected layers. In Table 3, for the generative model-
architecture we used an MLP and residual connections
[He et al., 2016]—additionally to the input and output
layer. K is the number of importance-weighted sam-
ples in Eq. (3).

Metrics for Deep Generative Models

Table 1: The setup for geodesic neural networks

architecture hyperparameters

Input € RM: learning rate = 1072
2 tanh FC x 150 units 500 sample points
Output € RN=

Table 2: The setup for the pendulum dataset

recognition model generative model hyperparameters
Input € R2?56 Input € R? learning rate = 1074
2 tanh FC x 512 units 2 tanh FC x 512 units K =50

linear FC output layer for means softplus FC output layer for means batch size = 20

softplus FC output layer for variances global variable for variances

Table 3: The setup for the MNIST dataset

recognition model generative model hyperparameters
Input € R™4 Input € R? learning rate = 10~*
2 tanh FC x 512 units 7 residual x 128 units. K =50

linear FC output layer for means softplus FC output layer for means batch size = 20

softplus FC output layer for variances global variable for variances

Table 4: The setup for the robot arm simulaiton dataset

recognition model generative model hyperparameters
Input € RS Input € R? learning rate = 1073
2 tanh FC x 512 units 2 tanh FC x 512 units K=15

linear FC output layer for means softplus FC output layer for means batch size = 150

softplus FC output layer for variances global variable for variances

Table 5: The setup for the human motion dataset

recognition model generative model hyperparameters
Input € R Input € R? learning rate = 1073
3 tanh FC x 512 units 3 tanh FC x 512 units K=15

linear FC output layer for means softplus FC output layer for means batch size = 150

softplus FC output layer for variances global variable for variances

