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Abstract

In this paper, we consider an online optimiza-
tion process, where the objective functions
are not convex (nor concave) but instead be-
long to a broad class of continuous submod-
ular functions. We first propose a variant of
the Frank-Wolfe algorithm that has access to
the full gradient of the objective functions.
We show that it achieves a regret bound of
O(
√
T ) (where T is the horizon of the online

optimization problem) against a (1 − 1/e)-
approximation to the best feasible solution
in hindsight. However, in many scenarios,
only an unbiased estimate of the gradients
are available. For such settings, we then pro-
pose an online stochastic gradient ascent al-
gorithm that also achieves a regret bound of
O(
√
T ) regret, albeit against a weaker 1/2-

approximation to the best feasible solution
in hindsight. We also generalize our results
to γ-weakly submodular functions and prove
the same sublinear regret bounds. Finally,
we demonstrate the efficiency of our algo-
rithms on a few problem instances, includ-
ing non-convex/non-concave quadratic pro-
grams, multilinear extensions of submodular
set functions, and D-optimal design.

1 INTRODUCTION

In the past few years, the era of big data has ne-
cessitated scalable machine learning techniques that
can process an unprecedentedly growing amount of
data, including data generated by users (e.g., pictures,
videos, and tweets), wearable devices (e.g., statistics
of steps, walking and running distance) and monitor-
ing sensors (e.g., satellite and traffic images). At the
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same time, it is practically impossible to lay out an
exact mathematical model for such data generating
processes. Thus, any optimization techniques applied
to the data should be robust against imperfect and
even fundamentally unavailable knowledge.

A robust approach to optimization (in the face of
uncertainty) in many fields, including artificial intel-
ligence, statistics, and machine learning, is to look
at the optimization itself as a process (Hazan, 2016)
that learns from experience as more aspects of the
problem are observed. This framework is formally
known as online optimization and is performed in
a sequence of consecutive rounds. In each round,
the learner/algorithm has to choose an action (from
the set of feasible actions) and then the environ-
ment/adversary reveals a reward function. The goal
is then to minimize regret, a metric borrowed from
game theory, that measures the difference between the
accumulated reward received by the algorithm and
that of the best fixed action in hindsight. When the
objective functions are concave and the feasible set
forms a convex body, the problem has been extensively
studied in the machine learning community under the
name of online convex optimization (OCO). It is well
known that any algorithm for OCO incurs Ω(

√
T ) re-

gret in the worst case (Hazan, 2016). There are also
several algorithms that match this lower bound such
as online gradient descent (OGD) (Zinkevich, 2003)
and regularized-follow-the-leader (RFTL) (Abernethy
et al., 2008b; Shalev-Shwartz and Singer, 2007; Shalev-
Shwartz, 2007).

Even though optimizing convex/concave functions can
be done efficiently, most problems in statistics and
artificial intelligence are non-convex. Examples in-
clude training deep neural networks, learning latent
variables, non-negative matrix factorization, Bayesian
inference, and clustering, among many others. As a
result, there has been a burst of recent research to di-
rectly optimize such functions. Due to the fact that
in general it is NP-hard to compute the global opti-
mum of a non-convex function, most non-convex op-
timization algorithms focus on finding a local opti-
mum. Naturally, for online non-convex optimization
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(ONCO) one needs to define an appropriate notion of
regret related to convergence to an (approximate) local
optimum (Hazan et al., 2017).

In this work, we consider a rich subclass of non-
convex/non-concave reward functions called continu-
ous submodular functions (Wolsey, 1982; Bach, 2015;
Vondrák, 2007). It has been very recently established
that in the offline setting, first order methods provide
tight approximation guarantees (Chekuri et al., 2015;
Bian et al., 2017; Hassani et al., 2017). To the best
of our knowledge, our work is the first that systemat-
ically studies the online continuous submodular max-
imization problem and provides no-regret guarantees
along with developing efficient algorithms.

Our contributions In summary, for monotone and
continuous (weakly) DR-submodular reward func-
tions1, and subject to a general convex body (not
necessarily down-closed), we propose two algorithms,
both with sublinear regret bounds, depending on what
side information is available regarding the gradients.

• When the gradients are available, we propose
Meta-Frank-Wolfe, a variant of a Frank-Wolfe al-
gorithm, that achieves a (1− 1/e) approximation
factor of the best fixed offline solution in hind-
sight up to an O(

√
T ) regret term, where T is the

horizon of the online maximization problem.

• When only unbiased estimates of the gradients are
available, we propose Online Gradient Ascent, that
achieves a 1/2 approximation factor of the best
fixed offline solution in hindsight up to an O(

√
T )

regret term.

• More generally, for γ-weakly DR-submodular
functions, we show that Online Gradient Ascent

yields a γ2

γ2+1 approximation guarantee to the
best fixed offline solution in hindsight up to an
O(
√
T ) regret term (γ = 1 corresponds to a DR-

submodular function).

2 PRELIMINARIES

In this section, we precisely define the concepts that
we will use throughout the paper.

2.1 Notation

Projection As we will discuss the projected
(stochastic) gradient ascent later in Section 3.2, we

1A DR-submodular function is a function that is de-
fined on a continuous domain and exhibits the diminishing
returns property. We present its formal definition in Sec-
tion 2.2.

introduce the notation of projection operator here,
which is denoted by

ΠP(x) , arg min
v∈P

‖x− v‖.

Intuitively, the projection of point x onto a convex set
P is a point in P that is closest to x.

Radius and Diameter For any set of points S, its
radius ρ(S) is defined to be supx∈S‖x‖ while its di-
ameter diam(S) is defined to be supx,y∈S‖x− y‖. By
the triangle equality, we immediately have diam(S) ≤
2ρ(S).

Smoothness To derive guarantees for the proposed
algorithm, we will make the assumption that the gra-
dients of the objective functions satisfy the Lipschitz
condition. A differentiable function f : X ⊆ Rn → R
is said to be β-smooth if for any x,y ∈ X , we have
‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

2.2 Submodularity

Submodular Functions on Lattices Suppose
that (L,∨,∧) is a lattice2. A function f : L → R
is said to be submodular (Topkis, 1978) if ∀x, y ∈ L,
we have

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y).

Furthermore, a function f : L → R is monotone if
∀x, y ∈ L such that x ≤L y, we have f(x) ≤ f(y),
where ≤L is the partial order defined by lattice L3.

For any set E, its power set 2E equipped with set union
∪ and intersection ∩ is an instance of lattice. In fact,
submodular functions on the lattice (2E ,∪,∩) are pre-
cisely the submodular set functions that have been ex-
tensively studied in the past (Nemhauser et al., 1978;
Fujishige, 2005). If we let [C] denote {1, 2, 3, . . . , C},
then [C]n and Zn are bounded and unbounded inte-
ger lattices equipped with entrywise maximum (∨) and
minimum (∧). This construction corresponds to sub-
modular functions on integer lattices (Gottschalk and
Peis, 2015; Soma and Yoshida, 2016).

Continuous Submodularity In contrast to the
above discrete scenarios, we focus on continuous do-
mains in this paper. The set X ,

∏n
i=1 Xi ⊆ Rn+,

where Xi’s are closed intervals of R+, is also equipped
with a natural lattice structure where ∨ and ∧ are

2A lattice is a set L equipped with two commutative
and associative binary operations ∨ and ∧ connected by
the absorption law, i.e., a∨ (a∧ b) = a and a∧ (a∨ b) = a,
∀a, b ∈ L (Sankappanavar and Burris, 1981).

3In a lattice, we define a ≤L b if a = a ∧ b (Sankap-
panavar and Burris, 1981)
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entrywise maximum and entrywise minimum, respec-
tively, i.e., for any x,y ∈ X ⊆ Rn, the i-th component
of x∨y is max{xi, yi} and the i-th component of x∧y
is min{xi, yi}. A function f :

∏n
i=1 Xi → R+ is called

continuous submodular if it is submodular under this
lattice. When the function f is twice differentiable, it
is continuous submodular if and only if all off-diagonal
entries of its Hessian are non-positive, i.e.,

∀i 6= j,∀x ∈ X , ∂
2f(x)

∂xi∂xj
≤ 0.

Without loss of generality, we assume that Xi = [0, bi],
∀1 ≤ i ≤ n. If Xi = [ci, di] and f is continu-
ous submodular on

∏n
i=1[ci, di], we can consider an-

other continuous submodular function f̃ defined on∏n
i=1[0, di − ci] such that f̃(x) = f(x + c).

DR-Submodularity In this paper, we are mainly
interested in a subclass of differentiable continuous
submodular functions that exhibit diminishing re-
turns (Bian et al., 2017), i.e., for every x,y ∈ X , x ≤ y
elementwise implies

∇f(x) ≥ ∇f(y)

elementwise, which indicates that the gradient is an
antitone mapping (Bian et al., 2017; Eghbali and Fazel,
2016). When the function f is twice differentiable,
DR-submodularity is equivalent to

∀i, j, ∀x ∈ X , ∂
2f(x)

∂xi∂xj
≤ 0.

Twice differentiable DR-submodular functions are also
called smooth submodular functions (Vondrák, 2007).

We say that a function f is weakly DR-submodular
with parameter γ (Hassani et al., 2017) if

γ = inf
x,y∈X ,x≤y

inf
i∈[n]

[∇f(x)]i
[∇f(y)]i

,

where [∇f(x)]i = ∂f(x)
∂xi

is the i-th component of the
gradient. If the function is monotone, we have γ ≥ 0.
Note that a differentiable DR-submodular function is
weakly submodular with parameter γ = 1.

In this work, we focus on monotone continuous
(weakly) DR-submodular functions.

Multilinear Extension An important example of
continuous DR-submodular functions is the multilin-
ear extension of a submodular set function. Given
a monotone submodular set function W : 2Ω → R+

defined on a ground set Ω, its multilinear extension
f̄ : [0, 1]|Ω| → R is defined as

f̄(x) =
∑
S⊆Ω

W (S)
∏
i∈S

xi
∏
j /∈S

(1− xj),

is monotone DR-submodular (Calinescu et al., 2011).
In general, it is computationally intractable to com-
pute the multilinear extensions. However, for the
weighted coverage functions (Karimi et al., 2017), they
have an interesting connection to concavity. Suppose
that U is a finite set and let G : 2U → R be a nonneg-
ative modular function such that G(S) ,

∑
u∈U w(u),

where w(u) ≥ 0 for all u ∈ U . We have a finite col-
lection Ω = {Bi : 1 ≤ i ≤ n} of subsets of U . The
weighted coverage function W : 2Ω → R≥0 is defined
as

W (S) , G(
⋃
Bi∈S

Bi),∀S ⊆ Ω.

Karimi et al. (2017) showed that the multilinear ex-
tension f : [0, 1]n → R is

f̄(x) =
∑
u∈U

w(u)

(
1−

∏
Bi∈Ω:u∈Bi

(1− xi)

)
.

They showed that the multilinear extension has a con-
cave upper bound. In fact, in light of the Fenchel
concave biconjugate, they consider a concave function

f̃(x) ,
∑
u∈U

w(u) min

{
1,

∑
Bi∈Ω:u∈Bi

xi

}

and showed a key squeeze relation

(1− 1/e)f̃(x) ≤ f̄(x) ≤ f̃(x), ∀x ∈ [0, 1]n.

2.3 Online Continuous Submodular
Maximization

Input: convex set P, horizon T
Output: {xt : 1 ≤ t ≤ T}
1: Determine x1 ∈ P . to be designed
2: for t← 1, 2, 3, . . . , T do
3: Play xt, observe reward ft(xt)
4: Observe ft and determine xt+1 ∈ P . to

be designed
5: end for

The general protocol of online continuous submod-
ular maximization is given as follows. At iteration
t (going from 1 to T ), the online algorithm chooses
xt ∈ P. After committing to this choice, a mono-
tone DR-submodular function ft is revealed and the
algorithm receives the reward ft(xt). The goal is to
minimize regret which is typically defined as the dif-
ference between the total award that the algorithm ac-
cumulated and that of the best fixed decision in hind-
sight. Note that even in the offline setting, maximiz-
ing a monotone DR-submodular function subject to a
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convex constraint can only be done approximately in
polynomial time unless RP = NP (Bian et al., 2017).
Thus, we instead define the α-regret of an algorithm A
as follows (Streeter and Golovin, 2009; Kakade et al.,
2009):

Rα(A, T ) , αmax
x∈P

T∑
t=1

ft(x)−
T∑
t=1

ft(xt),

where α is the approximation ratio. In the deter-
ministic setting when full access to the gradients of
ft’s is possible, the best polynomial-time approxima-
tion guarantee in the offline setting is α = 1 − 1/e,
using a variant of the Frank-Wolfe algorithm, unless
RP = NP (Bian et al., 2017). In contrast, for the
stochastic situations where only unbiased estimates
of gradients are given, the best known approximation
guarantee (in the offline setting) is α = 1/2 (Hassani
et al., 2017), using stochastic gradient ascent. It is also
known that stochastic gradient ascent cannot achieve
a better approximation guarantee in general (Hassani
et al., 2017; Vondrák et al., 2011).

3 ALGORITHMS AND MAIN
RESULTS

In this section, we describe our online algorithms Meta-
Frank-Wolfe and Online Gradient Ascent for a sequence
of monotone DR-submodular functions, in the no-
regret setting.

3.1 (1− 1/e) Guarantee via Meta-Frank-Wolfe

We begin by proposing the Meta-Frank-Wolfe algo-
rithm that achieves (1 − 1/e) fraction of the global
maximum in hindsight up to O(

√
T ) regret. Our al-

gorithm is based on the Frank-Wolfe variant proposed
in (Bian et al., 2017) for maximizing monotone and
continuous DR-submodular functions and the idea of
meta-actions proposed in (Streeter and Golovin, 2009).
Unlike (Bian et al., 2017), we consider a general convex
body P as the constraint set and do not assume that it
is down-closed. We use meta-actions to convert offline
algorithms into online algorithms. To be precise, let us
consider the first iteration and the first objective func-
tion f1 of our online optimization setting. Note that
f1 remains unknown until the algorithm commits to a
choice. If we were in the offline setting, we could have
used the Frank-Wolfe variant proposed in (Bian et al.,
2017), say ran it for k iterations, in order to maximize
f1. In each iteration, we would have found a vector
vk ∈ P that maximizes 〈vk,∇f1(xk)〉 and performed
the update

xk+1 ← xk +
1

K
vk.

The idea of meta-actions is to mimic this process in
an online setting as follows. We run K instances
{Ek : 1 ≤ k ≤ K} of an off-the-shelf online linear
maximization algorithm, such as Regularized-Follow-
The-Leader (RFTL) (Hazan, 2016). Here K denotes
the number of iterations of the offline Frank-Wolfe al-
gorithm that we intend to mimic. Thus, to maximize
〈·,∇f1(xk)〉, where ∇f1(xk) is the unknown linear ob-
jective function of the online linear maximization prob-
lem, we simply use Ek. Once the function f1 is re-
vealed to the algorithm, it knows each linear objective
function ∇f1(xk) and its corresponding inner product
〈vk,∇f1(xk)〉. Now, we simply feed each online al-
gorithm Ek with the reward 〈vk,∇f1(xk)〉. For any
subsequent function ft (t ≥ 2), we repeat the above
process. Note that for an RFTL algorithm the re-
gret is bounded by O(

√
T ) (in fact, this is true for

many choices of no-regret algorithms). This idea com-
bined with the fact that the Frank-Wolfe algorithm can
be used to maximize a monotone and continuous DR-
submodular function and attain (1 − 1/e) fraction of
the optimum solution suffices to prove that (1− 1/e)-
regret of Meta-Frank-Wolfe is also bounded by O(

√
T ).

The precise description of Meta-Frank-Wolfe is out-
lined in Algorithm 1. Recall that the positive orthant
of the Euclidean space Rn is {x ∈ Rn : xi ≥ 0,∀1 ≤
i ≤ n}.

Algorithm 1 Meta-Frank-Wolfe

Input: P is a convex set in the positive orthant, and
T is the horizon.

Output: {xt : 1 ≤ t ≤ T}
1: Initialize K Regularized-Follow-The-Leader

(RFTL) algorithm instances {Ek : 0 ≤ k < K} for
maximizing linear cost functions over P

2: for t← 1, 2, 3, . . . , T do
3: for k ← 0, 1, 2, . . . ,K − 1 do
4: Let vkt be the vector selected by Ek
5: end for
6: xt ← 1

K

∑K−1
k=0 vkt

7: Play xt, receive reward ft(xt) and observe ft
8: ∀0 ≤ k ≤ K,xt(k)← 1{k>0}

1
K

∑k−1
s=0 vst

9: for k ← 0, 1, 2, . . . ,K − 1 do
10: Feed back 〈vkt ,∇ft(xt(k))〉 as the payoff to

be received by Ek
11: end for
12: end for

In the following theorem, we bound the (1−1/e)-regret
of Meta-Frank-Wolfe.

Theorem 1. (Proof in Appendix A) Assume that
ft is monotone DR-submodular and β-smooth for ev-
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ery t. By using Algorithm 1, we obtain

(1− 1/e)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt)

≤− e−1
T∑
t=1

ft(0) + 2DG
√
T +

βR2T

2K
,

where D = diam(P), R = ρ(P), and G =
sup1≤t≤T,x∈P‖∇ft(x)‖ are assumed to be finite.

If we assume that the functions ft are non-negative,
then we have ft(0) ≥ 0 for all t, which implies that the

first term −e−1
∑T
t=1 ft(0) in the regret bound of The-

orem 1 is non-positive (thus reduces the entire sum).
The second term is O(

√
T ). Finally, If we let the num-

ber of RFTL algorithm instances K be equal to
√
T ,

the final term βR2T
2K will become βR2

2

√
T .

3.2 1/2 Guarantee via Online Gradient Ascent

We saw that when the gradient can be efficiently
evaluated, Meta-Frank-Wolfe presented in Algorithm 1
yields a sublinear regret bound. However, efficient
evaluation of the gradient could be impossible in many
scenarios. For example, exact evaluation of the gra-
dients of the multilinear extension of a submodu-
lar set function requires summation over exponen-
tially many terms. Furthermore, one may consider
a class of stochastic continuous DR-submodular func-
tions f(x) = Eθ∼D[fθ(x)], where every fθ is continu-
ous DR-submodular and the parameter θ is sampled
from a (potentially unknown) distribution D (Hassani
et al., 2017; Karimi et al., 2017). Again, in such cases
it is generally intractable to compute the gradient of
f(x), namely, ∇f(x) = Eθ∼D[∇fθ(x)]4. Instead, the
stochastic terms ∇fθ(x) provide unbiased estimates
for the gradients. Another disadvantage of the Meta-
Frank-Wolfe algorithm is that it requires O(

√
T ) gra-

dient queries for each function ft, which may be even
more prohibitive. In this subsection, we show how we
can use Online Gradient Ascent to design an algorithm
with sublinear regret and robust to stochastic gradi-
ents when the functions ft are monotone and continu-
ous DR-submodular.

First, it was shown by Hassani et al. (2017) that a di-
rect usage of unbiased estimates of the gradients in
Frank-Wolfe-type algorithms can lead to arbitrarily
bad solutions in the context of stochastic submodular
maximization. This happens due to the non-vanishing
variance of gradient approximations. As a result, new
techniques should be developed for the online opti-
mization algorithm with access to unbiased estimates

4This equation holds if some regularity conditions are
satisfied, in light of Lebesgue’s dominated convergence the-
orem.

of the gradients of ft (instead of the exact gradients).
To handle the stochastic noise in the gradient, we con-
sider the (stochastic) gradient ascent method. In The-

orem 2, we show that the ( γ2

γ2+1 )-regret of (stochastic)

Online Gradient Ascent is bounded by O(
√
T ) for γ-

weakly DR-submodular functions. In particular, for
the special case of γ = 1, the 1/2-regret of Online Gra-
dient Ascent is bounded by O(

√
T ) for continuous DR-

submodular functions. The precise description of On-
line Gradient Ascent is presented in Algorithm 2 while
its stochastic version is presented in Algorithm 3.

Algorithm 2 Online Gradient Ascent

Input: convex set P, T , x1 ∈ P, step sizes {ηt}
Output: {xt : 1 ≤ t ≤ T}
1: for t← 1, 2, 3, . . . , T do
2: Play xt and receive reward ft(xt).
3: xt+1 = ΠP(xt + ηt∇ft(xt))
4: end for

Algorithm 3 Online Stochastic Gradient Ascent

Input: convex set P, T , x1 ∈ P, step sizes {ηt}
Output: {xt : 1 ≤ t ≤ T}
1: for t← 1, 2, 3, . . . , T do
2: Play xt and receive reward ft(xt).
3: Observe gt such that E[gt|xt] = ∇ft(xt)
4: xt+1 = ΠP(xt + ηtgt)
5: end for

Theorem 2. (Proof in Appendix B) Assume that
the functions ft : X → R+ are monotone and weakly
DR-submodular with parameter γ for t = 1, 2, 3, . . . , T .
Let {xt : 1 ≤ t ≤ T} be the choices of Algorithm 2
(Algorithm 3, respectively) and let ηt = D

G
√
t
, then we

have

γ2

γ2 + 1

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt) ≤
3γDG

√
T

2(γ2 + 1)

and

γ2

γ2 + 1

T∑
t=1

ft(x
∗)−

T∑
t=1

E [ft(xt)] ≤
3γDG

√
T

2(γ2 + 1)
.

for Algorithm 2 and Algorithm 3, respectively, where
D = diam(P) and G = sup1≤t≤T,x∈P‖∇ft(x)‖ (for
Algorithm 3, G = sup1≤t≤T ‖gt‖) are assumed to
be finite. In particular, when ft is continuous DR-
submodular (γ = 1), we have

1

2

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt) ≤
3

4
DG
√
T

and

1

2

T∑
t=1

ft(x
∗)−

T∑
t=1

E[ft(xt)] ≤
3

4
DG
√
T ,



Online Continuous Submodular Maximization

respectively.

4 EXPERIMENTS

In the experiments, we compare the performance of
the following algorithms:

• Meta-Frank-Wolfe. We choose r(x) = ‖x−x0‖2/2
as the regularizer of the RFTL in Meta-Frank-
Wolfe. RFTL has a parameter η that balances
the sum of inner products with the gradients of
each step and the regularizer (Hazan, 2016).

• Online Gradient Ascent. We also denote the step
size (also known as the learning rate) of the online
gradient ascent by η. Therefore Online Gradient
Ascent also has a parameter η.

• Random100. For each objective function ft, Ran-
dom100 samples 100 points in the constraint set
and selects the one that maximizes ft. We would
like to emphasize that Random100 is infeasible in
the online setting since online algorithms have to
make decisions before an objective function is re-
vealed.

• Surrogate Gradient Ascent. When the objective
functions are the multilinear extension of submod-
ular coverage functions, we also studied the per-
formance of gradient ascent applied to a surrogate
function, which is shown to be a concave upper
bound for the multilinear extension (Karimi et al.,
2017).

4.1 Multilinear Extension

As our first experiment, we consider a sequence of mul-
tilinear extensions of weighted coverage functions (see
Section 2.2). Recall that such functions have a con-
cave lower bound. Thus, we introduce another base-
line Surrogate Gradient Ascent that uses supergradient
ascent to maximize the concave lower bound function
(1 − 1/e)f̄(x). The result is presented in Fig. 1a.
We observe that Random100 has the highest regret
and both Meta-Frank-Wolfe and Online Gradient As-
cent, whose performance is slightly inferior to that of
Meta-Frank-Wolfe, outperform Surrogate Gradient As-
cent.

Then, we study the case where only an unbiased esti-
mate of the gradient is available. For any x ∈ [0, 1]n,
let

[∇̃f(x)]i , f(Ri ∪ {i})− f(Ri),

where Ri is a random subset of [n]\{i} such that each
j 6= i is in Ri with probability xj independently. Then

we have E[∇̃f(x)] = ∇f(x) (Calinescu et al., 2011).

The result in this setting is presented in Fig. 1b. Notice
that in Fig. 1b the regret of Random100 and Surrogate
Gradient Ascent is uninfluenced by the stochastic gradi-
ent oracle since they do not rely on the exact gradient
of the original objective function. Meta-Frank-Wolfe
and Online Gradient Ascent both incur higher regret
in Fig. 1b than in Fig. 1a. In addition, the stochas-
tic gradient oracle has more impact upon Meta-Frank-
Wolfe than Online Gradient Ascent. This agrees with
our theoretical guarantee for Online Gradient Ascent
and a result from (Hassani et al., 2017), which states
that Frank-Wolfe-type algorithms are not robust to
stochastic noise in the gradient oracle.

4.2 Non-Convex/Non-Concave Quadratic
Programming

Quadratic programming problems have objective func-
tions of the form f(x) = 1

2x
>Hx+h>x+ c and linear

equality and/or inequality constraints. If the matrix
H is indefinite, the objective function becomes non-
convex and non-concave. We constructed m linear
inequality constraints Ax ≤ b, where each entry of
A ∈ Rm×n is sampled uniformly at random from [0, 1].
We setm = 2. In addition, we require that the variable
x reside in a positive cuboid. Formally, the constraint
is a positive polytope P = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤
u}. We set b = u = 1. To ensure that the gradient is
non-negative, we set h = −H>u. Without loss of gen-
erality, we assume that the constant term c is 0. Thus
the function is f(x;H) = (1

2x− u)>Hx; it is fully de-
termined by the matrix H. In our online optimization
setting, we assume that the T functions f1, f2, . . . , fT
are associated with matrices H1,H2, . . . ,HT . For ev-
ery Hi, its entries are sampled uniformly at random
from [−100, 0]. We set K = 50. The result is illus-
trated in Fig. 1c. It can be observed that with the same
step size η, the regret of Meta-Frank-Wolfe is smaller
than Online Gradient Ascent.

4.3 D-Optimal Experimental Design

The objective function of the D-optimal design prob-

lem is f(λ) = log det
(∑N

i=1 λixix
>
i

)
. We write A(λ)

for
∑N
i=1 λixix

>
i for the ease of notation. It is DR-

submodular because for any i and j

∂2f(λ)

∂λj∂λi
= −(x>j A(λ)−1xi)

2 ≤ 0.

For every xi, its entries are sampled from the standard
normal distribution independently. We try to solve the
maximization in the polytope P = {λ : A(λ − 1) ≤
1,1 ≤ λ ≤ 2}. Each entry of A is sampled uniformly
from [0, 1] and the number of inequality constraints
is set to 2. The polytope is shifted to avoid 0 since
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Figure 1: In the legends of all subfigures, we write Meta-FW for Meta-Frank-Wolfe, OGA for Online Gradient Ascent,
and SurrGA for Surrogate Gradient Ascent. The results for the multilinear extension are presented in Figs. 1a
and 1b. We present the (1− 1/e)-regret versus the number of iterations in Fig. 1a. In Fig. 1b we illustrate the
result for the setting in which only an unbiased estimate of the gradient is available. Fig. 1c shows how the
(1− 1/e)-regret evolves for the non-convex/non-concave quadratic programming. Figs. 1d and 1e are about the
D-optimal experiment design problem. Fig. 1d shows the (1− 1/e)-regret versus the number of iterations, while
Fig. 1e shows how the number of RFTL instances K influences the performance of Meta-Frank-Wolfe.

the function is undefined at λ = 0. In Fig. 1d, we
illustrate how the function value attained by the al-
gorithms varies as it experiences more iterations; K is
fixed to be 50 in this set of experiments. We observe
that Meta-Frank-Wolfe outperforms all other baselines.
In addition, Meta-Frank-Wolfe achieves better perfor-
mance when the step size η = 1.

In the second set of experiments, we show the func-
tion values attained by the algorithms at the end of
the 50th iteration, with K ranging from 1 to 20 for
Meta-Frank-Wolfe. Recall that K is the number of
Frank-Wolfe steps in Meta-Frank-Wolfe. The result
is presented in Fig. 1e. Since K is not a parameter
of Online Gradient Ascent, the regret of Online Gradi-
ent Ascent remains constant as K varies. The regret
of Meta-Frank-Wolfe is reduced as K increases. This
agrees with our intuition that more Frank-Wolfe steps
yield better performance.

5 RELATED WORK

Submodular functions. Submodularity is a struc-
tural property that is often associated with set func-
tions (Nemhauser et al., 1978; Fujishige, 2005). It has

found far-reaching applications in statistics and arti-
ficial intelligence, including active learning (Golovin
and Krause, 2011), viral marketing (Kempe et al.,
2003; Gomez Rodriguez et al., 2012; Zhang et al.,
2016), network monitoring (Leskovec et al., 2007;
Gomez Rodriguez et al., 2010), document and cor-
pus summarization (Lin and Bilmes, 2011; Kirchhoff
and Bilmes, 2014; Sipos et al., 2012), crowd teach-
ing (Singla et al., 2014), feature selection (Elenberg
et al., 2016), and interpreting deep neural networks
(Elenberg et al., 2017). However, submodularity goes
beyond set functions and can be extended to contin-
uous domains (Wolsey, 1982; Topkis, 1978). Maxi-
mizing a submodular set function is inherently related
to its continuous relaxation through the multilinear
extension (Calinescu et al., 2011), which is an exam-
ple of the DR-submodular function. A variant of the
Frank-Wolfe algorithm, called continuous greedy (Ca-
linescu et al., 2011; Vondrák, 2008), can be used to
maximize, within a (1 − 1/e) approximation to the
optimum, the multilinear extension of a submodular
set function (Calinescu et al., 2011) or more gener-
ally a monotone smooth submodular function sub-
ject to a polytope (Chekuri et al., 2015). It is also
known that finding a better approximation guarantee
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is impossible under reasonable complexity-theoretic
assumptions (Feige, 1998; Vondrák, 2013). More re-
cently, Bian et al. (2017) generalized the above results
by considering the maximization of continuous DR-
submodular functions subject to down-closed convex
bodies and showed that the same continuous greedy
method achieves a (1 − 1/e) guarantee. In a different
line of work, Hassani et al. (2017) studied the appli-
cability of the (stochastic) gradient ascent algorithms
to the stochastic continuous submodular maximiza-
tion setting, where the objective function is defined
in terms of an expectation. They proved that gradient
methods achieve a 1/2 approximation guarantee for
monotone DR-submodular functions, subject to a gen-
eral convex body. It is also known that gradient meth-
ods cannot achieve a better guarantee in general (Has-
sani et al., 2017; Vondrák et al., 2011). Furthermore, it
is also shown in (Hassani et al., 2017) that the continu-
ous greedy algorithms are not robust in stochastic set-
tings (where only unbiased estimates of gradients are
available) and can provide arbitrarily poor solutions,
in general (thus motivating the need for stochastic pro-
jected gradient methods). Even though it is not the
focus of this paper, we should mention that contin-
uous submodular minimization has also been studied
recently (Bach, 2015; Staib and Jegelka, 2017).

Online optimization. Most of the work in online
optimization considers convex (when minimizing the
loss) or concave (when maximizing the reward) func-
tions. The protocol of online convex optimization
(OCO) was first defined by Zinkevich (2003). In his
influential paper, he proposed the online gradient de-
scent method and showed an O(

√
T ) regret bound.

The result was later improved to O(log(T )) regret
by Hazan et al. (2007) for strongly convex functions.
Kalai and Vempala (2005) developed another class
of algorithms termed Follow-The-Leader (FTL) with
the idea of finding a point that minimizes the ac-
cumulated sum of all objective functions revealed so
far. However, there are simple situations in which
the regret of FTL grows linearly with T . To cir-
cumvent this issue, Kalai and Vempala (2005) intro-
duced random perturbation as a regularization and
proposed the follow-the-perturbed-leader algorithm,
following an early work (Hannan, 1957). In addi-
tion, Shalev-Shwartz and Singer (2007) and Aber-
nethy et al. (2008a) designed the regularized-follow-
the-leader (RFTL) algorithm. A comprehensive sur-
vey of OCO can be found in (Hazan, 2016; Shalev-
Shwartz et al., 2012). Recently, Lafond et al. (2015)
studied the setting in which the loss functions {ft :
1 ≤ t ≤ T} are drawn i.i.d. from a fixed distribution
and proposed the online Frank-Wolfe algorithm. They
showed an O(log3(T )) regret for strongly convex loss

functions. Furthermore, they showed that their algo-
rithm finds a stationary point to the stochastic loss at a
rate of O(

√
1/T ). Garber and Hazan (2013) proposed

a conditional gradient algorithm for online convex op-
timization problem over polyhedral sets. Only a single
linear optimization step is performed in each iteration
and this algorithm achieves O(

√
T ) regret bound for

convex losses and O(log T ) regret bound for strongly
convex losses. Luo and Schapire (2014) proposed a
general methodology for devising online learning algo-
rithms based on a drifting-games analysis. Hazan et al.
(2017) goes beyond convexity and considered regret
minimization in repeated games with non-convex loss
functions. They introduced a new objective termed
local regret and proposed online non-convex optimiza-
tion algorithms that achieve optimal guarantees for
this new objective. Our work, in contrast, considers
non-convex objective functions that can be approxi-
mately maximized. In our notion of α-regret, we de-
sign two algorithms that can compete with the best
fixed offline approximate solution (and not necessarily
the stationary points) with tight regret bounds.

Online submodular optimization. Existing work
considered online submodular optimization in a dis-
crete domain. Streeter and Golovin (2009) and
Golovin et al. (2014) proposed online optimization al-
gorithms for submodular set functions under cardinal-
ity and matroid constraints, respectively. Our work
studies the online submodular optimization in contin-
uous domains. We should point out that the online
algorithm proposed in Golovin et al. (2014) relies on
the multilinear continuous relaxation, which is sim-
ply an instance of the general class of DR-submodular
functions that we consider here.

6 CONCLUSION

In this paper, we considered an online optimization
process, where the objective functions were continu-
ous DR-submodular. We proposed two online opti-
mization algorithms, Meta-Frank-Wolfe (that has ac-
cess to exact gradients) and Online Gradient Ascent
(that only has access to unbiased estimates of the gra-
dients), both with no-regret guarantees. We also eval-
uated the performance of our algorithms in practice.
Our results make an important contribution in pro-
viding performance guarantees for a subclass of online
non-convex optimization problems.
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