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Abstract

The problem of low-rank matrix completion
is continually attracting attention for its ap-
plicability to many real-world problems. Still,
the large size, extreme sparsity, and non-
uniformity of these matrices pose a challenge.
In this paper, we make the observation that
even when the observed matrix is not suit-
able for accurate completion there may be
portions of the data where completion is still
possible. We propose the CompleteID algo-
rithm, which exploits the non-uniformity of
the observation, to analyze the completabil-
ity of the input instead of blindly applying
completion. Balancing statistical accuracy
with computational efficiency, we relate com-
pletability to edge-connectivity of the graph
associated with the input partially-observed
matrix. We develop the MaxKCD algorithm for
finding maximally k-edge-connected compo-
nents efficiently. Experiments across datasets
from a variety of applications demonstrate
not only the success of CompleteID but also
the importance of completability analysis.

1 Introduction

Low-rank matrix completion is a tool that has been
widely adopted across a variety of applications. The
problem takes as input a partially-observed matrix and
asks for a completion of the missing values such that
the estimate is low rank. The large adoption of ma-
trix completion in practice is supported by a body of
elegant theoretical and practical results surrounding
low-rank matrix completion [3, 4, 9, 10, 12, 13, 14, 31].
To provide guarantees on the quality of completion,
the observations are typically assumed to sufficiently
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cover the matrix, both in quantity and uniformity.
For example, Candès and Tao [5] showed that when
⌦(nrpolylog(n)) entries are observed uniformly at ran-
dom, an n ⇥ n incoherent matrix of rank r can be
accurately completed with high probability. Unfortu-
nately, it is often the case that real-world data does
not satisfy the assumptions required for accurate com-
pletion; not only is the observed data highly sparse,
but the entries are rarely observed uniformly at ran-
dom [19]. In this case, blindly applying a completion
algorithm does not guarantee accurate completion, and
runs the danger of poor quality estimates.

However, even when the matrix as a whole is not well
suited for existing completion algorithms, there may
very well be submatrices that can still be completed
reliably. By examining the sparsity and non-uniformity
of the observed data, valuable information on the loca-
tion of the completable submatrices van be extracted.
Identifying such submatrices isolates parts of the data
that can be completed accurately and more efficiently
due to the reduced problem size. When the matrix esti-
mate is used to guide an action, such recommendation,
traffic routing, or experimentation, it is undoubtedly
important to know which parts of the estimate can
be relied upon. Moreover, knowing which parts of the
data are completable also provides feedback on how
information is distributed throughout the matrix with
respect to the completion task. Such information can
then be used to study the behavior of consumers, to
guide additional data acquisition, and more.

In this work, we propose to incorporate an analysis of
the completability of the input which runs in parallel
to the matrix completion. The proposed framework,
which we call CompleteID and depict in Figure 1, trans-
forms the question of completability, i.e does there exist
a unique rank-k matrix that matches the observations?,
into a graph mining task on a bipartite graph built
from the observation pattern which admits an efficient
solution. Building upon previous results on matrix
completability [15, 16, 24], we relate completability to
edge-connectivity of the associated graph: A submatrix
is considered as completable when the corresponding
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Figure 1: Traditional workflow (top) and two possible
proposed workflows where completability is applied (1)
as a post-facto analysis of which estimates are reliable;
(2) a priori to guide completion.

subgraph is k-edge-connected for target rank k. This
correspondence captures a slightly relaxed theoreti-
cal guarantee in favor of an efficient algorithm that
makes application on web-scale data analysis possible.
As a key module in CompleteID, we propose an effi-
cient algorithm, called MaxKCD, to enumerate maximal
k-edge-connected components; the corresponding com-
pletable submatrices that can either be completed later
by off-the-shelf algorithms or serve as an indication
of confidence on an existing prediction. Further, the
algorithm we propose does not require an additional
tuning parameter and is largely agnostic to completion
algorithm used.

To the best of our knowledge, the CompleteID algo-
rithm is the first scalable algorithm that discovers com-
pletable submatrices for real-world applications. We
advocate for a new workflow that incorporates com-
pletability analysis alongside matrix prediction to any
real-world application that is based on low-rank matrix
completion, such as recommender systems. It has an ar-
ray of benefits. First, the cold-start problem no longer
requires manual handling, as the newly arrived user
with insufficient data is identified as non-completable.
Second, in the case that the overall completion accu-
racy is low, the work proposed here is able to identify
entries that were overshadowed by the large error and
can be accurately predicted nonetheless. Finally, even
if the error is reasonable, there may be a disparity in
the accuracy of the entries, giving a false sense that
accurate recommendations are being made. This situ-
ation is dangerous as it has the propensity to lead to
inaccurate recommendations that deter customers.

The contributions of the paper include:

• We study the novel problem of completable sub-
matrix discovery : identify submatrices that are
accurately completable. To solve the problem in a
practical and theoretically supported manner, we
identify a criterion for matrix completability by

using edge-connectivity on the associated graph.

• We develop the first scalable solution, CompleteID,
for the completable submatrix discovery. The
CompleteID algorithm can be incorporated into
real-world applications, without noticeable over-
head, and empirical evaluation on both synthetic
and real-world datasets demonstrate its success.

The paper is organized in the following manner: we
briefly review the related works and notations in Sec-
tion 2. In Section 3, we theoretically and empirically
motivate edge-connectivity as the completability cri-
terion. Section 4 gives the details of MaxKCD that ef-
ficiently finds k-connected components. Finally, we
demonstrate the practical utility of CompleteID in Sec-
tion 5. Due to the page limit, we defer the proofs and
some additional experiments to the appendix.

2 Preliminaries and related work

Notation: Throughout the paper we will use M to
refer to an n⇥m fully-known matrix of rank k. When
the matrix is only partially known, we use M⌦ to
refer to the matrix that is equal to M on the entries
specified by ⌦ ✓ {(i, j)|1  i  n, 1  j  m} and zero
elsewhere. When a completion algorithm is applied to
a partially observed matrix M⌦ with target rank k, the
output estimate is denoted as M̂.

For a partially observed matrix M⌦, the corresponding
bipartite graph G⌦ = (V1, V2, E) is constructed as
follows: create a vertex i 2 V1 for every row of M⌦ and
a vertex j 2 V2 for every column. Add an edge (i, j) to
G⌦ if and only if (i, j) 2 ⌦ (i.e., the entry is observed).

Related work: There are a large body of elegant
theoretical and practical results for low-rank matrix
completion [3, 4, 9, 10, 12, 13, 14, 31]. In order to pro-
vide guarantees on the quality of the completion, two
types of assumption on the input have been established.
The first set states that each low-rank component must
be spread evenly across the matrix, for example, the
notion of incoherence [4] is commonly adopted. The
second set of assumptions concerns the locations of
observed entries, requiring the pattern to sufficiently
cover the matrix both in quantity and uniformity.

Most of the existing work on low-rank matrix com-
pletion focuses on 1) reducing the required number of
observations under particular assumptions, or 2) im-
proving the computational efficiency of the completion
algorithm. There has been little work devoted to the
case when the input has an insufficient number of ob-
servations, in which the low-rank solution might not be
completable even with a known rank k. Existing work
has incorporated side information [20, 22, 32], or taken
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an active approach by adding new entries [6, 23]. Un-
fortunately, active approaches are not feasible in many
applications that are restricted in monetary and physi-
cal capabilities to acquire new information, nor in those
that rely on human good will to provide it. Further,
while the algorithm in [23] can identify completable
entries, the results are dependent on the initialization
and active capability.

A few works study the matrix completion problem in
the similar setting of the pattern of observation as a
deterministic input. In [15], Király et al. produce
accuracy estimates for entries when the matrix has
rank-1. The approach samples submatrices that con-
tain a particular missing entry and uses the distribution
of completions to produce an estimate of the confidence.
Király et al. [16] also provided a necessary and suffi-
cient condition for a partially-observed matrix to have
a finite number of completions at rank k. This condi-
tion was used as a basis to an algorithm for identifying
the missing entries in the partially observed matrix
which can take only a finite number of possible values
(called finitely completable). In another line of work
work, Bhojanapalli and Jain [2] proved that the spec-
tral gap on the associated bipartite graph can be used
as a sufficient condition for the matrix completabil-
ity with nuclear norm surrogate. Unfortunately, all
works are not suitable for the purpose of identifying
completable submatrices, as they are computationally
demanding for large real-world matrices, let alone for
our submatrix-search version. Further, many of these
works are too coarse, providing only yes/no feedback
on the matrix as a whole.

Several works that either explicitly or implicitly esti-
mate the per-entry error margin on estimates produced
by a particular matrix completion algorithm [6, 11, 27].
While differing in the precise details, each method con-
structs a particular model for the completion process.
The variance of the estimate of each entry in this model
is used to represent the confidence, and entries with
very high confidence are likely to be completed accu-
rately. In contrast to these works, the framework we
propose incorporates completability in a manner that
is independent of the completion algorithm used. In
that sense, the algorithm we propose is more powerful
in that it provides insights on the matrix completion
task as whole, rather than the particular algorithm
being applied.

3 Identifying completability

In this section, we present the proposed algorithm
for identifying completable submatrices, which we call
CompleteID. The focus of this section is on finding an
appropriate criterion for matrix completability. For an

algorithm to have both theoretical and practical impor-
tance, there are two factors to consider: (i) the criterion
for matrix completability must be closely connected to
the theoretical feasibility of recovery (identifiability),
and (ii) the criterion must admit an efficient algorithm
for finding completable submatrices. Existing results
typically focus on developing a criterion that is strong
for the first factor, while greatly sacrificing the second.

To achieve a good trade-off between theoretical and
practical factors, we propose using the concept of edge-
connectivity on the bipartite graph G⌦ associated with
the input M⌦, as the criterion for matrix completability.
Hence, we can transform the problem of identifying
completable submatrices in M⌦ into the problem of
identifying k-connected components in G⌦.

The proposed approach, called CompleteID, is com-
posed of three steps: (1) transform the input matrix
M⌦ into a graph G⌦, (2) decompose G⌦ into maximal
k-connected components using the proposed MaxKCD

algorithm, (3) map the vertices in each component
to rows and columns indexing completable submatri-
ces. In the remainder of this section, we motivate the
k-connectivity criterion both theoretically and empir-
ically. Note that we assume the underlying low-rank
matrix is drawn from some continuous distribution,
which avoids the extreme coherent matrices such as
the permutation matrices. Similar assumption is also
adopted by existing works [15, 16].

3.1 Connectivity for completability

High edge-connectivity in a graph ensures that there
are many independent paths between the vertices. For
example, if a graph is 3-edge connected, it means that
there exist three vertex-independent paths between
every pair of vertices. A graph with high edge connec-
tivity can be considered robust in the sense that edges
can be removed without disconnecting the graph. In
the context of matrix completion, a set of independent
paths in the bipartite graph G⌦ can be thought of as
a set of constraints on the relationship between the
rows or columns of M⌦. Intuitively, more independent
paths impose more constraints and render it easier to
recover the missing entries.

For example, consider the case when the target rank is
k = 1, i.e., the matrix M is assumed to be rank-1. In
this case, k-edge-connectivity reduces simply to graph
connectivity; if G⌦ is connected then each entry of M⌦

will be in the same row or column as at least one other
entry. This overlap can be viewed as fixing the scaling
parameter in the rank-1 factors, making it possible
to recover the missing values in M⌦. The intuition
is in line with theoretical results by Király et al. [16]
showing that if G⌦ is connected, then there is a single
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CompleteID Density Quasi Triangle AC

Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

CAG 0.93 1.00 0.27 1.00 0.00 1.00 1.00 0.42 0.74 0.52
Celegans 0.91 1.00 0.32 1.00 0.00 1.00 0.99 0.53 1.00 0.47
CAG364 0.98 1.00 0.34 1.00 0.00 1.00 0.99 0.66 1.00 0.73

Table 1: Evaluation of k-connectivity criterion with respect to Exact and baselines. Pr as Precision, Rec as
Recall, and 0.00 as < 1e � 3.

rank-1 matrix M̂ that is consistent with M⌦ on ⌦. For
general rank k > 1, the following proposition holds:
Proposition 1. If the associated bipartite graph of a
partially-observed matrix is not k-edge-connected, there
are an infinite number of rank-k matrices that consis-
tent with the observation.

Proof. The key idea is to consider the number of entries
that need to be observed in order to fix ambiguity in
the recover. For example, consider an n ⇥ m matrix
M of rank k which can be written as a product of two
factors: A of size n ⇥ k and B of size m ⇥ k such that
M = AB>. Now consider a partition of M⌦ into M⌦1

of size n1⇥m1 and M⌦2 of size n2⇥m2 where n1+n2 =
n, m1 +m2 = m, and ⌦ = {⌦1,⌦2}. Figure 2a gives a
visual of M⌦ and G⌦. Observe that G⌦ is composed
of two components that are disconnected, since there
is no overlap between ⌦1 and ⌦2.
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With this ⌦, the factor A can be divided into two
parts: A1 2 Rn1⇥k and A2 2 Rn2⇥k with n = n1 + n2.
Similarly for B with m = m1 + m2. Denote by M(W)
the family of matrices parameterized by a k⇥ k matrix
W, laying in the span of A2 and B2, that is applied
to A2 and B2 as shown below:

M(W) =


A1

A2W

� ⇥
B>

1 W†B>
2

⇤
=


A1B

>
1 A1W

†B>
2

A2WB>
1 A2B

>
2

�

Observe that M⌦ is identical for every matrix in the
family, regardless of W. In other words, given M⌦

there are infinitely many completions M̂ that match on
⌦. To have any hope of recovering the true matrix M,
there must be some additional known entries outside of
⌦1 and ⌦2 to fix the degrees of freedom in W, call these
entries ⌦c. It can be shown that as long as |⌦c| < k,

which is the minimum degrees of freedom for W, then
M⌦ has infinitely many completions. Entries in ⌦c

corresponds to edges in the cut on G⌦ as illustrated in
Figure 2b; hence, ⌦c induces k-connectivity on G⌦.

The intuition is to consider a partition of the graph
into two components corresponding to submatrices
all of whose degrees of freedom are fixed. It can be
shown, that in order to fix all degrees of freedom in the
matrix at least k additional entries (edges) are needed,
translating to k-edge-connectivity.

When entries are observed uniformly at random, the
edge-connectivity requirement also nicely aligns with
the known results [5], which can be proved by apply-
ing Chernoff Bounds on the graph cut over all of the
possible graph partitions.
Proposition 2. For a partially observed n⇥n matrix,
if the entries ⌦ is observed uniformly at random, then
there exists a constant C, such that when |⌦| � nk +
C(nk)0.5 log(n/�), the corresponding bipartite graph is
k-edge-connected with probability at least 1� �.

Aside from k-connectivity, there are other graph-
theoretic concepts that may be considered as a criterion
for matrix completability, such as density. Depending
on the particular end-goal, various density measures
and computational models have been defined, with
the state of the art including degree-density [8], edge-
surplus [30], k-clique [29], and various notions related
to k-clique that emphasize cohesiveness, such as k-plex.
Not only do these definitions have no known relation
to completability, but most of them are also NP-hard
to enumerate [1]. In contrast, the k-connected com-
ponents can be mined in polynomial time even in the
worst case [7, 26].

3.2 Empirical evidence for connectivity as a

completability criterion

As discussed in Section 2, the algorithm proposed in
[16] which we call Exact, is computationally expensive;
however, its theoretical guarantee provides an oppor-
tunity to validate our choice of k-connectivity as a
criterion for completability. To do this, we compare
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the entries deemed completable by Exact to those that
participate in k-connected components. Limited by
the poor scalability of Exact, we select several small
partially-observed matrices from the UF sparse ma-
trix collection, and run Exact and CompleteID on the
⌦ corresponding to each dataset with a range of val-
ues for k.1 Table 1 shows high precision and recall
of CompleteID with respect to Exact, validating that
k-connectivity is a good and efficient proxy for Exact.

We also compare with several baselines, including the
ActiveCompletion algorithm (AC) proposed in [23]
with the query budget set to zero, and four state-
of-the-art algorithms for dense subgraph discovery:
Density [8], Quasi [30], and Triangle [29].2 We note
that while the density-based algorithms have no theo-
retical ties to completability, in principle, higher density
increases the likelihood of completability.

We find that ActiveCompletion achieves high preci-
sion but low recall; in fact, as k grows, the algorithm
does not find any completable entries at all. These re-
sults held even when we allowed a small query budget,
and are a result of the large reliance on the starting
point and an active approach. Similarly, the Triangle

algorithm failed to identify a vast majority of the com-
pletable entries; this behavior is exacerbated as the size
and rank of the matrix grow. In contrast both Density

and Quasi achieve a high recall but a low precision.In
other words, these algorithms falsely label many entries
as completable. The Graph-Triangle algorithm is not
shown since it failed to identify any components.

These results demonstrate that identifying completable
submatrices is a non-trivial task, and that k-CC decom-
position offer a promising approach for this problem
by achieving both high precision and recall. Not only
does the k-CCs capture the majority of completable
entries, but it also does not give false confidence with
false positives.

4 Finding k-connected components
Having established that edge connectivity is a good
criterion for completability, we now present an algo-
rithm for finding k-connected components (k-CCs) in
a graph. The problem can be stated as:
Problem 3. Given a graph G = (V, E) and a positive
integer k, find a partition of the vertices V =

Sm
i=1 Vi

with minimum m such that if |Vi| > 1 then the subgraph
induced by Vi is a maximal k-connected subgraph.

The algorithm we propose, called MaxKCD, is an im-
provement upon recent literature [7, 26] which modifies

1Dataset available at http://www.cise.ufl.edu/research/
sparse/matrices/

2Code available at https://github.com/giannisnik/k-
clique-graphs-dense-subgraphs

Algorithm 1: Maximal k-CC Decomposition (MaxKCD)

Input :Graph G = (V, E) and the target cut size k

Output :The vertex partition �
1 Initialize � = ; and �0 to be the whole graph G

2 while �i 6= ; do

3 Initialize �i+1 = ;
4 forall G

0 = (V 0
, E

0) 2 �i do

5 Find a cut C = (V 0
1 , V

0
2) = kCut(G0

, k)
6 if C = ; or |V 0| = 1 then

7 Add V
0 to �

8 else

9 Add G
0
V1

and G
0
V2

to �i+1

10 end

11 end

12 end

13 return �

the Stoer-Wagner algorithm [25] for finding a global
min cut. MaxKCD works by iteratively finding a cut of
size less than k in G until no such a cut exists and only
k-CCs or singleton vertices remain; the pseudocode is
shown in Algorithm 1.

Our main contribution in MaxKCD is the kCut subrou-
tine3 which utilizes three core operations: EarlyStop,
ForceContraction, and Batch-EarlyMerge. The
Batch-EarlyMerge operation is inspired by the ob-
servation that the maximal adjacency search (MAS) sub-
routine in the original Stoer-Wagner algorithm can be
accelerated by a batch-like approach; the acceleration
allows kCut to be more efficient while still retaining
accuracy for Problem 3. We also incorporate a vertex-
merging technique, Force-Contraction, which is a
more aggressive version than those used in previous
work. Finally, we use the EarlyStop routine proposed
in [26] to limit the number of recursive iterations. As an
interesting side benefit, the proposed kCut algorithm
can be used to speed up the original Stoer-Wagner algo-
rithm by actively updating k to be the current smallest
cut, starting from infinity. Due to space constraints,
we include the implementation details in Appendix A,
proofs of correctness in Appendix B. Note that some
of the techniques we mentioned have been discovered
in the graph mining literature[26, 7, 1], where we in-
corporate them together to achieve best performance.

Computational Complexity Since the kCut algo-
rithm can be used with binary search to solve the
global min-cut problem, the worst-case computational
complexity of kCut is the same as the Stoer-Wagner
algorithm: O

�
|V ||E|+ |V |2 log |V |

�
. However, unlike

3The source code of our C++ implementation can be
found at https://github.com/USC-Melady/Graph-Cut.

https://github.com/USC-Melady/Graph-Cut
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n m |⌦|
Netflix 480K 17K 100M
Amazon 6.6M 2.4M 29M

Foursquare 45K 17K 1.2M
DBLP 122K 36K 1.8M
Music 5K 210K 16M

LibimSeTi 135K 168K 17M
Gisette 6K 5K 3.9M

Table 2: Dataset details.

the Stoer-Wagner algorithm, the empirical runtime of
the kCut algorithm is much less than its worst-case.
If the input graph is sparse and loosely connected,
like those studied in real-world applications of matrix
completion, EarlyStop is likely to terminate the algo-
rithm in the first few calls. On the other hand, if the
input graph is tightly connected, Batch-EarlyMerge
ensures that each recursive iteration will be conducted
efficiently, and together with ForceContraction, the
graph size shrinks quickly. In our experiments, less
than 10 recursive calls are observed even in graphs
with million of vertices and billions of edges, with the
empirical runtime scaling with |E| log |V |.Note that the
overall running time of the MaxKCD algorithm is a small
fraction of the running time of the common matrix
completion algorithms.

5 Experiments

In this section, we evaluate the performance of
CompleteID on both real and synthetic data, study
the interplay of connectivity and completability, and
demonstrate the variety of insights it offers.

Setup: In all our experiments, we use a pattern of
observed entries ⌦ from sparse real-world data (shown
in Table 2) to capture sampling patterns that occur
in practice as opposed to artificial settings. We ex-
periment with the real matrix values and, for a more
controlled setting, with synthetic ones of fixed rank.
Synthetic matrices are generated following a standard
Gaussian, with additive Gaussian noise having stan-
dard deviation 0.1.

Given a partially observed matrix M⌦, we estimate
the missing entries by fitting a rank kMC matrix to the
observed entries with alternating minimization (chosen
for it computational efficiency) [17]. For an output esti-
mate M̂ we compare the RMSE on the held-out test set,
separately over the completable and non-completable
entries as selected by CompleteID.

5.1 Traditional completion task

For two large-scale collaborative filtering datasets,
Netflix and Amazon [18] , we select 99% of the ob-
served entries of Amazon and Netflix as the training
set and evaluate the error over the remaining held-out
test set. We explore the behavior of CompleteID under
a variety of model settings parameterized by kKCC , the
edge-connectivity for MaxKCD ,and kMC the rank for
the completion algorithm. The target rank kMC ranges
in {10, 20, 30, 40}, and kKCC in [10, 90] for Amazon
and [10, 350] for Netflix.

Figures 3a and 3b show the RMSE on the completable
and non-completable entries. For any given kKCC and
kMC , the RMSE on the completable entries is signifi-
cantly lower than on non-completable ones. Moreover,
for a given kMC , as kKCC increases, the RMSE on the
completable entries continues to drop. This decay
indicates that the CompleteID algorithm serves as a
smooth measure for completability, meaning that we
need not be bounded by kMC = kKCC in real world ap-
plications. With kKCC = 350, there are still over 55%
of test entries that are completable on Netflix, while
Amazon is much sparser with around 3% entries that
are completable when kKCC = 90. In Figure 3b) we
see an interesting flipping behavior on the completable
entries with different kMC . The fact that smaller kMC

give better accuracy when kKCC is small can be ex-
plained by overfitting; however, as kKCC increases, we
see a faster decay in RMSE for larger kMC , resulting in a
better performance. This behavior demonstrates that
the CompleteID algorithm can be used to deploy more
complex models to improve local performance without
the consequence of overfitting.

5.2 Controlled matrix completion

In this section, we mimic the collaborative filtering
task on DBLP, Music, LibimSeTi, and Gisette, in a
controlled setting where we generate a synthetic matrix
of rank k as described in the beginning of this section.
The synthetic matrix allows us to use the full set of
observed entries for training, and the rest for testing.
Table 3 shows the RMSE for a synthetic matrix of rank
k = 20 and kKCC = kMC = 20. In addition, Figure 3c
and Figure 3d show the RMSE over kKCC 2 [1, 40] on
the DBLP and LibimSeTi dataset; the coordinate at
x = kKCC = 20 is the same value that is in Table 3.
The completability ranges from 96% to 55% for DBLP
and 99% to 87% for LibimSeTi. Consistent with the
previous experiment, the error over completable en-
tries is lower than over non-completable ones across
all datasets. Further, we see that the error decreases
as kKCC grows, but hits a meaningful point around
kKCC = 20 which is the matrix rank.
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(a) Amazon (b) Netflix (c) DBLP kMC = 20 (d) LibimSeTi kMC = 20

Figure 3: The RMSE of completable and non-completable entries on the test set as a function of kKCC , with
varying kMC for Amazon and Netflix, and kMC = 20 for DBLP and LibimSeTi.

DBLP Music LibimSeTi Gisette

Compl. 0.42 0.29 0.38 0.11
Non-Compl. 4.41 2.96 5.27 5.81

Table 3: Completability over small datasets with rank-
20 synthetic matrix and kKCC = kMC = 20.

5.3 Comparison with baselines

As discussed in Section 3, most related completability
algorithms are limited by their computational ineffi-
ciency, hence we include a comparison with the best
performing density-based baseline, SmartDensity. For
each unknown entry (i, j) in the test set, we calculate
the number of known entries in the i-th row and j-
th column as a measure of completability; the higher
the better. Then, we mark the top N entries as com-
pletable, where N is the number of completable entries
discovered by CompleteID (the knowledge of N merits
the name Smart).

We tested CompleteID and SmartDensity on the
Netflix data. Instead of the randomly splitting the
entries into training and testing, we used the times-
tamps available on matrix entries and select the first
25% (or 50%) of the observed ratings as training, and
the next 1% of the observed entries as testing. The
RMSE on the completable entries for both CompleteID

and SmartDensity is shown in Figures 4a and 4b. We
see that the RMSE over the completable entries dis-
covered by CompleteID is significantly lower than over
those discovered by SmartDensity which is slightly bet-
ter than the total RMSE. Moreover, the performance of
SmartDensity degrades, implying that identifying com-
pletable submatrices is a non-trivial problem that can-
not be addressed solely with a density-based approach.
Finally, we also compared with ActiveCompletion [23]
of Section 3. We found that ActiveCompletion iden-
tifies only a small subset of the completable entries
identified by CompleteID. For example, on Netflix the

algorithm did not find any completable regions for
k > 90. This is due to its dependence on proper initial-
ization and the ability to be active by adding entries.

5.4 Completability over time

Finally, we study the accuracy over the completable
and non-completable entries with time for two datasets,
Netflix and Foursquare. For Netflix we use the real
data values, and for Foursquare we generate a synthetic
rank-10 matrix. Both datasets contain timestamps
which we use to divide the data into training and
testing. At each timestamp t, we use the entries that
appeared before t as training and the entries appears
within [t, t +�t] as testing – mimicking the pattern of
observed entries encountered in real-world applications.
The time is measured by days, and the length of the test
set �t is 30 days for Netflix and 3 days for Foursquare.
For both matrices we show results for fixed kMC =
kKCC = 10.

Figures 4d and 4c show the RMSE as a function of
time with the percentage of completable entries vary-
ing from 0% to ⇡ 80%. We observe that over time,
the test entries that fall in submatrices deemed com-
pletable by MaxKCD have significantly less error than
those outside the submatrices. These results demon-
strate not only that CompleteID successfully identifies
completable submatrices, but that the knowledge of
these submatrices carries importance in practice.

5.5 Further experiments

In this section, we highlight several additional experi-
ments and with more results featured in Appendix C.

Alternative completion algorithms: We selected
five algorithms with the most competitive efficiency
and accuracy: LMaFit, OptSpace, LRGeom, Riemann,
and VBMC. 4 The interested reader can refer to [34]

4Source code was obtained from
https://sites.google.com/site/lowrankmodeling/
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(a) 25% Netflix (b) 50% Netflix

(c) Foursquare (d) Netflix

Figure 4: Figures (a) and (b) show a comparison be-
tween CompleteID and SmartDensity with 25% and
50% of Netflix. Figures (c) and (d) show the RMSE of
completable and non-completable entries as a function
of time for Netflix and Foursquare with k = 10.

for a comparison. We found that using all algorithms,
the error over the entries selected by CompleteID as
completable is significantly smaller than over the non-
completable ones, which demonstrates the robustness
of CompleteID.

Efficiency of MaxKCD: The overall running time of the
MaxKCD algorithm is a small fraction of the running time
of common matrix completion algorithms. Therefore,
the utility of our framework is not limited by the com-
putational efficiency of MaxKCD. However, the empirical
runtime is of interest since MaxKCD can be used inde-
pendently for graph maximal k-connected components
decomposition and global minimum cut algorithms.
With our aggressive graph contraction schemes, includ-
ing both Batch-EarlyMerge and ForceContraction,
the overall running time is all less than 6 minutes on
both Amazon and Netflix datasets with k � 10.

6 Conclusion

In this work, we argue that an analysis of the com-
pletability of a partially-observed matrix should be
carried out alongside the actual completion. While
real-world matrices are not typically completable as a
whole, we make the observation that there may still
exist portions of the data that can still be completed
accurately. Information of such completable regions

enables a more principled completion process, provid-
ing feedback on the structure of the observed data,
the accuracy of the estimate through the data, and
whether issues such as overfitting and cold-start are
of concerns. We propose the problem of identifying
completable submatrices and the CompleteID frame-
work, which features the first scalable algorithm for the
problem. A key component of our work is the exposure
of edge-connectivity as a practical and theoretically
supported surrogate for completability.

While we have shown that incorporating completability
analysis into the matrix completion workflow is an
impactful and promising direction, there are various
avenues that are open for investigation. One major
component is the development of a deeper theoretical
understanding of matrix completability. While several
works have studied the problem [19, 23, 16, 24], many
open questions remain.
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