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Appendix

A Proofs

Proof of Proposition 1. Let π be parametrized by x. We prove the sufficient conditions by showing that
Aπ∗|t(s, a) is strongly convex in a for all s ∈ S, which by the linear policy assumption implies fn(π) is strongly
convex in x.

For the first case, since Qπ∗|t(s, a) = ct(s, a) + Es′|s,a[Vπ∗|t+1(s′)], given the constant assumption, it follows that

Aπ∗|t(s, a) = Qπ∗|t(s, a)− Vπ∗|t(s) = ct(s, a) + const.

is strongly convex in terms of a.

For the second case, consider a system ds = (f(s) + g(s)a) dt+ h(s)dw, where f, g, h are some matrix functions
and dw is a Wiener process. By Hamilton-Jacobi-Bellman equation (Bertsekas et al., 1995), the advantage
function can be written as

Aπ∗|t(s, a) = ct(s, a) + ∂sVπ∗|t(s)
T g(s)a+ r(s)

where r(s) is some function in s. Therefore, Aπ∗|t(s, a) is strongly convex in a. �

Proof of Theorem 1. The proof is based on a basic perturbation lemma in convex analysis (Lemma 4), which for
example can be found in (McMahan, 2014), and a lemma for online learning (Lemma 5).

Lemma 4. Let φ1 : Rd 7→ R
⋃
{∞} be a convex function such that x1 = arg minx φt(x) exits. Let ψ be a function

such that φ2(x) = φ1(x) +ψ(x) is α-strongly convex with respect to ‖ · ‖. Let x2 = arg minx φ2(x). Then, for any
g ∈ ∂ψ(x1), we have

‖x1 − x2‖ ≤
1

α
‖g‖∗

and for any x′

φ2(x1)− φ2(x′) ≤ 1

2α
‖g‖2∗

When φ1 and ψ are quadratics (with ψ possibly linear) the above holds with equality.

Lemma 5. Let lt(x) be a sequence of functions. Denote l1:t(x) =
∑t
τ=1 lτ (x). and let

x∗t = arg min
x∈K

l1:t(x)

Then for any sequence {x1, . . . , xT }, τ ≥ 1, and any x∗ ∈ K, it holds

T∑
t=τ

lt(xt) ≤ l1:T (x∗T )− l1:τ−1(x∗τ−1)

+

T∑
t=τ

l1:t(xt)− l1:t(x
∗
t )

Proof. Introduce a slack loss function l0(·) = 0 and define x∗0 = 0 for index convenience. This does not change
the optimum, since l0:t(x) = l1:t(x).

T∑
t=τ

lt(xt) =

T∑
t=τ

l0:t(xt)− l0:t−1(xt)

≤
T∑
t=τ

l0:t(xt)− l0:t−1(x∗t−1)

= l0:T (x∗T )− l0:τ−1(x∗τ−1)

+

T∑
t=τ

l0:t(xt)− l0:t(x
∗
t ) �
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Note Lemma 5 does not require lt to be convex and the minimum to be unique.

To prove Theorem 1, we first note that by definition of x̂N , it satisfies F (x̂N , x̂N ) ≤ 1
N

∑N
n=1 fn(xn). To bound

the average performance, we use Lemma 5 and write

N∑
n=1

fn(xn) ≤ f1:N (xN+1) +

N∑
n=1

f1:n(xn)− f1:n(xn+1)

since xn = arg minx∈X f1:n−1(x). Then because f1:k is kα-strongly convex, by Lemma 4,

N∑
n=1

fn(xn) ≤ f1:N (x∗n) +

N∑
n=1

‖∇fn(xn)‖2∗
2αn

.

Finally, dividing the upper-bound by n and using the facts that
∑n
k=1

1
k ≤ ln(n) + 1 and min ai ≤ 1

n

∑
ai for

any scalar sequence {an}, we have the desired result. �

Proof of Theorem 3. Consider the example in Section 4. For this problem, T = 2, J(x∗) = 0, and ε̃Π,π∗ = 0,
implying F (x, x) = 1

2J(x) = 1
2 (θ − 1)2x2. Therefore, to prove the theorem, we focus on the lower bound of x2

N .

Since xn = arg minx∈X f1:n−1(x) and the cost is quadratic, we can write

xn+1 = arg min
x∈X

f1:n(x)

= arg min
x∈X

(n− 1)(x− xn)2 + (x− θxn)2

= (1− 1− θ
n

)xn

If θ = 1, then xN = x1 and the bound holds trivially. For general cases, let pn = ln(x2
n).

pN − p2 = 2

N−1∑
n=2

ln

(
1− 1− θ

n

)

≥ −2(1− θ)
N−1∑
n=2

1

n− (1− θ)

where the inequality is due to the fact that ln(1 − x) ≥ −x
1−x for x < 1. We consider two scenarios. Suppose

θ < 1.

pN − p2 ≥ −2(1− θ)
∫ N−1

1

1

x− (1− θ)
dx

= −2(1− θ) ln(x− (1− θ))|N−1
1

= −2(1− θ) (ln(N + θ − 2)− ln(θ))

≥ −2(1− θ) ln(N + θ − 2)

Therefore, x2
N ≥ x2

2(N + θ − 2)2(θ−1) ≥ Ω(N2(θ−1)).

On the other hand, suppose θ > 1.

pN − p2 ≥ 2(θ − 1)

∫ N

2

1

x− (1− θ)
dx

= 2(θ − 1) ln(x− (1− θ))|N2
= 2(θ − 1) (ln(N − 1 + θ)− ln(1 + θ))

Therefore, x2
N ≥ x2

2(N − 1 + θ)2(θ−1)(1 + θ)−2(θ−1) ≥ Ω(N2(θ−1)). Substituting the lower bound on x2
N into the

definition of F (x, x) concludes the proof. �
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Proof of Corollary 1. To prove the corollary, we introduce a basic lemma

Lemma 6. (Lan, 2013, Lemma 1) Let γk ∈ (0, 1), k = 1, 2, . . . be given. If the sequence {∆k}k≥0 satisfies

Λk+1 ≤ (1− γk)Λk +Bk,

then

Λk ≤ Γk + Γk

k∑
i=1

Bi
Γi+1

where Γ1 = Λ1 and Γk+1 = (1− γk)Γk.

To bound the sequence Sm:n+1, we first apply Lemma 2. Fixed m, for any n ≥ m+ 1, we have

Sm:n+1 ≤
(

1− 1

n−m+ 1

)
Sm:n + ‖xn+1 − xn‖

≤
(

1− 1

n−m+ 1

)
Sm:n +

θ

n
Sn

≤
(

1− 1

n−m+ 1

)
Sm:n +

θc

n2−θ

where c = S2e
1−θ.

Then we apply Lemma 6. Let k = n−m+ 1 and define Rk = Sm:m+k−1 = Sm:n for k ≥ 2. Then we rewrite the
above inequality as

Rk+1 ≤
(

1− 1

k

)
Rk +

θc

(k +m− 1)2−θ

and define

Γk :=

{
1, k = 1

(1− 1
k−1 )Γk−1, k ≥ 2

By Proposition 2, the above conversion implies for some positive constant c,

R2 = Sm:m+1 = ‖xm+1 − xm‖ ≤
θSm
m
≤ θc

m2−θ

and Γk ≤ O(1/k) and Γk
Γi
≤ O( ik ). Thus, by Lemma 6, we can derive

Rk ≤
1

k
R2 +O

(
θc

k∑
i=1

i

k

1

(i+m− 1)2−θ

)

≤ 1

k
R2 +O

(
θc

k

k

θ

1

(m+ k − 1)1−θ

)
=

1

k
R2 +O

(
1

(m+ k − 1)1−θ

)
≤ 1

k

θc

m2−θ +O

(
1

(m+ k − 1)1−θ

)
= O(

1

n1−θ )
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where we use the following upper bound in the second inequality

k∑
i=1

i

(i+m− 1)2−θ ≤
∫ k

0

x

(x+m− 1)2−θ dx

=
m+ (1− θ)x− 1

θ(1− θ)(m+ x− 1)1−θ

∣∣∣∣k
0

=
(1− θ)k +m− 1

θ(1− θ)(m+ k − 1)1−θ −
m− 1

θ(1− θ)(m− 1)1−θ

=
k

θ

1

(m+ k − 1)1−θ +
m− 1

θ(1− θ)

(
1

(m+ k − 1)1−θ −
1

(m− 1)1−θ

)
≤ k

θ

1

(m+ k − 1)1−θ �

Proof of Lemma 3. Define δπ|t such that dπ|t;q(s) = (1−qt)δπ|t(s)+qtdπ∗(s), and define gz|t(s) = ∇zEπ[Qπ∗|t](s),
for π parametrized by z; then by assumption, ‖gz|t‖∗ < G2. Let π, π′ be two policies parameterized by x, y ∈ X ,
respectively. Then

‖∇2F̂ (x, z)−∇2F̂ (y, z)‖∗
= ‖Edπ̃ [gz|t]− Edπ̃′ [gz|t]‖∗

= ‖ 1

T

T−1∑
t=0

(1− qt)(Eδπ|t;q [gz|t]− Eδπ′|t;q [gz|t])‖∗

≤ (1− qT )
1

T

T−1∑
t=0

‖Eδπ|t;q [gz|t]− Eδπ′|t;q [gz|t]‖∗

≤ (1− qT )
2G2

T

T−1∑
t=0

‖δπ|t;q − δπ′|t;q‖1

≤ (1− qT )
2G2

T

T−1∑
t=0

‖dπ|t − dπ′|t‖1

≤ (1− qT )β‖x− y‖

in which the second to the last inequality is because the divergence between dπ|t and dπ′|t is the largest among
all state distributions generated by the mixing policies. �

Proof of Corollary 2. The proof is similar to Lemma 3 and the proof of (Ross et al., 2011, Theorem 4.1). �

B Analysis of AggreVaTe in Stochastic Problems

Here we give the complete analysis of the convergence of AggreVaTe in stochastic problems using finite-
sample approximation. For completeness, we restate the results below: Let f(x; s) = Eπ[Aπ∗|t] (i.e. fn(x) =
Edπn [f(x; s)], where policy π is a policy parametrized by x. Instead of using fn(·) as the per-round cost in the
nth iteration, we use consider its finite samples approximation gn(·) =

∑mn
k=1 f(·; sn,k), where mn is the number

of independent samples collected in the nth iteration.

Theorem 4. In addition to Assumptions 5 and 6, assume f(x; s) is α-strongly convex in x and ‖f(x; s)‖∗ < G2

almost surely. Let θ = β
α and suppose mn = m0n

r for some r ≥ 0. For all N > 0, with probability at least 1− δ,

F (xN , xN ) ≤ ε̃Π,π∗ + Õ

(
θ2

c

ln(1/δ) + CX
Nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cNmin{2,1+r}

)
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where c = α
G2

2m0
and CX is a constant9 of the complexity of Π.

B.1 Uniform Convergence of Vector-Valued Martingales

To prove Theorem 4, we first introduces several concentration inequalities of vector-valued martingales by (Hayes,
2005) in Section B.1.1. Then we prove some basic lemmas regarding the convergence the stochastic dynamical
systems of ∇gn(x) specified by AggreVaTe in Section B.1.2 and B.1.3. Finally, the lemmas in these two
sections are extended to provide uniform bounds, which are required to prove Theorem 4. In this section, we
will state the results generally without limiting ourselves to the specific functions used in AggreVaTe.

B.1.1 Generalization of Azuma-Hoeffding Lemma

First we introduce two theorems by Hayes (2005) which extend Azuma-Hoeffding lemma to vector-valued mar-
tingales but without dependency on dimension.

Theorem 5. (Hayes, 2005, Theorem 1.8) Let {Xn} be a (very-weak) vector-valued martingale such that X0 = 0
and for every n, ‖Xn −Xn−1‖ ≤ 1 almost surely. Then, for every a > 0, it holds

Pr(‖Xn‖ ≥ a) < 2e exp

(
−(a− 1)2

2n

)
Theorem 6. (Hayes, 2005, Theorem 7.4) Let {Xn} be a (very-weak) vector-valued martingale such that X0 = 0
and for every n, ‖Xn −Xn−1‖ ≤ cn almost surely. Then, for every a > 0, it holds

Pr(‖Xn‖ ≥ a) < 2 exp

(
−(a− Y0)2

2
∑n
i=1 c

2
i

)
where Y0 = max{1 + max ci, 2 max ci}.

B.1.2 Concentration of i.i.d. Vector-Valued Functions

Theorem 5 immediately implies the concentration of approximating vector-valued functions with finite samples.

Lemma 7. Let x ∈ X and let f(x) = Eω[f(x;ω)], where f : X → E and E is equipped with norm ‖ · ‖. Assume

‖f(x;ω)‖ ≤ G almost surely. Let g(x) = 1
M

∑M
m=1 f(x;ωk) be its finite sample approximation. Then, for all

ε > 0,

Pr(‖g(x)− f(x)‖ ≥ ε) < 2e exp

(
−

(Mε
2G − 1)2

2M

)

In particular, for 0 < ε ≤ 2G,

Pr(‖g(x)− f(x)‖ ≥ ε) < 2e2 exp

(
−Mε2

8G2

)

Proof. Define Xm = 1
2G

∑m
k=1 f(x;ωk)− f(x). Then Xm is vector-value martingale and ‖Xm −Xm−1‖ ≤ 1. By

Theorem 5,

Pr(‖g(x)− f(x)‖ ≥ ε) = Pr(‖XM‖ ≥
Mε

2G
) < 2e exp

(
−

(Mε
2G − 1)2

2M

)

Suppose ε
2G < 1. Then Pr(‖XM‖ ≥ ε) < 2e2 exp

(
−Mε2

8G2

)
. �

9The constant CX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher complexity or
covering number (Mohri et al., 2012). For example, ln |X | can be linear in dimX .
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B.1.3 Concentration of the Stochastic Process of AggreVaTe

Here we consider a stochastic process that shares the same characteristics of the dynamics of 1
n∇g1:n(x) in

AggreVaTe and provide a lemma about its concentration.

Lemma 8. Let n = 1 . . . N and {mi} be a non-decreasing sequence of positive integers. Given x ∈ X , let
Yn := {fn(x;ωn,k)}mnk=1 be a set of random vectors in some normed space with norm ‖ · ‖ defined as follows:
Let Y1:n := {Yk}nk=1. Given Y1:n−1, {fn(x;ωn,k)}mnk=1 are mn independent random vectors such that fn(x) :=
Eω[fn(x;ω)|Y1:n−1] and ‖fn(x;ω)‖ ≤ G almost surely. Define gn(x) := 1

mn

∑mn
k=1 fn(x;ωn,k), and let ḡn = 1

ng1:n

and f̄n = 1
nf1:n. Then for all ε > 0,

Pr(‖ḡn(x)− f̄n(x)‖ ≥ ε) < 2 exp

(
−(nM∗ε− Y0)2

8G2M∗2
∑n
i=1

1
mi

)

in which M∗ =
∏n
i=1mi and Y0 = max{1 + 2M∗G

m0
, 2 2M∗G

m0
}.

In particular, if 2M∗G
m0

> 1, for 0 < ε ≤ Gm0

n

∑n
i=1

1
mi

,

Pr(‖ḡn(x)− f̄n(x)‖ ≥ ε) < 2e exp

(
−n2ε2

8G2
∑n
i=1

1
mi

)

Proof. Let M =
∑n
i=1mi. Consider a martingale, for m = l +

∑k−1
i=1 mi,

Xm =
M∗

mk

l∑
i=1

fk(x;ωk,i)− fk(x) +

k−1∑
i=1

M∗

mi

mi∑
j=1

fi(x;ωi,j)− fi(x).

That is, XM = nM∗(ḡn − f̄n) and ‖Xm −Xm−1‖ ≤ 2M∗G
mi

for some appropriate mi. Applying Theorem 6, we
have

Pr(‖ḡn − f̄n‖ ≥ ε) = Pr(‖XM‖ ≥ nM∗ε) < 2 exp

(
−(nM∗ε− Y0)2

2
∑M
m=1 c

2
m

)

where

M∑
m=1

c2m =

n∑
i=1

mi∑
j=1

(
2GM∗

mi

)2

= 4G2M∗2
n∑
i=1

1

mi
.

In addition, by assumption mi ≤ mi−1, Y0 = max{1 + 2M∗G
m0

, 2 2M∗G
m0
}. This gives the first inequality.

For the special case, the following holds

−(nM∗ε− Y0)2

2
∑M
m=1 c

2
m

=
−n2M∗2ε2

8G2M∗2
∑n
i=1

1
mi

+
2nM∗εY0 − Y 2

0

8G2M∗2
∑n
i=1

1
mi

≤ −n2ε2

4G2
∑n
i=1

1
mi

+ 1

if ε satisfies

2nM∗εY0 < 8G2M∗2
n∑
i=1

1

mi
=⇒ ε <

4G2M∗

Y0n

n∑
i=1

1

mi

Substituting the condition that Y0 = 4M∗G
m0

when 2M∗G
m0

> 1, a sufficient range of ε can be obtained as

4G2M∗

Y0n

n∑
i=1

1

mi
=
Gm0

n

n∑
i=1

1

mi
≥ ε.

�
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B.1.4 Uniform Convergence

The above inequality holds for a particular x ∈ X . Here we use the concept of covering number to derive uniform
bounds that holds for all x ∈ X . (Similar (and tighter) uniform bounds can also be derived using Rademacher
complexity.)

Definition 1. Let S be a metric space and η > 0. The covering number N (S, η) is the minimal l ∈ N such that
S is is covered by l balls of radius η. When S is compact, N (S, η) is finite.

As we are concerned with vector-valued functions, let E be a normed space with norm ‖ · ‖. Consider a mapping
f : X → B defined as f : x 7→ f(x, ·), where B = {g : Ω → E} is a Banach space of vector-valued functions
with norm ‖g‖B = supω∈Ω ‖g(ω)‖. Assume BX = {f(x, ·) : x ∈ X} is a compact subset in B. Then the covering

number of H is finite and given as N (BX , η). That is, there exists a finite set CX = {xi ∈ X}N (BX ,η)
i=1 such that

∀x ∈ X , miny∈CX ‖f(x, ·)− f(y, ·)‖B < η.

Usually, the covering is a polynomial function of η. For example, suppose X is a ball of radius R in a d-
dimensional Euclidean space, and f is L-Lipschitz in x (i.e. ‖f(x, ·)− f(y, ·)‖B ≤ L‖x− y‖). Then (Cucker and

Zhou, 2007) N (BX , η) ≤ N (X , ηL ) ≤
(

2RL
η + 1

)d
. Therefore, henceforth we will assume

lnN (BXX, η) ≤ CX ln(
1

η
) <∞ (15)

for some constant CX independent of η, which characterizes the complexity of X .

Using covering number, we derive uniform bounds for the lemmas in Section B.1.2 and B.1.3.

Lemma 9. Under the assumptions in Lemma 7, for 0 < ε ≤ 2G,

Pr(sup
x∈X
‖g(x)− f(x)‖ ≥ ε) < 2e2N (BX ,

ε

4
) exp

(
−Mε2

32G2

)

Proof. Choose CX be the set of the centers of the covering balls such that ∀x ∈ X , miny∈CX ‖f(x, ·)−f(y, ·)‖B < η.
Since f(x) = Eω[f(x, ω)], it also holds miny∈CX ‖f(x) − f(y)‖ < η. Let By be the η-ball centered for y ∈ CX .
Then

sup
y∈X
‖g(x)− f(x)‖ ≤ max

y∈CX
sup
x∈By

‖g(x)− g(y)‖+ ‖g(y)− f(y)‖+ ‖f(y)− f(x)‖

≤ max
y∈CX

‖g(y)− f(y)‖+ 2η

Choose η = ε
4 and then it follows that

sup
x∈X
‖g(x)− f(x)‖ ≥ ε =⇒ max

y∈CX
‖g(y)− f(y)‖ ≥ ε

2

The final result can be obtained by first for each y ∈ CX applying the concentration inequality with ε/2 and then
a uniform bound over CX . �

Similarly, we can give a uniform version of Lemma 8.

Lemma 10. Under the assumptions in Lemma 8, if 2M∗G
m0

> 1, for 0 < ε ≤ Gm0

n

∑n
i=1

1
mi

and for a fixed n ≥ 0,

Pr(sup
x∈X
‖ḡn(x)− f̄n(x)‖ ≥ ε) < 2eN

(
BX ,

ε

4

)
exp

(
−n2ε2

32G2
∑n
i=1

1
mi

)

B.2 Proof of Theorem 4

We now refine Lemma 2 and Proposition 2 to prove the convergence of AggreVaTe in stochastic problems.
We use ·̄ to denote the average (e.g. f̄n = 1

nf1:n.)
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B.2.1 Bound on ‖xn+1 − xn‖

First, we show the error due to finite-sample approximation.

Lemma 11. Let ξn = ∇fn −∇gn. Running AggreVaTe with gn(·) as per-round cost gives, for n ≥ 2,

‖xn+1 − xn‖ ≤
θSn
n

+
1

nα

(
‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗

)
Proof. Because g1:n(x) is nα-strongly convex in x, we have

nα‖xn+1 − xn‖2 ≤ 〈∇gn(xn), xn − xn+1〉
≤ 〈∇gn(xn)−∇ḡn−1(xn), xn − xn+1〉 ∵ xn = arg min

x∈X
g1:n−1(x)

≤ ‖∇fn(xn)−∇f̄n−1(xn)‖∗‖xn − xn+1‖
+ ‖∇fn(xn)−∇gn(xn)−∇f̄n−1(xn) +∇ḡn−1(xn)‖∗‖xn − xn+1‖

Now we use the fact that the smoothness applies to f (not necessarily to g) and derive the statement

‖xn+1 − xn‖ ≤
θSn
n

+
1

nα
‖∇fn(xn)−∇gn(xn)−∇f̄n−1(xn) +∇ḡn−1(xn)‖∗

≤ θSn
n

+
1

nα

(
‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗

)
�

Given the intermediate step in Lemma 11, we apply Lemma 5 to bound the norm of ξk and give the refinement
of Lemma 2 for stochastic problems.

Lemma 12. Suppose mn = m0n
r for some r ≥ 0. Under previous assumptions, running AggreVaTe with

gn(·) as per-round cost, the following holds with probability at least 1− δ: For a fixed n ≥ 2,

‖xn+1 − xn‖ ≤
θSn
n

+O

(
G2

nα
√
m0

(√
ln(1/δ)

nmin{r,2} +

√
CX /n

nmin{r,1}

))

where CX is a constant depending on the complexity of X and the constant term in big-O is some universal
constant.

Proof. To show the statement, we bound ‖ξn(xn)‖∗ and ‖ξ̄1:n−1(xn)‖∗ in Lemma 11 using the concentration
lemmas derived in Section B.1.4.

The First Term: To bound ‖ξn(xn)‖∗, because the sampling of ξn is independent of xn, bounding ‖ξn(xn)‖∗
does not require a uniform bound. Here we use Lemma 7 and consider ε1 such that

2e2 exp

(
−mnε

2
1

8G2
2

)
=
δ

2
=⇒ ε1 =

√
8G2

2

mn
ln

(
4e2

δ

)
= O

(√
G2

2

mn
ln

(
1

δ

))
(16)

Note we we used the particular range of ε in Lemma 7 for convenience, which is valid if we choose m0 >

2G2 ln
(

4e2

δ

)
. This condition is not necessary; it is only used to simplify the derivation, and using a different

range of ε would simply lead to a different constant.

The Second Term: To bound ‖ξ̄n−1(xn)‖∗, we apply a uniform bound using Lemma 10. For simplicity, we
use the particular range 0 < ε ≤ G2m0

n

∑n
i=1

1
mi

and assume 2M∗G2

m0
> 1 (which implies Y0 = 4M∗G2

m0
) (again this

is not necessary). We choose ε2 such that

2eN (BX ,
ε2
4

) exp

(
−(n− 1)2ε22

32G2
2

∑n−1
i=1

1
mi

)
≤ δ

2
=⇒ ln(2e) + lnN (BX ,

ε2
4

) +
−(n− 1)2ε22

32G2
2

∑n−1
i=1

1
mi

≤ − ln(
2

δ
)
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Since lnN (BX , ε24 ) = CX ln
(

4
ε2

)
≤ csCX ε

−s
2 for arbitrary s > 0 and some cs, a sufficient condition can be

obtained by solving for ε2 such that

c0
εs2
− c2ε22 = −c1 =⇒ c2ε

2+s
2 − c1εs2 − c0 = 0

where c0 = csCX , c2 = (n−1)2

32G2
2

∑n−1
i=1

1
mi

, and c1 = ln( 4e
δ ). To this end, we use a basic lemma of polynomials.

Lemma 13. (Cucker and Zhou, 2007, Lemma 7.2) Let c1, c2, . . . , cl > 0 and s > q1 > q2 > · · · > ql−1 > 0.
Then the equation

xs − c1xq1 − c2xq2 − · · · − cl−1x
ql−1 − cl = 0

has a unique solution x∗. In addition,

x∗ ≤ max
{

(lc1)1/(s−q1), (lc2)1/(s−q2), . . . , (lcl−1)1/(s−ql−1), (lc1)1/s
}

Therefore, we can choose an ε2 which satisfies

ε2 ≤ max

{(
2c1
c2

)1/2

,

(
2c0
c2

)1/(2+s)
}

= max


(

64 ln(4e
δ )G2

2

∑n−1
i=1

1
mi

(n− 1)2

)1/2

,

(
64csCXG

2
2

∑n−1
i=1

1
mi

(n− 1)2

)1/(2+s)


≤ O

√√√√(CX + ln

(
1

δ

))
G2

2

n2

n∑
i=1

1

mi


Error Bound Suppose mn = m0n

r, for r ≥ 0. Now we combine the two bounds above: fix n ≥ 2, with
probability at least 1− δ,

‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗ ≤ O

√ G2
2

m0nr
ln

(
1

δ

)
+

√√√√(CX + ln

(
1

δ

))
G2

2

m0n2

n∑
i=1

1

ir


Due to the nature of harmonic series, we consider two scenarios.

1. If r ∈ [0, 1], then the bound can be simplified as

O

√ G2
2

m0nr
ln

(
1

δ

)
+

√√√√(CX + ln

(
1

δ

))
G2

2

m0n2

n∑
i=1

1

ir


= O

(√
G2

2

m0nr
ln

(
1

δ

)
+

√(
CX + ln

(
1

δ

))
G2

2n
1−r

m0n2

)
= O

G2

√
ln(1/δ)

m0nr
+G2

√
CX

m0n1+r


2. If r > 1, then the bound can be simplified as

O

√ G2
2

m0nr
ln

(
1

δ

)
+

√√√√(CX + ln

(
1

δ

))
G2

2

m0n2

n∑
i=1

1

ir


= O

(√
G2

2

m0nr
ln

(
1

δ

)
+

√(
CX + ln

(
1

δ

))
G2

2

m0n2

)
= O

G2

√
ln(1/δ)

m0nmin{r,2}

+O

(
G2

√
CX
m0n2

)

Therefore, we conclude for r ≥ 0,

‖ξn(xn)‖∗ + ‖ξ̄n−1(xn)‖∗ = O

√ G2
2 ln(1/δ)

m0nmin{r,2} +

√
G2

2CX
m0n1+min{r,1}


Combining this inequality with Lemma 11 gives the final statement. �
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B.2.2 Bound on Sn

Now we use Lemma 12 to refine Proposition 2 for stochastic problems.

Proposition 3. Under the assumptions Proposition 2, suppose mn = m0n
r. For a fixed n ≥ 2, the following

holds with probability at least 1− δ.

Sn ≤ Õ

(
G2

α
√
m0

( √
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

Proof. The proof is similar to that of Proposition 2, but we use the results from Lemma 12. Note Lemma 12
holds for a particular n. Here need the bound to apply for all n = 1 . . . N so we can apply the bound for each
Sn. This will add an additional

√
lnN factor to the bounds in Lemma 12.

First, we recall that

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖

By Lemma 12, let c1 =
G2

√
ln(1/δ)

nα
√
m0

and c2 = G2

√
CX

nα
√
m0

, and it holds that

‖xn+1 − xn‖ ≤
θSn
n

+O

(
G2

nα
√
m0

(√
ln(1/δ)

nmin{r,2} +

√
CX

n1+min{r,1}

))
=
θSn
n

+O(
c1

n1+min{r,2}/2 +
c2

n3/2+min{r,1}/2 )

which implies

Sn+1 ≤
(

1− 1

n

)
Sn + ‖xn+1 − xn‖ ≤

(
1− 1− θ

n

)
Sn +O(

c1
n1+min{r,2}/2 +

c2
n3/2+min{r,1}/2 ).

Recall

Lemma 6. (Lan, 2013, Lemma 1) Let γk ∈ (0, 1), k = 1, 2, . . . be given. If the sequence {∆k}k≥0 satisfies

Λk+1 ≤ (1− γk)Λk +Bk,

then

Λk ≤ Γk + Γk

k∑
i=1

Bi
Γi+1

where Γ1 = Λ1 and Γk+1 = (1− γk)Γk.

From Proposition 2, we know the unperturbed dynamics is bounded by e1−θnθ−1S2 (and can be shown in Θ(nθ−1)
as in the proof of Theorem 3). To consider the effect of the perturbations, due to linearity we can treat each
perturbation separately and combine the results by superposition. Suppose a particular perturbation is of the
form O( C2

n1+s ) for some C2 and s > 0. By Lemma 6, suppose θ + s < 1,

Sn ≤ O(nθ−1) +O

(
nθ−1

n∑
k=1

k1−θ C2

k1+s

)
≤ O(nθ−1) +O

(
C2n

θ−1n1−s−θ) = O(nθ−1) +O
(
C2n

−s)
For θ − s = 1, Sn ≤ O(nθ−1) + O(C2n

θ−1 ln(n)); for θ + s > 1, Sn ≤ O(nθ−1) + O(C2n
θ−1). Therefore, we

can conclude Sn ≤ C1n
θ−1 + Õ(C2n

−min{s,1−θ}), where the constant C1 = e1−θS2. Finally, using S2 ≤ G2

α and
setting C2 as c1 or c2 gives the final result

Sn ≤ Õ

(
G2

α
√
m0

( √
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

�
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B.2.3 Performance Guarantee

Given Proposition 3, now we can prove the performance of the last iterate.

Theorem 4. In addition to Assumptions 5 and 6, assume f(x; s) is α-strongly convex in x and ‖f(x; s)‖∗ < G2

almost surely. Let θ = β
α and suppose mn = m0n

r for some r ≥ 0. For all N > 0, with probability at least 1− δ,

F (xN , xN ) ≤ ε̃Π,π∗ + Õ

(
θ2

c

ln(1/δ) + CX
Nmin{r,2,2−2θ}

)
+ Õ

(
ln(1/δ) + CX
cNmin{2,1+r}

)
where c = α

G2
2m0

and CX is a constant10 of the complexity of Π.

Proof. The proof is similar to the proof of Theorem 2. Let x∗n := arg minx∈X fn(x). Then

fn(xn)−min
x∈X

fn(x) ≤ 〈∇fn(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤ 〈∇fn(xn)−∇f̄n−1(xn), xn − x∗n〉+ 〈∇f̄n−1(xn)−∇ḡn−1(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

≤ ‖∇fn(xn)−∇f̄n−1(xn)‖∗‖xn − x∗n‖+ ‖∇ḡn−1(xn)−∇f̄n−1(xn)‖∗‖xn − x∗n‖ −
α

2
‖xn − x∗n‖2

≤ (‖∇fn(xn)−∇f̄n−1(xn)‖∗ + ‖∇ḡn−1(xn)−∇f̄n−1(xn)‖∗)2

2α

≤ ‖∇fn(xn)−∇f̄n−1(xn)‖2∗ + ‖∇ḡn−1(xn)−∇f̄n−1(xn)‖2∗
α

where the second inequality is due to xn = arg minx∈X ḡn−1(x). To bound the first term, recall the fact that
‖∇fn(xn)−∇f̄n−1(xn)‖∗ < βSn and recall by Proposition 3 that

Sn ≤ Õ

(
G2

α
√
m0

( √
ln(1/δ)

nmin{r/2,1,1−θ} +

√
CX

nmin{(1+r)/2,1,1−θ}

))

For the second term, we use the proof in Lemma 12 with an additional ln(N) factor, i.e.

‖∇ḡn−1(xn)−∇f̄n−1(xn)‖∗ = Õ

(
G2√
m0

√
ln(1/δ) + CX
n1+min{r,1}

)
Let c = αm0

G2
2

. Therefore, combining all the results, we have the following with probability at least 1− δ:

fn(xn)−min
x∈X

fn(x) ≤ ‖∇fn(xn)−∇f̄n−1(xn)‖2∗ + ‖∇ḡn−1(xn)−∇f̄n−1(xn)‖2∗
α

≤ β2S2
n

α
+
‖∇ḡn−1(xn)−∇f̄n−1(xn)‖2∗

α

≤ Õ
(
θ2G2

2

αm0

ln(1/δ)

n2 min{r/2,1,1−θ}

)
+ Õ

(
θ2G2

2

αm0

CX
n2 min{(r+1)/2,1,1−θ}

)
+ Õ

(
G2

2

αm0

ln(1/δ) + CX
n1+min{r,1}

)
= Õ

(
θ2

c

ln(1/δ)

n2 min{r/2,1,1−θ}

)
+ Õ

(
θ2

c

CX
n2 min{(r+1)/2,1,1−θ}

)
+ Õ

(
1

c

ln(1/δ) + CX
n1+min{r,1}

)
≤ Õ

(
θ2

c

ln(1/δ) + CX
n2 min{r/2,1,1−θ}

)
+ Õ

(
ln(1/δ) + CX
cn1+min{r,1}

)
Note the last inequality is unnecessary and is used to simplify the result. It can be seen that the upper bound
originally has a weaker dependency on CX .

�
10The constant CX can be thought as ln |X |, where |X | measures the size of X in e.g. Rademacher complexity or

covering number (Mohri et al., 2012). For example, ln |X | can be linear in dimX .
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C AggreVaTe with Function Approximations

Here we give a sketch of applying the techniques used in Theorem 4 to problems where a function approximator
is used to learn f(·; s), as in the case considered by Ross et al. (2011) for learning the Q-function.

We consider a meta learning scenario where a linear function approximator f̂(x, s) = φ(x, s)Tw is used to
approximate f(x; s). We assume φ(x, s)Tw satisfies Assumption 3 and Assumption 5 with some appropriate
constants.

Now we analyze the case where
∑mn
i=1 f̂(·, sn,i) is used as the per-round cost in AggreVaTe. Specifically, in the

nth iteration of AggreVaTe, mn samples{f(xn; sn,k)}mnk=1 are first collected, and then wn is updated by

wn = arg min
w∈W

n∑
i=1

mi∑
j=1

(
f(xi; si,j)− φ(xi, si,j)

Tw
)2

(17)

where W is the domain of w. Given the new wn, the policy is updated by

xn+1 = arg min
x∈X

n∑
i=1

mi∑
j=1

φ(xi, si,j)
Twn (18)

To prove the performance, we focus on the inequality used in the proof of performance in Theorem 4.

fn(xn)−min
x∈X

fn(x) ≤ 〈∇fn(xn), xn − x∗n〉 −
α

2
‖xn − x∗n‖2

And we expand the inner product term:

〈∇fn(xn), xn − x∗n〉 = 〈∇ḡn;wn−1
(xn), xn − x∗n〉+ 〈∇ḡn;wn −∇ḡn;wn−1

, xn − x∗n〉+ 〈∇fn(xn)−∇ḡn;wn , xn − x∗n〉

where ḡn;wn is the finite-sample approximation using wn . By (18), xn = arg minx∈X ḡn;wn−1
(x), and therefore

〈∇fn(xn), xn − x∗n〉 ≤ 〈∇ḡn;wn −∇ḡn;wn−1 , xn − x∗n〉+ 〈∇fn(xn)−∇ḡn;wn , xn − x∗n〉

In the first term, ‖∇ḡn;wn − ∇ḡn;wn−1‖∗ ≤ O(‖wn − wn−1‖). As wn is updated by another value aggregation
algorithm, this term can be further bounded similarly as in Lemma 2, by assuming a similar condition like
Assumption 5 but on the change of the gradient in the objective function in (17). In the second term, ‖∇fn(xn)−
∇ḡn;wn‖∗ can be bounded by the uniform bound of vector-valued martingale in Lemma 10. Given these two
bounds, it follows that

fn(xn)−min
x∈X

fn(x) ≤
‖∇ḡn;wn −∇ḡn;wn−1

‖2∗ + ‖∇fn(xn)−∇ḡn;wn‖2∗
α

Compared with Theorem 4, since here additional Lipschitz constant is introduced to bound the change ‖∇ḡn;wn−
∇ḡn;wn−1

‖∗, one can expect that the stability constant θ for this meta-learning problem will increase.

D Weighted Regularization

Here we discuss the case where R(x) = F (π∗, x) regardless the condition R(x) ≥ 0.

Corollary 4. Let F̃ (x, x) = F (x, x) + λF (π∗, x). Suppose ∀x ∈ X , minx∈X F̃ (x, x) ≤ (1 + λ)ε̃Π,π∗ . Define

∆N = (1 + λ) (θ̃e1−θ̃G2)2

2α N2(θ̃−1). Running AggreVaTe with F̃ in (14) as the per-round cost has performance
satisfies: for all N > 0,

F (xN , xN ) ≤ (1 + λ)ε̃Π,π∗ − λF (x∗, xN ) + ∆N

≤ ∆N + ε̃Π,π∗ + λG2

(
2λG2

α
+

√
2∆N

α

)
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Proof. The first inequality can be seen by the definition F (xN , xN ) = F̃ (xN , xN ) − λF (x∗, xN ) and then by
applying Theorem 2 to F̃ (xN , xN ).

The second inequality shows that −F (x∗, xN ) cannot be too large. Let f∗(x) = F (x∗, x) and x∗N =
arg minx∈X fN (x). Then

fN (xN ) = fN (xN ) + λf∗(xN )− λf∗(xN )

≤ ∆N − λf∗(xN ) + min
x∈X

fN (x) + λf∗(x)

≤ ∆N + fN (x∗N ) + λ(f∗(x
∗
N )− f∗(xN ))

≤ ∆N + fN (x∗N ) + λG2‖x∗N − xN‖

where the first inequality is due to Theorem 2 and the third inequality is due to f∗ is G2-Lipschitz continuous.
Further, since fN is α-strongly convex,

α

2
‖x∗N − xN‖2 ≤ fN (xN )− fN (x∗N )

≤ ∆N + λG2‖x∗N − xN‖

which implies

‖x∗N − xN‖ ≤
λG2 +

√
λ2G2 + 2α∆N

α

≤ 2λG2 +
√

2α∆N

α

Therefore,

fN (xN ) ≤ ∆N + fN (x∗N ) + λG2‖x∗N − xN‖

≤ ∆N + ε̃Π,π∗ + λG2

(
2λG2

α
+

√
2∆N

α

)

�

Corollary 4 indicates that when π∗ is better than all policies under the distribution of π∗ (i.e. F (x∗, x) ≥
0,∀x ∈ X ), then using AggreVaTe with the weighted problem such that θ̃ < 1 generates a convergent sequence
and then the performance on the last iterate is bounded by (1 + λ)ε̃Π,π∗ + ∆N . That is, it only introduces a
multiplicative constant on ε̃Π,π∗ . Therefore, the bias due to regularization can be ignored by choosing a larger
policy class. This suggests for applications like DAgger introducing additional weighted cost λF (x∗, x) (i.e.
demonstration samples collected under the expert policy’s distribution) does not hurt.

However, in generally, F (x∗, xN ) can be negative, when there is a better policy in Π than π∗ in sense of the state
distribution dπ∗(s) generated by the expert policy π∗. Corollary 4 also shows this additional bias introduced by

AggreVaTe is bounded at most O(
λ2G2

2

α ).


