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A Experimental Results on Real-World Data

A.1 Categorical Data

We evaluate the performance of Algorithm 2 on two datasets: Congressional Voting Records and Mushroom. In
the congressional voting records, the task is to group 435 Congressmen into two parties, Democrats and Republi-
cans, based on whether they fovored or vetoed 16 different issues, or abstained their votes. The other categorical
dataset consists of a total of 8124 mushroom species. Based on the 22 different physical or biological features,
one needs to separate the edible from the poisonous apart. The authors in (Ghoshdastidar and Dukkipati, 2017)
used the following way to embed the categorical data into a hypergraph. Take the political data for example. For
each attribute (issue) and each possible value of that attribute (favor, veto or abstain), a hyperedge is formed
among all instances (Congressmen) that share this particular value of the attribute. This generates a rather
sparse non-uniform hypergraph. In order to have a fair comparison, though, we also adopt this non-uniform
construction and implement our algorithm on top of these sparse hypergraphs. Table 1 compares the mismatch
ratio of different algorithms with our spectral initialization.

Table 1: Experimental Results on Categorical Data

ROCK COOLCAT LIMBO hMETIS SnHP GTS Algo 2

Voting 0.16 0.15 0.13 0.24 0.1263 0.3819 0.1129
Mushroom 0.43 0.27 0.11 0.48 0.1129 0.4979 0.1103

The results for ROCK, COOLCAT and LIMBO algorithms are taken from (Andritsos et al., 2004), while the
multi-level approach (hMETIS) is taken from (Ghoshdastidar and Dukkipati, 2017). We can see that Algorithm 2
outperforms other algorithms on the voting databset and is on a par with the known best on the mushroom
dataset.

A.2 Numerical Data

As for the numerical data, the authors in (Ghoshdastidar and Dukkipati, 2015) point out that a 3-way similarity
measure can be utilized to construct a 3-uniform hypergraph, which gives an overall more robust performance
empirically. In particular, for any three data points x,y, z, the similarity among these three nodes is defined as

exp
(
−βmax

{
‖x− y‖22 , ‖x− z‖22 , ‖y − z‖22

})
where β is a tuning parameter. It is inspired by the pairwise gaussian-density-like similarity exp(−β ‖x− y‖22)
between data points x,y often seen when performing spectral clustering (Ghoshdastidar and Dukkipati, 2015).
In constrast to the affinity tensor where each entry is a real number in [0, 1] considered in (Ghoshdastidar and
Dukkipati, 2015), the adjacency tensor that we use is binary-valued. Instead of directly using these 3-way
similarity values, we treat them as the connecting probability parameters, i.e. the success probabilities of the
appearance of hyperedges. Table 2 compares our method with the generalized tensor spectral method (GTS)
and conventional spectral clustering on similarity graph (SP) taken from (Ghoshdastidar and Dukkipati, 2015)
in the first two columns. As above, our results are the average over 20 runs of realizations with regard to the
randomness in the embedding process.

Table 2: Experimental Results on Numerical Data

Dataset SP GTS Algo 2 Algo 1

Wine 0.342 0.331 0.105 0.087
Haberman’s Survival 0.423 0.392 0.485 0.397

Vertebral Column 0.345 0.333 0.262 0.275
Ionosphere 0.325 0.316 0.319 0.315
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First, we want to make clear that we does not optimize our results by choosing the β that leverages the best
performance according to each specific ground truth. In our experiment, we choose the value of β to control the
edge density in the hypergraph. From Table 2, we could see that our two-step algorithm does outperform the one
proposed in (Ghoshdastidar and Dukkipati, 2015) and traditional graph-based method, endorsing the advantage
of using a higher-order relational information to perform the task of clustering. Except for the Vertebral Column
data where the second refinement step fails to have a gain from the first initialization step, we could see that,
overally speaking, the refinement step helps reducing the number of misclassified nodes and achieves a better
performance on the real-world data.

B Proof of Theorem 3.2

We first introduce the concept of local loss. The equivalence class of a community assignment σ is defined as
Γ(σ) , {σ′ | ∃ δ ∈ SK s.t. σ′ = δ ◦ σ}. Let Sσ(σ̂) = {σ′ ∈ Γ(σ̂) | dH(σ′, σ) = dH(σ̂, σ)} be the set of all permu-
tations in the equivalence class of σ̂ that achieve the minimum distance. For each i ∈ [n], the local loss function
is defined as the proportion of false labeling of node i in Sσ(σ̂).

`(σ̂(i), σ(i)) ,
∑

σ′∈Sσ(σ̂)

dH(σ̂(i), σ(i))

|Sσ(σ̂)|

It turns out that it is rather easy to study the local loss. Recall the sub-parameter space ΘL
d of Θ0

d defined in
(1) where the sizes of all communities are almost equal (nk ∈ {n′ − 1, n′, n′ + 1} to be more specific). Since ΘL

d

is closed under permutation, we can apply the global-to-local lemma in Zhang and Zhou, 2016.

Lemma 2.1 (Lemma 2.1 in Zhang and Zhou, 2016): Let Θ be any homogeneous parameter space that is closed
under permutation. Let Unif be the uniform prior over all the elements in Θ. Define the global Bayesian risk as
Rσ∼Unif(σ̂) = 1

|Θ|
∑
σ∈Θ Eσ`(σ̂, σ) and the local Bayesian risk Rσ∼Unif(σ̂(1)) = 1

|Θ|
∑
σ∈Θ Eσ`(σ̂(1), σ(1)) for the

first node. Then

inf
σ̂

Rσ∼Unif(σ̂) = inf
σ̂

Rσ∼Unif(σ̂(1))

Second, the local Bayesian risk can be transformed into the risk function of a hypothesis testing problem. We
consider the most indistinguishable case where the potential candidate only disagrees with the ground truth on
a single node. The key observation is that the situation is exactly the same as our testing one node at a time in
the local version of the MLE method.

Lemma 2.2:

Rσ∼Unif(σ̂(1)) ≥ P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

Crirj (X
(rj)
u −X(ri)

u ) ≥ 0

}

where f(t) , t
1−t for Cxy , log f(x)

f(y) , and for each (ri, rj) pair in Nd, X
(rj)
u

i.i.d.∼ Ber(pj), X
(ri)
u

i.i.d.∼ Ber(pi) ∀u =

1, . . . ,mrirj are all mutually indepedent random variables.

With the aid of the Rozovsky lower bound Rozovsky, 2003, we are able to prove the following auxiliary result.

Lemma 2.3: If
∑
i<j:(ri,rj)∈Nd mrirjIpipj →∞, then there exists a positive sequence ζn → 0 such that

P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

Crirj (X
(rj)
u −X(ri)

u ) ≥ 0

}
≥ exp

(
− (1 + ζn)

∑
i<j:(ri,rj)∈Nd

mrirjIpipj

)
(9)
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Proof of Theorem 3.2. Finally, since the Bayesian risk always lower bound the minimax risk, we have

R∗d = inf
σ̂

sup
σ∈Θ0

d

Eσ`(σ̂, σ) ≥ inf
σ̂

sup
σ∈ΘLd

Eσ`(σ̂, σ)

≥ inf
σ̂

Rσ∼Unif(σ̂) = inf
σ̂

Rσ∼Unif(σ̂(1))

≥ P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

Crirj (X
(rj)
u −X(ri)

u ) ≥ 0

}

≥ exp

(
− (1 + ζn)

∑
i<j:(ri,rj)∈Nd

mrirjIpipj

)
�

C Proof of Theorem 5.1

Fix any (B, σ) in Θ0
d. Let C0, δ > 0 and γ = γn be constants in Condition 5.1. For each u ∈ [n], there exists

some πu ∈ SK so that
Pσ
{
`0
(
(σ̂u)πu , σ

)
≤ γn

}
≥ 1− C0n

−(1+δ)

In consequence,

Eσ`0(σ̂, σ) = Eσ
[

1

n

∑
u∈[n]

1
{
πCSS(σ̂u(u)) 6= σ(u)

} ]
=

1

n

∑
u∈[n]

Pσ
{
πCSS(σ̂u(u)) 6= σ(u)

}
≤ 1

n

∑
u∈[n]

Pσ
{(
σ̂u(u)

)
πu
6= σ(u)

}
+ Pσ

{
πCSS 6= πu

}
where πCSS is the consensus permutation (4) in Algorithm 1. By Lemma 5.2, for any (B, σ) ∈ Θ0

d and each
u ∈ [n],

Pσ
{(
σ̂u(u)

)
πu
6= σ(u)

}
≤ (K − 1) · exp

(
− (1− ζ

′′

n )
∑

i<j:(ri,rj)∈Nd

mrirjIpipj

)
+ Cn−(1+δ)

for some constants C, δ > 0 and ζ
′′

n → 0. Moreover, Lemma 5.3 implies that P
{
πCSS 6= πu

}
≤ Cn−(1+δ).

Together,

sup
(B,σ)∈Θ0

d

Eσ`0(σ̂, σ) ≤ (K − 1) · exp

(
− (1− ζ

′′

n )
∑

i<j:(ri,rj)∈Nd

mrirjIpipj

)
+ C ′n−(1+δ)

Since we assume limn→∞
∑
i<j:(ri,rj)∈Nd mrirjIpipj →∞, we further have

sup
(B,σ)∈Θ0

d

Eσ`0(σ̂, σ) ≤ exp

(
− (1− ζ

′′′

n )
∑

i<j:(ri,rj)∈Nd

mrirjIpipj

)
+ C ′n−(1+δ)

= 1©+ 2©

for some ζ
′′′

n → 0. If 1© decays faster than 2©, then R∗d = o( 1
n1+δ ) < 1

n for sufficiently large n. Therefore, R∗d = 0
and the corresponding parameters satisfy the criterion of exact recovery. On the other hand, if 1© dominates 2©,
then there exists ζn → 0 such that

R∗d ≤ exp

(
− (1− ζn)

∑
i<j:(ri,rj)∈Nd

mrirjIpipj

)
In either case, the claimed upper bound is achieved.
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D Proof of Theorem 5.2

To prove Theorem 5.2, we first introduce some notations. For a matrix M, we denote its operator norm by
‖M‖op and its Frobenius norm by ‖M‖F. Also, let O(K1,K2) =

{
V ∈ RK1×K2 | VTV = IK2

}
for K1 ≥ K2 be

the set of all orthogonal K1×K2 matrices. The proof requires the following two lemmas. First, we demonstrates
that the hypergraph Laplacian after trimming does not deviate too much from its original expectation.

Lemma 4.1: ∀C ′ > 0, ∃ C > 0 such that

‖Tτ (L(A))− EL(A)‖op ≤ C
√
nd−1p1 + 1

with probability at least 1−n−C′ uniformly over τ ∈
[
C1(nd−1p1 + 1), C2(nd−1p1 + 1)

]
for some sufficiently large

constants C1 and C2.

The next lemma analyzes the spectrum of EL(A) and pinpoints a special structure.

Lemma 4.2 (Lemma 6 in Gao et al., 2017): We have

SVDK (EL(A)) = UΛUT

where U = Z∆−1W with ∆ = diag(
√
n1, . . . ,

√
nK). Z ∈ {0, 1}n×K is a matrix with exactly one nonzero entry

in each row at (i, σ(i)) taking value 1 and W ∈ O(K,K).

Proof of Theorem 5.2. Under the assumption pi ≥ pj ∀i < j , we have Eτ ∈ [C ′1n
d−1p1, C

′
2n
d−1p1] for

some large constant C ′1, C
′
2. Thus by Bernstein’s inequality, with probability at least 1 − e−C

′n, we have
τ ∈ [C1n

d−1p1, C2n
d−1p1]. By Davis-Kahan theorem (Davis and Kahan, 1970), we have

||Û−UW1||F ≤ C
√
K

λK
||Tτ (L(A))− EL(A)||op

for some W1 ∈ O(K,K) and some constant C > 0. Then applying Lemma 4.2, we have

||Û−V||F ≤ C
√
K

λK
||Tτ (L(A))− EL(A)||op (10)

where V = Z∆−1W = [vT
1 ...v

T
n ]T as we state in Lemma 4.2. Combining (10), Lemma 4.1 and the conclusion

τ ∈ [C1n
d−1p1, C2n

d−1p1] with probability at least 1− e−C′n, we have

||Û−V||F ≤
C
√
K
√
nd−1p1

λK
(11)

with probability at least 1− n−C′ . The definition of V implies that

‖vi − vj‖2

{
≥
√

2K
n , , if σ(i) 6= σ(j)

= 0, , otherwise.

Let X = ∆−1W, which means vi = xσ(i). Recall the definition of critical radius r = ν
√

K
n in Algorithm 2.

Define the sets
Ti =

{
s ∈ σ−1(i) : ‖ûs − xi‖2 <

r

2

}
, i ∈ [K] (12)

By definition, Ti ∩ Tj = ∅ for i 6= j and⋃
i∈[K]

Ti =
{
s ∈ [n] : ‖ûs − vs‖2 <

r

2

}
Thus, ∣∣∣∣( ⋃

i∈[K]

Ti

)c∣∣∣∣ · r2

4
≤
∑
s∈[n]

‖ûs − vs‖22 ≤
C2Knd−1p1

λ2
K
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where the last inequality is due to (11). The rest of the proof is identical to the proof of Theorem 3 in Gao et al.,
2017. For completeness, we shall repeat it again here. After some rearrangements, we have∣∣∣∣( ⋃

i∈[K]

Ti

)c∣∣∣∣ ≤ 4C2ndp1

µ2λ2
K

(13)

It means most nodes are close to the centers and are in the set we defined in (12). Also note that the sets
{Ti}i∈[K] are disjoint. Suppose there is some i ∈ [K] such that |Ti| < |σ−1(i)|−|(∪i∈[K]Ti)

c|, we have |∪i∈[K]Ti| =∑
i∈[K] |Ti| < n− |(∪i∈[K]Ti)

c| = | ∪i∈[K] Ti|, which leads to a contradiction. Thus, we must have

|Ti| ≥ |σ−1(i)| −
∣∣∣∣( ⋃

i∈[K]

Ti

)c∣∣∣∣ ≥ n

K
− 4C2ndp1

µ2λ2
K

>
n

2K

where the last inequality is from the assumption (8). Since the cluster centers are at least
√

2K
n apart from each

others and both {Ti}i∈[K], {Ĉi}i∈[K] (recall that Ĉi are defined in Algorithm 2) are defined through the critical

radius r = µ
√

K
n , each Ĉi should intersect with only one Ti. We claim that there is a permutation π of set [K],

such that
Ĉi
⋂
Tπ(i) 6= ∅,

∣∣∣Ĉi∣∣∣ ≥ ∣∣Tπ(i)

∣∣∀i ∈ [K] (14)

We could now continue the proof with claim (14), where the proof of (14) can be found in Gao et al., 2017 (in
their proof of Theorem 3). It is mainly established by an easy mathematical induction. From the definition of

Ĉi and (14), we have for any i 6= j, Tπ(i) ∩ Ĉj = ∅. This directly implies that for any i 6= j, Tπ(i) ⊂ Ĉj . Thus,

we know that Tπ(i) ∩ Ĉci ⊂
(
∪i∈[K]Ĉi

)c
. Therefore,⋃
i∈[K]

(
Tπ(i)

⋂
Ĉci

)
⊂
( ⋃
i∈[K]

Ĉi

)c
Combining with the fact that Ti ∩ Tj = ∅ ∀i 6= j, we have∑

i∈[K]

∣∣∣Tπ(i)

⋂
Ĉci

∣∣∣ ≤ ∣∣∣( ⋃
i∈[K]

Ĉi

)c∣∣∣ (15)

By definition, Ĉi
⋂
Ĉj = ∅ ∀i 6= j. Along with (14), we have∣∣∣∣( ⋃

i∈[K]

Ĉi

)c∣∣∣∣ = n−
∑
i∈[K]

∣∣∣Ĉi∣∣∣ ≤ n− ∑
i∈[K]

|Ti| =
∣∣∣∣( ⋃

i∈[K]

Ti

)c∣∣∣∣ (16)

Together with (13), (15) and (16), we have∑
i∈[K]

∣∣∣Tπ(i)

⋂
Ĉci

∣∣∣ ≤ 4C2ndp1

µ2λ2
K

(17)

Since for each u ∈ ∪i∈[K]

(
Tπ(i) ∩ Ĉi

)
, we have σ̂(u) = i when σ(u) = π(i), the mis-classification ratio is bounded

by

`0(σ̂, π−1(σ)) ≤ 1

n

∣∣∣∣( ⋃
i∈[K]

(
Tπ(i)

⋂
Ĉi
))c∣∣∣∣

≤ 1

n

∣∣∣∣( ⋃
i∈[K]

(
Tπ(i)

⋂
Ĉi
))c⋂( ⋃

i∈[K]

Ti

)∣∣∣∣+

∣∣∣∣( ⋃
i∈[K]

Ti

)c∣∣∣∣


≤ 1

n

∑
i∈[K]

∣∣∣∣Tπ(i)

⋂
Ĉci

∣∣∣∣+

∣∣∣∣( ⋃
i∈[K]

Ti

)c∣∣∣∣


≤ 8C2nd−1p1

µ2λ2
K

where the last inequality is from (13) and (17). This proves the desired conclusion. �
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Remark. Essentially, Theorem 5.2 says that the performance of Algorithm 2 will be upper-bounded in regard
to the K-th largest singular value. When λK is large, it means that the singular vectors are well separated,
ensuring the algorithm to have a good performance. This is similar to classical spectral clustering methods.

E Proof of Theorem 5.3

Theorem 5.3 is established through controling the λK term. For convinience, we introduce the notions below
regarding asymptotic relation. f ≈ g is to mean that f and g are in the same order if f(n)/C ≤ g(n) ≤ Cf(n)
for some constant C ≥ 1 independent of n. f . g, defined by limn→∞ (f(n)− g(n)) ≤ 0, means that f(n) is
asymtotically smaller than g(n). f & g is equivalent to g . f . To take out the dependency on λK , we use the
observation below.

Lemma 5.1: For d-hSBM in Θ0
d(n,K,p, η), we have

λK &
∑

i<j:(ri,rj)∈Nd

mrirj (pi − pj) (18)

Proof. Let PH , EL(A) for an adjacency tensor A. We start from analyzing the entries of PH. Under the
transformation from a d-dimensional tensor into a two-dimensional matrix, each entry in PH is a weighted com-
bination of the probability parameters pi’s. To be specific, (PH)ij aggregates the contribution from other nodes
u ∈ [n] \ {u, v}, and the value depends on the community relation induced by each hyperedge correspondingly.
Depending on whether or not the two nodes u and v are in the same community, we have, ∀i 6= j

(PH)ij ≈

{
u σ(i) = σ(j)

v , otherwise.
(19)

The explicit expression for (PH)ij changes for different values of d, the order of the underlying hypergraph.
Observe that u ≥ v since we assume that pi’s are in decreasing order, i.e. pi ≥ pj for i < j. Below are u, v for
the case d = 3 and 4.

When d = 3

{
u ≈ n′(p+ (K − 1)q)

v ≈ n′(2q + (K − 2)r)
(20)

When d = 4

{
u ≈ (n′)2

(
1
2p1 + (K − 1)p2 + K−1

2 p3 +
(
K−1

2

)
p4

)
v ≈ (n′)2

(
p2 + p3 + 5(K−2)

2 p4 +
(
K−2

2

)
p5

) (21)

Deducting v for each entry in PH, we have

PH − (1− η)v1n1Tn ≈ (u− v)

K∑
t=1

vtv
T
t (22)

where vt is defined as vt =
(
0Tn1

, . . . ,1Tnt , . . . ,0
T
nK

)T
for each t ∈ [K]. Note that {vt}Kt=1 are orthogonal to each

other. Therefore,

λK

(
K∑
t=1

vtv
T
t

)
≥ min
t∈[K]

nt ≥ (1− η)n′

By Weyl’s inequality,

λK(PH) ≥ (u− v)λK

(
K∑
t=1

vtv
T
t

)
+ λn

(
(1− η)v1n1Tn

)
& (n′) (u− v)

To further control u− v, let’s first look at a few cases for lower-order d. For the case d = 3, we have

u− v ≈ n′
(
p− q + (K − 2)(q − r)

)
while for the case d = 4,

u− v ≈ (n′)2

[
1

2
(p1 − p2) +

1

2
(p2 − p3) + (K − 2)(p3 − p4) +

K − 2

2
(p2 − p4) +

(
K − 1

2

)
(p4 − p5)

]
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Note that u−v could be represented as a weighted sum of pairwise comparisons, that is,
∑
i<j:(ri,rj)∈NdMrirj (pi−

pj) for some Mri,rj ’s. Recall that in our definition, (i, j) : (ri, rj) ∈ Nd if the hyperedges of type ri and rj have
community assignments that differ on only one node. The new coefficient Mrirj would be similar to mrirj . In
fact, they will only differ up to a constant related only to d (in fact, up to d− 1).

Moreover, n′Crirj ≥ mrirj for all possible (ri, rj). When counting, in mri,rj we fix one dimension (the first
dimension to node 1), while in Mri,rj two dimensions are fixated at u and v. Essentially, u − v counts the
difference of the number of random variables between two assignments, one being σ(u) = σ(v) and the other
being otherwise. Without loss of generality, we may think of the community labeled of u as a fixed number as in
the operational definition of mri,rj , while the community label of v should be different from σ(u). By multiplying
back n′ to get the expression n′Mri,rj , we unshackle v and allow it to vary within the σ(v)-th community, the
cardinality of which is approximately n′. Undoubtedly, there are double countings in both the number mri,rj

and Mri,rj . The value of mri,rj is normalized with respect to d − 1 companions (only one dimension is fixed),
while the value of Mri,rj is normalized with respect to d− 2 companions (two dimension are fixed). As a result,
there are still some l = (u, v, l3, . . . , ld)’s being doubled counted in coefficient n′Mri,rj as opposed to coefficient
mri,rj . This is the reason why the former is always larger than or equal to the latter.

Recall that the probability parameter p = {p1, . . . , pκd} follows the majorization rule, which means that pi ≤ pj
for all i < j. Combined with these fact, we have

λK(PH) & (n′)
∑

i<j:(ri,rj)∈Nd

Crirj (pi − pj) &
∑

i<j:(ri,rj)∈Nd

mrirj (pi − pj)

Hence we complete the proof. �

F Proof of Lemma 5.1

Fix any (B, σ) ∈ Θ0
d and u ∈ [n]. Define the event

Eu ,
{
`0
(
(σ̂u)πu , σ

)
≤ γ

}
(23)

For simplicity, we assume that πu is the identity permutation. Fix any i ∈ [K]. Then, on Eu we have

ni ≥
∣∣C̃ui ∩ Ci∣∣ ≥ ni − γ1n,

∣∣C̃ui ∩ Ci∣∣ ≤ γ2n (24)

where γ1, γ2 ≥ 0 and γ1 +γ2 ≤ γ. Let C ′i be any deterministic subset of [n] such that (24) holds with C̃ui replaced
by C ′i. By definition, there are at most

γn∑
l=0

(
ni
l

) γn∑
m=0

(
n− ni
m

)
≤ exp

(
C1γn log

1

γ

)
(25)

different subsets with this property where C1 > 0 is an absolute constant. We will only prove the case
∣∣B̂ui·1 −

Bi·1
∣∣ ≤ o(max(ri,rj)∈Nd pi − pj) where 1 is the d-dimensional all-one (row) vector. For the rest of the cases, we

can easily follow an similar procedure to obtain the desired upper bound.

Let ξ′i be the edges within C ′i. Note that ξ′i consists of
(
ni
d

)
independent Bernoulli random variables. The number

of truly Ber(Bi·1)’s is at least
(
ni−γn
d

)
. By an simple combinatorial argument, we have

E

[
|ξ′i|(|C′i|
d

)
]
≥ min
t∈[0,γK]

{
pi − (1− (1− t)d)(pi − pKd)

}
(26)

E

[
|ξ′i|(|C′i|
d

)
]
≥ max
t∈[0,γK]

{
pi + (1− (1− t)d)(p1 − pi)

}
(27)

Note that pi equals p1 in this case. In general, though, the estimation of all the parameters have a similar
formula, and therefore we use pi still. Since K is constant, (26) becomes pi−o(max(ri,rj)∈Nd pi−pj) by breaking
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pi − pKd into pairwise difference. Similarly, (27) would be pi + o(max(ri,rj)∈Nd pj − pi) (since Kγ = o(1) is
assumed). Together, ∣∣∣∣∣E

[
|ξ′i|(|C′i|

3

)
]
− Bi·1

∣∣∣∣∣ ≤ o( max
(ri,rj)∈Nd

pi − pj
)

(28)

On the other hand, by the Bernstein’s inequality,

P
{∣∣ |ξ′i| − E |ξ′i|

∣∣ > t
}
≤ 2 exp

(
− t2

2
((
ni−γn
d

)
p1 + 2

3 t
))

Let

t2 =

(
ni − γn

d

)
p1

(
C1γn log γ−1 + (3 + δ) log n

)
∨
(
2C1γn log γ−1 + 2(3 + δ) log n

)2
.

(
n′

Kd−1

√
nd−1p1γ log γ−1 + γn log γ−1

)2

We have

P
{∣∣ |ξ′i| − E |ξ′i|

∣∣ > Cδ

( n′

Kd−1

√
nd−1p1γ log γ−1 + γn log γ−1

)}
≤ exp

(
−C1γn log γ−1

)
n−(3+δ)

Hence, with probability at least
1− exp

(
−C1γn log γ−1

)
n−(3+δ)

, we have ∣∣∣∣∣ |ξ′i|(|C′i|
d

) − E

[
|ξ′i|(|C′i|
d

)
]∣∣∣∣∣ ≤ Cδ

(( 1

n

)d−1√
nd−1p1γ log γ−1 + γ

K3

n2
log γ−1

)

Since Kγ log γ−1 = O(1) and with the assumption max(ri,rj)∈Nd mrirjIpipj →∞, p1 � pKd , we further have∣∣∣∣∣ |ξ′i|(|C′i|
d

) − E

[
|ξ′i|(|C′i|
d

)
]∣∣∣∣∣ ≤ o( max

(ri,rj)∈Nd
pi − pj

)
(29)

at least 1− exp
(
−C1γn log γ−1

)
n−(3+δ) in probability. Combining (29), (28) and apply the Union Bound over

(25), we have ∣∣∣∣∣ |ξ′i|(|C′i|
d

) − Bi·1

∣∣∣∣∣ ≤ o( max
(ri,rj)∈Nd

pi − pj
)

with probability at least 1− n−(3+δ).

The proof for the rest Bs, s ∈ [K]d are all similar and thus omit. The key observation is that by the requirement
on γ, we will only have o(1) misclassification proportion. Which means for each sample mean, the proportion
of ”correct” random variables will dominate the ”incorrect” ones. Thus we obtain the result of the expectation
of sample mean will deviate from the true parameter no larger than o(max(ri,rj)∈Nd pi − pj). The second part
is nothing but bounding the probability of sample mean deviate from its expectation. Note that we choose the
proper t in Berstein’s inequality to make sure the error probability will still be desirably small after the union
bound. Hence we complete the proof.

G Proof of Lemma 5.2

Without loss of generality, we assume that πu is the identity permutation and node u belongs to the first
community. Also, the access index is denoted as iu , (u, i2, . . . , id) and Mp(t) , pet + 1 − p is the MGF of a
Ber(p) random variable. We have

P {σ̂u(u) 6= 1 and Eu} ≤
∑
l 6=1

pl
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where Eu is the event (23) of a good initialization and, on Eu, pl is defined as the probability of the following
error event. {

L̂u(σ̂u, l; A) ≥ L̂u(σ̂u, 1; A)
}

(30)

Recall that the initial method σ̂u determines all the assignments except for the u-th node before the refining

process. We write iu
σ̂u∼ r(ku) to indicate the fact that now the community relation r within nodes u, i2, . . . , id

depends on the label of node u, which is to be decided. Similarly, we denote the estimated connection probabilit
parameter p̂ as p̂(ku). Then, (30) is equivalent to{∑

iu

Aiu log
p̂(l)(1− p̂(1))

p̂(1)(1− p̂(l))
+ log

1− p̂(1)

1− p̂(l)
≥ 0

}
Note that the summation is over all possible i2 < · · · < id. We can also write (30) in the form of pairwise

comparison. Specifically, let ν̂ij = ν̂ij(1, l) , log
p̂i(l)(1−p̂j(1))
p̂j(1)(1−p̂i(l)) and λ̂ij = λ̂ij(1, l) , log 1−p̂i(1)

1−p̂j(l) . The error event is

thus further equal to{ ∑
(ri,rj)∈Nd

( ∑
iu
σ̂u∼ r(1)=ri

iu
σ̂u∼ r(l)=rj

ν̂ijAiu + λ̂ij +
∑

iu
σ̂u∼ r(1)=rj

iu
σ̂u∼ r(l)=ri

ν̂jiAiu + λ̂ji

)
≥ 0

}
(31)

Note that the inner two summations will contain n
(1,l)
ij and n

(1,l)
ji random variables, respectively, where

n
(1,l)
ij ,

∣∣∣{iu | iu σ̂u∼ r(1) = ri and iu
σ̂u∼ r(l) = rj

}∣∣∣
Observe that not all Aiu in the summand associated with n

(1,l)
ij would really be Ber(pi). The reason is that

there are still a few nodes misclassified by the initialization σ̂u. Nevertheless, since we require that σ̂u satisfy

Condition 5.1, it can be shown that there are only o(1)n
(1,l)
ij of random variables in the summand associated

with n
(1,l)
ij are not Ber(pi). Therefore, we apply the Chernoff bound on P {(31)} to obtain

P {(31)} ≤
∏

(ri,rj)∈Nd

(Part 1 · Part 2) (32)

where

Part 1 = exp
(
− 1

2
λ̂ji(n

(1,l)
ji − n(1,l)

ij )
)
·Mpj

( ν̂ij
2

)n(1,l)
ji Mpi

(−ν̂ij
2

)n(1,l)
ij

and

Part 2 =

[
sup

p∈{p1,...,pKd}

Mp(
ν̂ij
2 )

Mj(
ν̂ij
2 )

]O(Kγ)n
(1,l)
ji

·

[
sup

p∈{p1,...,pKd}

Mp(− ν̂ij2 )

Mi(
−ν̂ij

2 )

]O(Kγ)n
(1,l)
ij

First, since the parameter space we consider is a approximately equal-size one, each community has a size
(1 ± o(1))n′. In addition, Condition 5.1 makes sure that the community size generated from σ̂u will still lie in
(1± o(1))n′. Thus, it is easy to find that

n
(1,l)
ij � n(1,l)

ji � mrirj ∀l 6= 1

Moreover, by a similar combinatorial argument as in our proof of Lemma 5.1, we know that the proportion of

wrongly added random variables is O(Kγ). That is the reason we use O(Kγ)n
(1,l)
ij for the number of wrongly

added random variables.

In the following, we are going to show that Part 1 can be upper bounded by exp(−(1−o(1))mrirjIpipj ) and Part
2 can be upper bounded by a vanishing term with respect to Part 1. With a similar technique as in (Gao et al.,
2017), we could immediately prove that

Part 1 ≤ exp(−(1− o(1))mrirjIpipj ) (33)
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For the second part, we have, for all i < j,∣∣∣e ν̂ij2 − 1
∣∣∣ ∨ ∣∣e− ν̂ij2 − 1

∣∣ ≤ C2
pi − pj
pi

for some constant C2 > 0. Thus,

sup
p∈{p1,...,pKd}

Mp(
ν̂ij
2 )

Mj(
ν̂ij
2 )

= 1 + sup
p∈{p1,...,pKd}

(p− pj)
(
e
ν̂ij
2 − 1

)
pje

ν̂ij
2 + 1− pj

≤ 1 +O
(

sup
p∈{p1,...,pKd}

(p− pj)(pi − pj)
pi

)
≤ exp

(
O
(

sup
p∈{p1,...,pKd}

(p− pj)(pi − pj)
pi

))
The second term of Part 2 can be bounded similarly. Together, Part 2 is upper bounded by

exp

(
O(Kγ)mrirj sup

p∈{p1,...,pKd}

(p− pj)(pi − pj)
pi

)
= exp

(
o(1)mrirj max

(ri,rj)∈Nd
Irirj

)
(34)

Note that this term will still be absorbed to the term corresponding to max(ri,rj)∈Nd Irirj since K = O(1).
Combining (33) and (34) into (32), we complete the proof.

H Proof of Lemma 4.1

In this section, we’re going to proof Lemma 4.1. First we state the lemma we are going to use.

Lemma 8.1: For independent Bernoulli random variables Xu ∼ Ber(pu) and p = 1
n

∑
u∈[n] pu, we have

P
( ∑
u∈[n]

(Xu − pu) ≥ t
)
≤ exp

(
t− (np+ t) log(1 +

t

np
)
)
,∀t ≥ 0

This lemma is Corollary A.1.10 in (Alon and Spencer, 2004).

Lemma 8.2: Consider the matrix AH derived from the unnormalized graph Laplacian for a hypergraph. Suppose
maxu∈[n]

∑
v∈[n](AH)uv ≤ d̃ and for any S, T ⊂ [n], one of the following statements hold with some constant

C > 0:

1. e(S,T )

|S||T | d̃n
≤ C

2. e(S, T ) log( e(S,T )

|S||T | d̃n
) ≤ C|T | log n

|T |

where e(S, T ) =
∑
u∈S

∑
v∈T (AH)uv. Then,

∑
(u,v)∈U xu(AH)uvyv ≤ C ′

√
d̃ uniformly over all unit vectors x, y,

where U =

{
(u, v) | |xuyv| ≥

√
d̃
n

}
and C ′ > 0 is some constant.

Note that this is the direct result to the lemma 21 in (Chin et al., 2015).

Lemma 8.3: For any τ > C
(
nd−1p1 + 1

)
with some sufficiently large C > 0, we have∣∣{u ∈ [n] | du ≥ τ}

∣∣ ≤ n

τ

with probability at least 1− exp (−C ′n) for some constant C ′ > 0.

Proof. Note that in this lemma, the edges e(S) and e(S, Sc) are counting the real hyperedges in A. This is
different with the definition in Lemma 8.2.
Let us consider a subset of nodes S ⊂ [n] which contains all nodes with degree at least τ and |S| = l for some
l ∈ [n]. By the requirement on S, we have either e(S) ≥ C1lτ or e(S, Sc) ≥ C1lτ for some constant C1. We
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want to show that both P {e(S) ≥ C1lτ} and P {e(S, Sc) ≥ C1lτ} are small. First, observe that e(S) consists

of
(
l
d

)
Bernoulli random variables and e(S, Sc) consists of

∑d−1
s=1

(
n−l
s

)(
l

d−s
)

Bernoulli random variables. Thus,

Ee(S) ≤ C2l
dp1 and Ee(S, Sc) ≤ C2n

d−1lp1 for some constant C2. Then, when τ > C
(
nd−1p1 + 1

)
for some

sufficiently large C > 0, we have

P {e(S) ≥ C1lτ} = P {e(S)− Ee(S) ≥ C1lτ − Ee(S)}

≤ exp

(
C1lτ − Ee(S)− C1lτ log

(
C1lτ

Ee(S)

))
by Lemma 8.1

≤ exp

(
C1lτ − C1lτ log

(
C1τ

C2nd−1p1

))
≤ exp (C1lτ − C1lτ log(C3)) where C3 =

C1C

C2

≤ exp (−C4lτ) for some C4 > 0

where the last inequality holds since C3 is sufficiently large. Similarly, the same bound applies for

P {e(S, Sc) ≥ C1lτ}

Thus, we have, by Union Bound

P {|{u ∈ [n] | du ≥ τ}| > ξn} ≤
∑
l>ξn

2 exp
(
l log

(en
l

))
· exp (−C4lτ) ≤ exp(−C5n)

where we choose ξ = 1
τ . We are done. �

Lemma 8.4: Given τ > 0, define the subset J = {u ∈ [n] | du ≤ τ}. Then for any C ′ > 0, there is some
constant C > 0 such that

‖(AH)JJ − PH)JJ‖op ≤ C

(√
nd−1p1 +

√
τ +

nd−1p1√
nd−1p1 +

√
τ

)

with probability at least 1− n−C′

Proof. By definition,

‖(AH)JJ − (PH)JJ‖op = sup
x,y∈Sn−1

∑
(u,v)∈J×J

xu
(
(AH)uv − (PH)uv

)
yv

where x, y are some unit vectors lying on the unit sphere Sn−1 in Rn−1. Define the following two sets

L =
{

(u, v) : |xuyv| ≤
(√

τ +
√
nd−1p1

)
/n
}

U =
{

(u, v) : |xuyv| ≥
(√

τ +
√
nd−1p1

)
/n
}

Then we have

‖(AH)JJ − (PH)JJ‖op ≤ sup
x,y∈Sn−1

∑
(u,v)∈L∩J×J

xu
(
(AH)uv − (PH)uv

)
yv

+ sup
x,y∈Sn−1

∑
(u,v)∈U∩J×J

xu
(
(AH)uv − (PH)uv

)
yv

We will upper-bound these two parts separately. First we will bound the light pairs {(u, v) ∈ L}. A discretization
argument in (Chin et al., 2015) implies that

sup
x,y∈Sn−1

∑
(u,v)∈L∩J×J

xu
(
(AH)uv − (PH)uv

)
yv

. max
x,y∈N

max
S⊂[n]

∑
(u,v)∈L∩J×J

xu
(
(AH)uv − E(AH)uv

)
yv
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where N ⊂ Sn−1 and |N | ≤ 5n. Let ruv = xuyv1
{
|xuyv| ≤

√
d̃/n

}
and

√
d̃ =
√
τ +

√
nd−1p1. Then we have

P

{∣∣∣∣∣∑
u<v

ruv
(
(AH)uv − E(AH)uv

)∣∣∣∣∣ ≥ C√d̃
}

= P

{∣∣∣∣∣∑
u<v

∑
id3∈[n]d−2

ruv
(
Au,v,id3

− EAu,v,id3

)∣∣∣∣∣ ≥ C√d̃
}

by definition

= P

{∣∣∣∣∣∑
u<v

∑
i3<...<id

ruv
(
Au,v,id3

− EAu,v,id3

)∣∣∣∣∣ ≥ C1

√
d̃

}
where C1 = C × (d− 2)!

= P

{∣∣∣∣∣ ∑
i1<...<id

(
∑

1≤a<b≤d

riaib)
(
Aid1
− EAid1

)∣∣∣∣∣ ≥ C1

√
d̃

}
Simple rearrangement according to independent terms

≤
∑

1≤a<b≤d

P

{∣∣∣∣∣ ∑
i1<...<id

(riaib)
(
Aid1
− EAid1

)∣∣∣∣∣ ≥ C2

√
d̃

}
(a) Union bound, C2 = C1/

(
d

2

)

≤ 2
∑

1≤a<b≤d

exp
(
− 1/2C2

2 d̃

p1

∑
i1<...<id

r2
iaib

+ 2
3

√
d̃
n C2

√
d̃

)
Bernstein’s inequality

≤ 2

(
d

2

)
exp

(
− 1/2C2

2 d̃

2p1nd−2 + 2
3

√
d̃
n C2

√
d̃

)
(b)

≤ 2

(
d

2

)
exp

(
− n C2

2

4 + 4C2

3

)
Since d̃ > p1n

d−1

The inequality (b) holds since
∑
ia<ib

r2
iaib
≤ 2

∑
1≤ia<ib≤n x

2
ia
y2
ib
≤ 2nd−2 (recall that x,y are all unit vectors).

Then, we apply the Union Bound over the space N and the other half of the Laplacian matrix AH, we have

max
x,y∈N

max
S⊂[n]

∑
(u,v)∈L∩J×J

xu
(
(AH)uv − E(AH)uv

)
yv ≤ C

(√
τ +

√
nd−1p1

)
with probability at least 1− exp (−C ′n). Thus we complete the bound for light pairs. Here we want to highlight
that the the above argument are all similar to (Chin et al., 2015), except the key step (a). Step (a) allows us to
have a similar result under the d-hSBM setting.
Next we show how to bound the heavy pairs {(u, v) ∈ U}. Same as (Gao et al., 2017), we bound

sup
x,y∈Sn−1

∑
(u,v)∈U∩J×J

xu(AH)uvyv (35)

and
sup

x,y∈Sn−1

∑
(u,v)∈U∩J×J

xu(PH)uvyv

separately. By the definition of U , we have

sup
x,y∈Sn−1

∑
(u,v)∈U∩J×J

xu(PH)uvyv ≤ sup
x,y∈Sn−1

∑
(u,v)∈U∩J×J

x2
uy

2
v

|xuyv|
(PH)uv ≤

nd−1p1√
nd−1p1 +

√
τ

The last equation hold since (PH)max ≤ nd−2p1. Then, we bound (35). Note that by the definition of the set J ,
the degree of the sub-graph (AH)JJ is bounded above by τ . We need to prove that the condition (the discrepancy
property) of Lemma 8.2 is satisfied with d̃ = τ + nd−1p1 with probability at least 1 − n−C′ . The proof mainly
follows the arguments in (Lei and Rinaldo, 2015) and apply the Union Bound to make sure the independence
(like what we have done in (a) above) . We have

sup
x,y∈Sn−1

∑
(u,v)∈U∩J×J

xu(AH)uvyv ≤ C
(√

τ +
√
nd−1p1

)
with probability at least 1− n−C′ . Together with all the results above, we are done. �
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Now we are going to prove Lemma 4.1.

Proof. By triangle inequality,

‖Tτ (AH)− PH‖op ≤ ‖Tτ (AH)− Tτ (PH)‖op + ‖Tτ (PH)− PH‖op

Then we have ‖Tτ (AH)− Tτ (PH)‖op = ‖(AH)JJ − (PH)JJ‖op, which is bounded by Lemma 8.4. By Lemma 8.3,
we have |Jc| ≤ n

τ with probability at least 1− exp (−C ′n). This implies

‖Tτ (PH)− PH‖op ≤ ‖Tτ (PH)− PH‖F ≤
√

2n |Jc| (pH)2
max ≤

√
2n(pH)max√

τ
≤
√

2nd−1p1√
τ

Taking τ ∈
[
C1(1 + nd−1p1), C2(1 + nd−1p1)

]
. Proof completed. �

I Proof of Lemma 2.2

First recall that

Rσ∼Unif(σ̂(1)) =
1

|ΘL
d |
∑
σ∈ΘLd

Eσ`(σ(1), σ̂(1))

In order to connect Rσ∼Unif(σ̂(1)) with the risk function of a hypothesis testing problem, we shall find an equiva-
lent form of Eσ`(σ(1), σ̂(1)). The idea is to find another assignment σ′ such that d(σ, σ′) = dH(σ(1), σ′(1)) = 1.
σ′ is the most indistinguishable opponent against σ in the sense that their assignments differ by only one node.
Specifically, for each σ0 ∈ ΘL

d , we construct a new assignment σ[σ0] based on σ0:

σ[σ0](1) = arg min
2≤i≤n

{
nσ0(i) = n′

}
and σ[σ0](i) = σ0(i) for 2 ≤ i ≤ n. Note that {i | nσ0(i) = n′} 6= ∅∀σ0 ∈ ΘL

d and σ[σ0] ∈ ΘL
d . In addition, for any

σ1, σ2 ∈ ΘL
d , we can see that σ1 6= σ2 if and only if σ[σ1] 6= σ[σ2]. Therefore, {σ0 | σ0 ∈ ΘL

d } = {σ0 | σ0 ∈ ΘL
d }

and thus

Rσ∼Unif(σ̂(1)) =
1

|ΘL
d |

∑
σ0∈ΘLd

Eσ0
`(σ0(1), σ̂(1))

=
1

|ΘL
d |

∑
σ0∈ΘLd

1

2

(
Eσ0`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))

)

In the testing problem, we can use the optimal Bayes risk as a lower bound. Let σ̂Bayes be an assignment
that achieves the minimum Bayes risk inf σ̂

1
2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)
. Notice that σ̂Bayes(1)

is a Bayes estimator concerning the 0-1 loss, indicating that σ̂Bayes(1) must to be the mode of the posterior
distribution. Roughly speaking, the team who has a larger value of sum of the supporting random variables wins
the test.

Grouping terms together according to each community relation, the log-likelihood function under the true com-
munity assignment σ0 given an observation A becomes

L(σ0; A) = logP{A | σ0} =
∑

l=(1,l2,...,ld)

Kd∑
i=1

Al1
{
l
σ0∼ ri

}(
log

pi
p̄i

+ log p̄i

)

Similarly, we can obtain the expression L(σ[σ0]; A) when the underlying community assignment changes to σ[σ0].
Hence, the probability of error is

Eσ0
`(σ0(1), σ̂Bayes(1)) = Pσ0

{L(σ[σ0]; A) ≥ L(σ0; A)}

= P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}
(36)



I (Eli) Chien, Chung-Yi Lin, I-Hsiang Wang

where where f(s) , s
1−s for Cxy , log f(x)

f(y) , and for each (ri, rj) pair in Nd, X
(rj)
u

i.i.d.∼ Ber(pj), X
(ri)
u

i.i.d.∼
Ber(pi) ∀u = 1, . . . ,mrirj are all mutually indepedent random variables. Note that when summing over all
possible l’s in the log-likelihood function, the indices can be partitioned into two kinds of set: one whose label
changes from ri to rj for some (ri, rj) ∈ Nd when there is exactly one node disagreement and one whose label
does not change whether the community assignment is σ0 or σ[σ0]. Specifically,

{l = (1, l2, . . . , ld)} = J ∪ Jc

where

J =
⋃

i<j:(ri,rj)∈Nd

{
l
σ0∼ ri, l

σ[σ0]∼ rj

}
and Jc =

Kd⋃
i=1

{
l
σ0∼ ri, l

σ[σ0]∼ ri

}
The former contributes to the difference between two Bernoulli random variables with cardinality mrirj , while
the latter is invariant to the hypothesis testing problem and its likelihood remains the same at both sides of
the first inequality in (36). Note also that we rearrange terms on the specific side of the inequality to make
Crirj ≥ 0 ∀(ri, rj) ∈ Nd due to the non-decreasing property of the probability parameters pi’s.

By symmetry, the situation is exactly the same for Eσ[σ0]`(σ[σ0](1), σ̂Bayes(1)). Finally, since (36) holds for all
σ0 ∈ ΘL

d and inf(·) is a concave function, we have

Rσ∼Unif(σ̂(1)) ≥ inf
σ̂

Rσ∼Unif(σ̂(1))

= inf
σ̂

1

|ΘL
d |

∑
σ0∈ΘLd

1

2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)

≥ 1

|ΘL
d |

∑
σ0∈ΘLd

inf
σ̂

1

2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)

=
1

|ΘL
d |

∑
σ0∈ΘLd

P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}

= P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}

J Proof of Lemma 2.3

We can break the L.H.S. of (9) dirctly into

P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}
≥

∏
i<j:(ri,rj)∈Nd

P

{mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}

Note that there are only finitely many terms involving in the product since we assume the order d is constant
and so does the total number of community relations κd = |Kd| in d-hSBM. Though näıve, we could still arrive at
the same order as the minimax rate. By symmetry, it suffices to focus on the first term in the above equation.

P

{mr1r2∑
u=1

Cr1r2

(
X(r2)
u −X(r1)

u

)
≥ 0

}
Here, we utilize a result from large deviation.

Conseder i.i.d. random variables {Xi}ni=1 where each Xi ∼ X. We assume X is nondegenerate and that

EX2eλX <∞ (37)

for some λ > 0. The former condition ensures, for 0 < u ≤ λ, the existence of the functions m(u) ,
(

logLX(u)
)′

,

σ2(u) , m′(u) and Q(u) , um(u)− logLX(u) where LX(u) , EeuX is the Moment Generating Function (MGF)
of the random variable X. Recall some known results:

lim
u↓0

m(u) = m(0) = EX <∞
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and
sup

0<u≤λ
(ux− logLX(u)) = Q(u∗) (38)

for m(0) < x ≤ m(λ), where u∗ is the unique solution of the equation

m(u) = x (39)

Note that it is the sup-achieving condition in (38). The main theorem goes as follows.

Theorem 10.1 (Theorem 1 in Rozovsky, 2003): ∀x such that m(0) < x ≤ m(λ) and ∀n ≥ 1, the relation

e−nQ(u∗) ≥ P

{
n∑
i=1

Xi ≥ nx

}
≥ e−nQ(u∗)−c

(
1+
√
nQ(u∗)

)

holds, where the constant c does not depend on x and n.

The first inequality is essentially the Chernoff Bound, while here we use the second one, i.e. the lower bound
result.

First, we identify that X = Cr1r2(X
(r2)
u −X(r1)

u ) and n = mr1r2 for our problem. Besides, since X <∞, we can
take λ large enough so that (37) holds. The MGF now becomes

LX(u) = EeuX = E
[
euCr1r2X

(r2)
u
]
· E
[
e−uCr1r2X

(r1)
u
]

Also, since m(0) = EX < 0, we make a trick here to take x = 0. The corresponding optimalilty condition (39)
becomes

m(u) = x = 0⇔ L′X(u)

LX(u)
= 0

⇔ L′X(u) = 0

It can be shown that u∗ = 1
2 and the supremum achieved is

Q(u∗) = sup
0<u≤λ

(ux− logLX(u))

= − logLX(u∗)

= Ip1p2

Combining the expressions for each Crirj corresponding to a (ri, rj) ∈ Nd, we can conclude that

P

{ ∑
i<j:(ri,rj)∈Nd

mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}

≥
∏

i<j:(ri,rj)∈Nd

P

{mrirj∑
u=1

(
X(rj)
u −X(ri)

u

)
≥ 0

}

≥
∏

i<j:(ri,rj)∈Nd

e
−mrirj Ipipj−crirj

(
1+
√
mrirj Ipipj

)

= exp

(
−

∑
i<j:(ri,rj)∈Nd

(
mrirjIpipj + crirj

(
1 +

√
mrirjIpipj

)))

≥ exp

(
−

∑
i<j:(ri,rj)∈Nd

(
mrirjIpipj + c

(
1 +

√
mrirjIpipj

)))

where c = maxi<j:(ri,rj)∈Nd{crirj} is independent of n′ and hence n. Finally, since we assume that∑
i<j:(ri,rj)∈Nd mrirjIpipj goes to infinity as n becomes large, the second term with the constant c in the above

equation would be dominated by the first term. We have the desired asymtotic result consequently.
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