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Abstract

In this paper, community detection in hy-
pergraphs is explored. Under a generative
hypergraph model called “d-wise hypergraph
stochastic block model” (d-hSBM) which na-
turally extends the Stochastic Block Mo-
del (SBM) from graphs to d-uniform hyper-
graphs, the fundamental limit on the asymp-
totic minimax misclassified ratio is characte-
rized. For proving the achievability, we pro-
pose a two-step polynomial time algorithm
that provably achieves the fundamental limit
in the sparse hypergraph regime. For pro-
ving the optimality, the lower bound of the
minimax risk is set by finding a smaller pa-
rameter space which contains the most do-
minant error events, inspired by the analy-
sis in the achievability part. It turns out
that the minimax risk decays exponentially
fast to zero as the number of nodes tends
to infinity, and the rate function is a weigh-
ted combination of several divergence terms,
each of which is the Rényi divergence of order
1/2 between two Bernoulli distributions. The
Bernoulli distributions involved in the cha-
racterization of the rate function are those
governing the random instantiation of hype-
redges in d-hSBM. Experimental results on
both synthetic and real-world data validate
our theoretical finding.

1 INTRODUCTION

Community detection (clustering) has received great
attention recently across many applications, including
social science, biology, computer science, and machine
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learning, while it is usually an ill-posed problem due
to the lack of ground truth. A prevalent way to cir-
cumvent the difficulty is to formulate it as an inverse
problem on a graph G = {V,&}, where each node
i €V =[n] & {l,...,n} is assigned a community
(label) o (i) € [K] £ {1,...,K} that serves as the
ground truth. The ground-truth community assign-
ment o : [n] — [K] is hidden while the graph G is
revealed. Each edge in the graph models a certain
kind of pairwise interaction between the two nodes.
The goal of community detection is to determine o
from G, by leveraging the fact that different combina-
tion of community relations leads to different likeliness
of edge connectivity. A canonical statistical model is
the stochastic block model (SBM) (Holland et al., 1983)
(also known as planted partition model (Condon and
Karp, 2001)) which generates randomly connected ed-
ges from a set of labeled nodes. The presence of the
() edges is governed by (5) independent Bernoulli
random variables, and the parameter of each of them
depends on the community assignments of the two no-
des in the corresponding edge.

Through the lens of statistical decision theory, the
fundamental statistical limits of community detection
provides a way to benchmark various community de-
tection algorithms. Under SBM, the fundamental sta-
tistical limits have been characterized recently. One
line of work takes a Bayesian perspective, where the
unknown labeling o of nodes in V is assumed to be
distributed according to certain prior, and one of the
most common assumption is i.i.d. over nodes. Along
this line, the fundamental limit for exact recovery is
characterized (Abbe et al., 2016) in the full genera-
lity, while partial recovery remains open in general.
See the survey (Abbe, 2017) for more details and re-
ferences therein. A second line of work takes a mini-
max perspective, and the goal is to characterize the
minimax risk, which is typically the mismatch ratio
between the true community assignment and the reco-
vered one. In (Zhang and Zhou, 2016), a tight asymp-
totic characterization of the minimax risk for commu-
nity detection in SBM is found. Along with these theo-
retical results, several algorithms have been proposed
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to achieve these limits, including degree-profiling com-
parison (Abbe and Sandon, 2015) for exact recovery,
spectral MLE (Yun and Proutiere, 2015) for almost-
exact recovery, and a two-step mechanism (Gao et al.,
2017) under the minimax framework.

However, graphs can only capture pairwise relational
information, while such dyadic measure may be in-
adequate in many applications, such as the task of
3-D subspace clustering (Agarwal et al., 2005) and
the higher-order graph matching problem in compu-
ter vision (Duchenne et al., 2011). Therefore, it is na-
tural to model such beyond-pairwise interaction by a
hyperedge in a hypergraph and study the clustering
problem in a hypergraph setting. Hypergraph par-
titioning has been investigated in computer science,
and several algorithms have been proposed, including
spectral methods based on clique expansion (Agarwal
et al., 2006), hypergraph Laplacian (Zhou et al., 2006),
tensor method (Ghoshdastidar and Dukkipati, 2015),
linear programming (Li et al., 2016), to name a few.
Existing approaches, though, mainly focus on optimi-
zing a certain score function entirely based on the con-
nectivity of the observed hypergraph and do not view
it as a statistical estimation problem.

In this paper, we investigate the community detection
problem in hypergraphs through the lens of statistical
decision theory. Our goal is to characterize the funda-
mental statistical limit and develop computationally
feasible algorithms to achieve it. As for the genera-
tive model for hypergraphs, one natural extension of
the SBM model to a hypergraph setting is the hyper-
graph stochastic block model (hSBM), where the pre-
sence of an order-h hyperedgee C V (i.e. lef = h < M,
the maximum edge cardinality) is governed by a Ber-
noulli random variable with parameter 6. and the pre-
sence of different hyperedges are mutually indepen-
dent. Despite the success of the aforementioned algo-
rithms applied on many practical datasets, it remains
open how they perform in hSBM since the the funda-
mental limits have not been characterized and the pro-
babilistic nature of hSBM has not been fully utilized.

The hypergraph stochastic block model is first intro-
duced in (Ghoshdastidar and Dukkipati, 2014) as the
planted partition model in random uniform hyper-
graphs where each hyperedge has the same cardinality.
The uniform assumption is later relaxed in a follow-up
work (Ghoshdastidar and Dukkipati, 2017) and a more
general hSBM with mixing edge orders is considered. In
(Angelini et al., 2015), the authors consider the sparse
regime and propose a spectral method based on a ge-
neralization of non-backtracking operator. Besides, a
weak consistency condition is derived in (Ghoshdasti-
dar and Dukkipati, 2017) for hSBM by using the hyper-
graph Laplacian. Departing from SBM, an extension

to the censored block model to the hypergraph setting
is considered in (Ahn et al., 2016), where an informa-
tion theoretic limit on the sample complexity for exact
recovery is characterized.

As a first step towards characterizing the fundamental
limit of community detection in hypergraphs, in this
work we focus on the “d-wise hypergraph stochastic
block model” (d-hSBM), where all hyperedges genera-
ted in the hypergraph stochastic block model are of
order d. Our main contributions are two-fold.First,
we give a tight asymptotic characterization of the op-
timal minimax risk in d-hSBM for any d. Second, we
propose a polynomial time algorithm which provably
achieves the minimax risk under mild regularity con-
ditions. Throughout the paper, the order d and the
number of communities K are both treated as con-
stants, while other parameters (hyperedge connection
probability) may be coupled with n. The proposed al-
gorithm consists of two steps. The first step is a global
estimator that roughly recovers the hidden commu-
nity assignment to a certain precision level, and the
second step refines the estimated assignment based on
the underlying probabilistic model. This refine-after-
initialize concept has also been used in graph clus-
tering (Abbe and Sandon, 2015; Yun and Proutiere,
2015; Gao et al., 2017) and ranking (Chen and Suh,
2015). The proposed algorithm performs well on both
synthetic data and real-world data. The experimental
results validate the theoretical finding that not only
is the refinement step critical in achieving the optimal
statistical limit, but it is significantly better to use
hypergraphs for community detection problem rather
than graphs.

The characterized minimax risk in d-hSBM is an ex-
ponential rate, and the error exponent turns out to
be a linear combination of Rényi divergences of order
1/2. Each divergence term in the sum corresponds to
a pair of community relations that would be confused
with one another when there is only one misclassifi-
cation, and the weighted coefficient associated with it
indicates the total number of such confusing patterns.
Probabilistically, there may well be two or more mis-
classifications, with each confusing relation pair pertai-
ning to a Rényi divergence when analyzing the error
probability. However, we demonstrate technically that
these situations are all dominated by the error event
with a single misclassified node, which leaves out only
the “neighboring” divergence terms in the asymptotic
expression. The main technical challenge resolved in
this work is attributed to the fact that the community
relations become much more complicated as the order
d increases, meaning that more error events may arise
compared to the much simpler homogeneous graph SBM
case. In the proof of achievability, we show that the re-
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finement step is able to achieve the fundamental limit
provided that the initilization step satisfies a certain
weak consistency condition. The converse part of the
minimax risk follows a standard approach in statistics
by finding a smaller parameter space where we can
analyze the risk.

Finally, we would like to note that an extended version
(especially when K is allowed to scale with n) of this
paper can be found online (Chien et al., 2018).

2 PROBLEM FORMULATION

2.1 Community Relations

Let ICq = {r;} be the set of all possible community re-
lations under d-hSBM and rg 2 |KCg|. Contrary to the
dichotomy situation (same-community or not) concer-
ning the appearance of an edge between two nodes in a
symmetric graph SBM, there is a multitude of commu-
nity relations in d-hSBM. In order not to mess up with
them as d increases, we use the idea of majorization to
organize g4 with each r; in the form of a histogram.
Specifically, the histogram operator hist(:) is used to
transform a vector r € [K]? into its histogram vector
hist(r). For convinience, we sort the histogram vector
in descending order and append zero’s to make hist(r)
remain d-dimensional. The notion of majorization is
introduced as follows. For any a,b € R?, we say that
a majorizes b, written as a > b, if Zle af > Ele bf
for k = 1,...,d and Z?zl a; = Z?:l b;, where xf’s
are elements of x sorted in descending order. Observe
that each relation r; € Ky can be uniquely represen-
ted by it histogram counterpart h;. We arrange 4 in
majorization (pre)order such that h; >~ h; < i < j.
Example 2.1 (K4 in 4-hSBM): |[K4| = k4 = 5 with
histogram vectors being

Relation Histogram glc‘)(r)llr)lst():itllilzi
8 (all-same) h1 = (4,0,0,0) P1
ro  (only-1-diff)  he = (3,1,0,0) D2
r3 h3 - (2721070) P3
ry (only-2-same) hy = (2,1,1,0) D4
Ts (all—dlﬁ) h5 = (1, 1, 17 1) yos

2.2 Probabilistic Model: d-hSBM

In a d-uniform hypergraph, the adjacency relation is
indicated by a d-dimensional n X - - - x n random tensor
A 2 [A;] (the size of each dimension being n), where
1=(ly,...,13) € [n]? is the access index of an element
in the tensor. Let ©r £ (@x(1), .- ., Tr(n)) for a permu-
tation m € S,, denote the permuted version of a vector

x = (x1,...,2,) € R". Also, S, is the symmetric
group of degree n which contains all the permutations
from [n] to itself. The following two natural conditions
on this adjacency tensor come from hypergraph:

No self-loop: A; #0 < |{l4,..
Symmetry: A=A, Vreds,

g} =d.

In d-SBM, A; is a Bernoulli random variable with
success probability Q; for each I. The parameter ten-
sor Q = [Q;] depends on the community assignment
and forms a block structure. The block structure is
characterized by a symmetric community connectivity
d-dimensional tensor B € [0,1]5% %K where Q; =
B, (). Here the function o(x) £ (o(21),...,0(zy,)) is
the community label vector assigned by o for a node
vector * = (21,...,2y). Let np = [{ilo(i) = k}|
be the size of the k-th community for £ € [K]. In
addition, let p = (p1,...,px,) € (0,1)" where p;
is to denote the success probability of the Bernoulli
random variable that corresponds to the appearance
of a hyperedge with relation r; € K;. We assume,
without loss of generality, that p; > p; Vi < j. The
more concentrated a group is, the higher the chan-
ces that the members will be connected by a hype-
redge. To guarantee the solvability of weak recovery
in d-hSBM, we set the probability parameter p at least
in the order of (1/n?~1). Therefore, we would write
p= ﬁ(al,...,am) where a; = Q(1)Vi = 1,..., kq.
The sparse regime (1/n9"1) considered here is first
motivated in (Lin et al., 2017). Under 3-hSBM, the aut-
hors in (Lin et al., 2017) consider p = ©(1/n?), which
is orderwise-lower than the one (i.e. ©(1/n)) required
for partial recovery (Abbe and Sandon, 2015) and the
minimax risk (Zhang and Zhou, 2016) under SBM.

The parameter space that we consider is a homogene-
ous and approximately equal-sized case where each ny
n

is roughly L%J Formally speaking (let n/ = L?J),

OY(n. K, p.n) 2 {(B,o) | o : [n] — K],

ni € [(1—n)n', (1+n)n'] Vk € [K]}

where B has the property that B,y = p; if and only if
hist(c(1)) = h;. In other words, only the histogram of
the community labels within a group matters when it
comes to connectivity. n is a parameter that controls
how much nj could vary. We assume the more interes-
ting case that n > % where the community sizes are
not restricted to be exactly equal. Interchangeably, we
would write I < 7; to indicate the community relation

within nodes {1, ...,l4 under the assignment o.
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2.3 Performance Measure

To gauge how good an estimator 7 : G — [K]™ is, we
use the mismatch ratio as the performance measure to
the community detection problem. The un-permuted
loss function is defined as fo(oq,00) 2 %dH(Ul,O'Q)
where dy is the Hamming distance. It directly counts
the proportion of misclassified nodes between an es-
timator and the ground truth. Concerning the issue
of possible re-labeling, the mismatch ratio is defined
as the loss function which maximizes the agreements
between an estimator and the ground truth after an
alignment by label permutation.
~ A . ~
L(c,0) = Jmin Lo(Gr,0)

As convention, we use R, (5) = E,/(7, o) to denote the
corresponding risk function. Finally, the minimax risk
for the parameter space ©Y(n, K, p,n) under d-hSBM is
denoted as

R;£inf sup Ry (5)
G (B,a)e@g

3 MAIN CONTRIBUTIONS

For the case d = 2, the asymptotic minimax risk R3 is
characterized in (Zhang and Zhou, 2016), which decays
to zero exponentially fast as n — oo. In addition, the
(negative) exponent of R} is determined by n’ and the
Rényi divergence of order 1/2 between two Bernoulli
distributions Ber(p) and Ber(q)

Ipqé—210g<\/27q+ \/1—p\/1—q).

It turns out the worst-case risk of our proposed al-
gorithm also decays to zero exponentially fast, given
that the outcome of the initialization algorithm sa-
tisfies certain conditions. The exponent is a weigh-
ted combination of divergence terms. To specify the
weight, we introduce further notations below. We use
Ng = {(ri,r;) |1 <j, [|hi — hj||, =2} to denote the
collection of ordered pairs of relations in Iy that are
at a one-hop distance to each other where ||-||; stands
for the /1 norm. There is a weighted coefficient associ-
ated with every pairwise divergence term. Appearing
in the hypothesis testing problem when deriving the
minimax lower bound, it represents the number of er-
ror events arising from confusing relation r; with r; for
each pair (r;,7;) € Ng. It turns out that this situation
also happens for any order d. Precisely, let’s consider
a least favorable sub-parameter space of ©Y:

Ok (n, K.p.n) 2 {(B, ) € 65 | Vk € [K] (1)

nk € {n =1, ,n' +1}, non) :n’—|—1}

In @5 , each community takes on only 3 possible sizes
and there are exactly n’ + 1 members in the commu-
nity where the first node belongs. We pick a oy in
©% and construct a new assignment o[og] based on
oo: olool(i) = op(i) for 2 < i < n and ofog](1) =
arg ming ;. i {nx = n'}. In other words, o[og] and oy
only disagree on the label of the first node. For each
pair (r;,r;) € Ng, we define the weighted coefficient

Meyir; = ‘{l: (LZZ""?ld) |l%ri> ULZU] Tj}‘

as the number of how many r;-edges do we mistake as
rj-edges. Note that the above definition is independent
of the choice of oy € @dL.

Example 3.1 (Ny in 4-hSBM): |Ny| = 5 with elements

Relation Pair Combinatorial Number

’

(r1,72) Mypyry X (%)
(ra,73) Mgy < (g)n’ /
(T37T4) Mrgry = nng - 2) (712
(ro,74) Miyry < (5) (K —2)0/
(ra,m5) Mgy = n'(KQQ) (n')?

Note: my,,, is the smallest while my,., is the largest.

Here the asymptotic equality between two functions
f(n) and g(n), denoted as f < g (as n — o0), holds if
lim,, 00 f(n)/g(n) = 1. The asymptotic optimal mini-
max risk for the parameter space ©Y(n, K, p,n) under
d-hSBM is characterized by the following theorem.

Theorem 3.1 (Main Theorem): Suppose as n — oo,

Z My ir; Ipip; = 00 (2)
1<j:(ry,r;)ENG

logR); < — Z

1<j:(ry,r; ) ENG

Then

m?“ﬂ’j Ipipj

The converse part of Theorem 3.1 is established via
the following lower bound on the minimax risk.

Theorem 3.2: If ZK].:(TM],)GNd My, Ipip, — 00 as
n — 00, then there exists a positive sequence (, — 0
as n — 0o such that

R} > exp ( —(1+¢) Z mri,«jIpipj>

i<j:(ri,r;)ENG
We would like to note that the minimax result obtai-
ned in (Gao et al., 2017) can be recovered from our
main theorem by specializing d = 2. Their condition
can be identified with (2) by using the approximation

2
Ipip, = % Moreover, the only weighted coef-

ficient associated with the community relation pair

- n

(r1,72) € N2 under @g('mK’p, n) is My, =n' < n
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4 TWO-STEP ALGORITHM

4.1 Refinement Step

The refinement step (Algorithm 1) comprises two ma-
jor parts. First, for each node u € [n], we generate
an estimated assignment o, of all nodes except u by
applying an initialization algorithm Alg;,,;, on the sub-
hypergraph without the vertex u. The sub- hypergraph
is represented by A_,,, which is the (n—1)x---x(n—1)
sub-tensor of A when the u-th coordinate is removed in
each dimension. Then, the label of v under &, is deter-
mined by maximizing a local likelihood function. Spe-
cifically, let us start with the global likelihood function
defined as follows. Let

L(o;A) &
S > (logpi+log(l - p)(1 - A))
{ilrieKa} {11}

denote the log-likelihood of an adjacency tensor A
when the hidden community structure is determined
by o. For each u € [n], we use

Ly(o,k; A) £

> X

{i|ri€a} {Ul1=u,lXr;}

<logp¢Az +log(1—p;)(1 —A,))

to denote those likelihood terms pertaining to the u-th
node when its label is k. Since A is symmetric, we can
assume without loss of generality that the first index
in I is u. Based on the estimated assignment of the
other n — 1 nodes, we make use of the following local
Mazimum Likelihood Estimation method
o(u) £ argmax L(o, k; A)
ke[K]

to predict the label of u. While the parameter B that
governs the underlying random hypergraph model is
unknown when evaluating the likelihood, we will use
L(U A) and L. (0w, ku; A) to denote the global and lo-
cal likelihood function with the true B replaced by its
estimated counterpart B and B“, respectively. Note
that the superscript u is to indicate the fact that the
estimation B* is calculated with node u taken out.

The final step of the refinement algorithm is to form
a consensus through a majority neighbor voting. The
consensus step seeks for a jointly agreed community
assignment among n different estimated assignments
{Gu : u € [n]} derived since they would all be close to
the ground truth up to some permutation.

4.2 Spectral Clustering

To devise a good initialization algorithm Alg;, .., we
develop a hypergraph version of the unnormalized

Algorithm 1: Refinement Scheme

Input: Adjacency tensor A € {0,1}7* %"
number of communities K,
initialization algorithm Alg;,, ;.

Local MLE:

for u=1to n do

Apply Alg;,,;; on A_,, to obtain 7, (v) Yv # u.

7

Estimate entries of B using the sample mean Bu.
Assign the label of node u based on

u(u) = argmax L, (Gy, k; A) (3)
ke[K]

end
Consensus:
Define 5(1) = 51(1). For u = 2,...,n, define
0 (u) = argmax | {v[51(v) = k} N {v[Fu(v) = Fu(u)} |
ke[K]

(4)

Output: Community assignment .

spectral clustering (Von Luxburg, 2007) with regula-
rization (Chin et al., 2015). In particular, a modified
version of the hypergraph Laplacian described below is
employed. Let H = [H,.] be the |V| x |€| incidence
matrix, where each entry H,. is the indicator function
whether or not node v belongs to hyperedge e. Note
that the incidence matrix H contains the same amou-
ont of information as the the adjacency tensor A. Let
d, denote the degree of the u-th node, and d be the
average degree across the hypergraph. The unnorma-
lized hypergraph Laplacian is defined as

L(A)2HHT -D (5)
where D = diag(dy,...,d,) is a diagonal matrix re-
presenting the degree distribution in that hypergraph
with adjacency tensor A and (-)T is the usual ma-
trix transpose. Note that £ can be thought of as an
encoding of the higher-dimensional connectivity rela-
tionship into a two-dimensional matrix.

Before we directly apply the spectral method, high-
degree nodes in the hypergraph is first trimmed to
ensure the performance of the clustering algorithm.
Specifically, we use A, to denote the modification
of A where all coordinates pertinent to the set
{u€n]|d, > 7} are replaced with all-zero vectors.
Let H, and D, be the corresponding incidence ma-
trix and degree matrix of A,. The spectrum we are
looking for is the trimmed version of £, denoted as
T.(L(A)) = H,HI — D, where the operator T,(-) is
the trimming process with a degree threshold 7. Let

LA 2T =[ul - ul]" e RK

n

SVDy (T
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denote the K leading singular vectors generated from
the singular value decomposition of the trimmed ma-
trix T, (L(A)). Also, Let A\ be the K-th largest sin-
gular value of it. Note that in a conventional spe-
tral clustering method, each node is represented by
a reduced K-dimensional row vector. The hyper-
graph spectral clustering algorithm is described in Al-
gorithm 2.

Algorithm 2: Spectral Initialization
Input: Vectors SVDg (T-(L£(A))) = [uf -+ u}

number of communities K,
critical radius r = p4/ £ with some p > 0.
Set S = [n].
for k=1 to K do
Let ¢, = argmax;cg ’ {ie8:|luj—wll,<r} |
Set C, = {j € S : [Juj —ug,[l, <r}.
Label (i) = k Vi € Cj.
Update S + S\ Cy.
end
If S # @, then for any ¢ € S, set

(i) = argminye(s) [y e, Iy — will

Output: Community assignment 7.

)

}T

4.3 Time Complexity

Algorithm 2 has a time complexity of O(n?), the
bottleneck of which being the SVDg step. Still, the
computation of SVD could be done approximately in
O(n?logn) time with high probability (Yun and Prou-
tiere, 2015) if we are only interested in the first k
spectrums. As for the refinement scheme, the spar-
sity of the underlying hypergraph can be utilized to
reduce the complextiy since the whole network struc-
ture could be stored in the incidence matrix H equiva-
lently as in the d-dimensional adjacency tensor A. As
a result, the parameter estimation stage only requires
O(dm) where m = |£] is the total number of hype-
redges realized. Similary, the time complexity would
be O(Kdm) and O(Kn?) for the calculation of like-
lihood function and the consensus step, respectively.
Hence, the overall complexity for Algorithm 1 and Al-
gorithm 2 combined are O(n?logn +nKm+ Kn?) for
a constant order d. It further reduces to O(n3logn)
in the sparse regime p = O(logn/n%"1) where m =
O(nlogn) with high probability.

5 THEORETICAL GUARANTEES

We first consider the theoretical guarantee for Algo-
rithm 1, which requires that the first-step algorithm
satisfy the following condition.

Condition 5.1: There exists constants Cy,6 > 0 and
a positive sequence v = v, such that

_ 1+5)
(BlcP)fe@O irgu{n]IP {(Gu,0) <yp} >1—Con~

5.1 Refinement Step

We have the following upper bound for the risk obtai-
ned by the refinement scheme, which serves as the
achievability part to the minimax risk.

Theorem 5.1: Asn — oo, if

Z My yr; Ip,p; — 00 (6)
i<j:(rs,r;)ENG

and Condition 5.1 is satisfied for
v =o(l). (7)

Then, with Algorithm 1, there exists a positive se-
quence C, — 0 as n — oo such that

R:l < exp ( - (1 - Cn) Z mnrjlpipj> .

1<j:(ri,r;)ENg
To prove Theorem 5.1, we need a couple of technical
lemmas. First, the accuracy of the parameter estima-
tion step can be ensured with a qualified initialization.

Lemma 5.1: Suppose as n — o0, My Lp,p, — 00
for each (r;,r;) € Ng, and Condition 5.1 holds with
v satisfying (7) for some 6 > 0. Then there exists a
sequence ¢, — 0 asn — oo and a constant C > 0 such
that

inf  min P, { min max ’B

—B
(B,0)€0Y ueln] TESK se[K]d o

<(¢, max
(risrj)ENG

Based on Lemma 5.1, the next lemma shows that the
local MLE method is able to achieve a risk that decays
exponentially fast.

Lemma 5.2: Suppose asn — 00, My, Ip,p, — o0 for
each (ri,r;) € Ng. If there are two sequences v = o(1)
and €], = o(1), constants C,6 > 0 and permutations
{mu},_, C Sk such that

o1, 1ain Fo {to(@u)nnso) <7, [BE—B

o

<(, max

i —p) L >1—op~ (o),
LA (v p)} n-

Then for the local estimator o, (u) (3), there exists a
sequence ¢, = o(1) such that

sup max ]P’U{(&\u(u))m + U(U)} < (K -1)
(B,0)€0Y ug(n]

eXP((lC;«:) >

(1+6
mrirjIpipj) + Cn~ (49,
1<j:(rs,r5)ENg
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Finally, we justify the usage of (4) as a consensus ma-
jority voting.

Lemma 5.3 (Lemma 4 in (Gao et al., 2017)): For any
community assignments o and o’ : [n] — [K], such that
for some constant C > 1

. . n
krél[l% Hu|0(u) = k}|, klg[l% |{u|a'(u) = k}‘ > K
and
min {o(0l) < L
TESK 0\ CK

Define map € : [K] — [K] as

¢(i) = argmax [{u | o(u) = k} N {u | o’ (u) = k}|
kE[K]

for each i € [K]. Then & € Sk and Ly(o),0) is equal
3
to minges, lo(oL,0)

We are now ready to sketch the proof of Theorem 5.1.

Sketch Proof of Theorem 5.1. First, we use the union
bound to upper bound the risk as follows.

Eolo(3,0) < = 3 Po {(@ult)r, # o(u)}

u€E(n]

+ P, {ﬂ.CSS ” 7Tu}
where 7©55 is the consensus permutation (4) in Al-
gorithm 1. The first part is the risk with correct la-
bel permutation, and the second part is the probabi-
lity that the consensus step fails. The former could
be further controled by Lemma 5.2, while the latter
could be further upper-bounded by an exponentially
decaying term using Lemma 5.3 together with Condi-
tion 5.1. Finally, we discuss two cases, depending on
whether the exponential term is larger or smaller than
n~ (%) In either case, the claimed upper bound is
achieved. |

Theorem 5.1 implies that as long as there is a good
initialization achieving Condition 5.1, the refinement
scheme could be applied to further reduce the risk.
This is because once Condition 5.1 is satisfied, we
could estimate the parameters accurately and find the
correct permutation by the consensus step. Compared
to analysis in graph SBM (Gao et al., 2017), we are dea-
ling with more kinds of community relations and thus
more kinds of random variables. Such perplexity ma-
kes the generalization from a homogeneous SBM with
only two possible community relations more difficult
to analyze.

5.2 Spectral Clustering

Next, we show that our proposed spectral clustering
algorithm achieves Condition 5.1. We have the follo-
wing performance guarantee for Algorithm 2.

Theorem 5.2: If

Ka1
B ®)
K
for some sufficiently small C; € (0,1) where p; =
—i5. Apply Algorithm 2 with a sufficiently small con-
stant > 0 and T = Cad for some sufficiently large
constant Cy. For any constant C' > 0, there ezists
some C > 0 depending only on C',Cy and p so that

05,0) < c%
K
with probability at least 1 — n=°.
Our technical contribution here is to generalize the
analysis on adjacency matrix for a graph to the hy-
pergraph Laplacian (5) associated with a hypergraph.
This is not a trivial work because now the entries in a
hypergraph Laplacian are not independent any more.
Still, we successfully arrive at a similar expression as
the lower bound under the d-hSBM model.

Combining Algorithm 1 and Algorithm 2, we have the
following achievability part to Theorem 3.1. The key
step is to further lower bound Ag in Theorem 5.2 and
demonstrate that it would satisfy Condition 5.1.
Theorem 5.3: Suppose Zi<j5(7'i77'j)e./\/d My Ipip; —
o as n — oo Then there exists a positive sequence
¢! — 0 such that

Rp<esp(—(1-¢) >

i<j:(ri,r;)ENG

mTiTjIPin)

5.3 Discussion

Parallel to our work, (Ghoshdastidar and Dukkipati,
2017) also proposed a similar d-hSBM model and ana-
lyze the performance of the normalized hypergraph
Laplacian. The parameter space they consider is more
general. They prove that their risk could be o(1) with
probability at least 1 — O((logn)~/*) if the minimum
expected degree satisfying a certain condition. This
is different from ours since we guarantee that our risk
will be o(1) with probability at least 1 — O(n~(1+9)
for some § > 0 with Algorithm 2. It turns out that
we allow the observed hypergraph to be sparser (a lo-
wer connecting probability) yet acquire higher misma-
tch ratio. However, if we raise the probability p to
the same order as considered in (Ghoshdastidar and
Dukkipati, 2017), Algorithm 1 is guaranteed to have a
(n’)2-times lower risk. In either case, we always have
a success probability converging faster to 1.
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6 EXPERIMENTAL RESULTS

The advantage of clustering with a hypergraph re-
presentation over traditional graph-based approaches
has been reported in the literature (Agarwal et al.,
2005; Zhou et al., 2006). Here, we present a com-
parative study of our two-step algorithm with exis-
ting clustering methods on hypergraphs, especially the
spectral non-uniform hypergraph partitioning algo-
rithm (SnHP) in (Ghoshdastidar and Dukkipati, 2017)
using the hypergraph Laplacian proposed in (Zhou et
al., 2006) and the generalized tensor spectral method
(GTS) in (Ghoshdastidar and Dukkipati, 2015). In
order to have a fair comparison, we run different al-
gorithms on the same hypergraphs generated and cal-
culate the corresponding mismatch ratio as the per-
formance measure. We will not elaborate on how to
choose a best way or define a proper way of embedding,
as the topic itself would require a whole line of research
and is beyond the scope of this paper. In what fol-
lows, Algo 2 refers to our first-step spectral clustering
algorithm and Algo 1 refers to the combined two-step
workflow (i.e. Algorithm 1 on top of Algorithm 2).

6.1 Synthetic Data

We implement different algorithms on generative 3-
hSBM data. The parameter spaces considered are ho-
mogeneous and exactly equal-sized, which means that
each community has the same number of members.
This nodes-per-community parameter n’ scales from
20,30,--- to 100, while the number of communities
K varies from 2,3,--- to 10. We set the connecting
probability parameter p to be (60,30, 10) -log n/n? for
each possible value of n = K - n/. Note that the order
of p is as prescribed for the sparse regime in Section 5.
The choice of this particular triplet is to ensure that
the generated hypergraphs are not too sparse. Em-
pirically, the total number of realized hyperedges is
roughly 4nlogn to 5nlogn. The performance under
each scenario, i.e. each pair of (K, n'), is averaged over
25 realizations of the random hypergraph model, which
is large enough for the mismatch ratio to converge for
all algorithms implemented. Figure 1 summarizes our
simulation results.

Except for the first few scenarios where the total num-
ber of nodes n are quite small, we can see that Algo 2
performs roughly as well as the SnHP algorithm. This
somewhat indicates that the weak consistency condi-
tion Condition 5.1 can also be satisfied with the hyper-
graph Laplacian proposed by (Zhou et al., 2006) as the
first step. Furthermore, the refinement scheme indeed
has a better performance over the spectral clustering
methods. Observe that the improvement due to the
second step becomes larger as K (and hence n) incre-

—e—snHP| |
-o-Algo 2
-~ Algo 1]

Mismatch Ratio

nPrime

(b) K =6

Figure 1: Simulation Results on 3-hSBM.

ases. The performance gain should be more evident
for a larger network.

6.2 Real-World Data

The data analyzed in this work are obtained from the
UCI repository (Lichman, 2013), which is widely used
as a benchmark database that admits ground-truth
community labels. To perform clustering on a hyper-
graph, we first embed the entities with various attribu-
tes into a hypergraph. One caveat is that the embed-
ded hypergraphs are no longer homogeneous nor ap-
proximately equal-sized as assumed when deriving the
theoretical guarantees. Nevertheless, the experimental
results show that our two-step algorithm does have a
performance that is comparable to or even better than
existing methods on either graph or hypergraph mo-
dels. More thorough experimental results are given in
the supplementary matrial.
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