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Abstract

Evaluating integrals is an ubiquitous issue
and Monte Carlo methods, exploiting ad-
vances in random number generation over the
last decades, offer a popular and powerful
alternative to integration deterministic tech-
niques, unsuited in particular when the do-
main of integration is complex. This paper
is devoted to the study of a kernel smooth-
ing based competitor built from a sequence
of n ≥ 1 i.i.d random vectors with arbitrary
continuous probability distribution f(x)dx,
originally proposed in [7], from a nonasymp-
totic perspective. We establish a probability
bound showing that the method under study,
though biased, produces an estimate approxi-
mating the target integral

∫
x∈Rd ϕ(x)dx with

an error bound of order o(1/
√
n) uniformly

over a class Φ of functions ϕ, under weak
complexity/smoothness assumptions related
to the class Φ, outperforming Monte-Carlo
procedures. This striking result is shown to
derive from an appropriate decomposition of
the maximal deviation between the target in-
tegrals and their estimates, highlighting the
remarkable benefit to averaging strongly de-
pendent terms regarding statistical accuracy
in this situation. The theoretical analysis
then rests on sharp probability inequalities
for degenerate U -statistics. It is illustrated
by numerical results in the context of covari-
ate shift regression, providing empirical evi-
dence of the relevance of the approach.
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1 INTRODUCTION

For over two thousands years, numerical integration
has been the subject of intense research activity, start-
ing with Babylonian mathematics and the elabora-
tion of quadrature rules for measuring areas and vol-
umes. It lead to the development of a very wide
variety of algorithms for calculating approximately
the numerical value of a given (well-defined) inte-
gral with a controlled error, ranging from (possibly
adaptive) methods based on interpolating functions to
(quasi/advanced) Monte Carlo techniques. One may
refer to e.g. [6] for an excellent account of deter-
ministic techniques for numerical integration and to
[13] for an introduction to Monte Carlo integration.
Probabilistic approaches have been proved quite use-
ful in high-dimensional cases to circumvent the curse
of dimensionality phenomenon with the advent of com-
puter technology and significant advances in pseudo-
random number generation. Error bounds achieved
by Monte Carlo integration methods based on a simu-
lated sample of size n ≥ 1 are typically of order 1/

√
n,

the rate of the classical CLT. Recently, a competitor
based on kernel smoothing has been proposed in [7].
The resulting integral estimates can be interpreted as
biased importance sampling (IS, in abbreviated form)
estimates, where the (true) importance function is re-
placed by leave-one-out kernel estimators. Provided
that the instrumental density used in this integral
estimation procedure is smooth enough, it has been
proved that the asymptotic rate of convergence can
be faster than 1/

√
n for an appropriate choice of the

kernel bandwidth (see also [2] for a similar study in
the Markovian context). It is the goal of this paper
to investigate this striking phenomenon much further,
from both a nonasymptotic and functional perspective
and establish confidence upper bounds holding true for
finite samples, uniformly over classes of functions of
controlled complexity. The main argument relies on
an adequate decomposition of the integral estimates
obtained by means of this method, in which degen-
erate U -statistics appear in particular, and on recent
concentration inequalities for such functionals, gener-
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ally used in the context of asymptotic study of (vari-
able bandwidth) kernel density estimation methods,
see e.g. [10]. Incidentally, attention should be paid
to the fact that the analysis carried out in this article
sheds light on a striking phenomenon: whereas it has
been shown that the dependence structure among av-
eraged identically distributed r.v.’s may significantly
deteriorate the convergence rates in a wide variety of
situations (e.g. for long-memory processes or weakly
dependent sequences with non geometrically decay-
ing mixing coefficients, see [8] for instance, in cross-
validation procedures), it is proved here that the de-
pendence between the components averaged to pro-
duce the kernel smoothing-based integral estimates is
in contrast of great benefit to statistical accuracy.

The article is structured as follows. Basics in Monte-
Carlo integral approximation are briefly recalled in sec-
tion 2, together with the alternative method originally
proposed in [7]. The main results of the paper are
then stated in section 3 and an illustrative application
is presented in section 4. Finally, some concluding re-
marks are collected in section 5. Technical details and
additional remarks are deferred to the Supplementary
Material.

2 BACKGROUND

Here and throughout, (Xn)n≥1 is a sequence of contin-
uous independent and identically distributed random
vectors, taking their values in Rd, d ≥ 1, with density
f(x) w.r.t. Lebesgue measure µLeb, Φ is a given class
of Borelian functions ϕ : Rd → R and K : Rd → R is a
symmetric kernel function of order l ≥ 1, i.e. a Bore-
lian function, integrable w.r.t. Lebesgue measure such
that

∫
K(x)dx = 1, K(x) = K(−x) for all x ∈ Rd. We

set ||z||Φ := supϕ∈Φ |z(ϕ)| for any real valued sequence
z = {z(ϕ)}ϕ∈Φ. Denote by I{E} the indicator variable
of any event E . For any Borelian function g : Rd → R,
the closure of the set {x ∈ Rd : g(x) 6= 0} is denoted
by Supp(g) and by ||g||∞ is meant the essential supre-
mum of g when it is bounded almost everywhere. For
any h > 0 and x ∈ Rd, we set Kh(x) = K(h−1x)/hd.
When well-defined, the convolution product between
two real-valued Borelian functions g(x) and w(x) is de-
noted by g ∗w(x) =

∫
x′∈Rd g(x− x′)w(x′)dx′. For any

β > 0, we set bβc = max{n ∈ N : n < β}. Let α =

(α1, . . . , αd) ∈ Nd, we set |α| =
∑d
i=1 αi and mean

by ∂α the differential operator ∂|α|/∂xα1
1 · · · ∂x

αd
d . For

m ∈ N, whenever Ω is an open subset of Rd, the space
of real-valued functions on Ω that are differentiable up
to order m is denoted by Cm(Ω) and, for any β > 0,
L > 0, we denote by Hβ,L(Ω) the space of functions g
in Cbβc(Ω) with all derivatives up to order bβc bounded
by L and such that, for any multi-index α ∈ Nd with

|α| ≤ bβc:

∀(x, y) ∈ Ω2, |∂αf(x)− ∂αf(y)| ≤ L||x− y||β−|α|,

denoting by ||.|| the usual Euclidean norm on Rd.

2.1 Integral(s) Approximation

It is the goal of this paper to analyze the performance
of statistical techniques to approximate accurately the
integral

I(ϕ) =

∫
x∈Rd

ϕ(x)dx, (1)

based on the observation of the i.i.d. sample
X1, . . . , Xn, n ≥ 1. When the support K of ϕ,
i.e. the domain of integration related to (1), is com-
pact, a basic Monte-Carlo method would consist in
generating independent random vectors U1, . . . , Un
uniformly distributed over a domain H ⊃ K (a union
of hypercubes typically, for computational simplicity)
and compute the natural (unbiased) Monte-Carlo es-
timate:

În(ϕ) =
1

n

n∑
i=1

ϕ(Ui). (2)

Beyond classic limit theorems (SLLN, CLT, LIL, etc.),
the accuracy of estimate (2) can be evaluated for a
fixed sample size n ≥ 1. For simplicity, suppose that
ϕ is bounded almost-everywhere. In absence of any
smoothness assumption for the integrand ϕ, a straight-
forward application of Hoeffding’s inequality (see [12])
shows that, for all n ≥ 1, for any δ ∈ (0, 1), we have
with probability at least 1− δ:∣∣∣În(ϕ)− I(ϕ)

∣∣∣ ≤ ||ϕ||∞√2 log(2/δ)

n
.

Maximal deviations over a class Φ of functions ϕ s.t.
||ϕ||∞ ≤ MΦ < +∞ can be obtained by means of
concentration inequalities under appropriate complex-
ity assumptions on Φ. Indeed, by virtue of McDi-
armid’s inequality (see [18]) combined with classical
symmetrization and randomization arguments, for all
n ≥ 1, for any δ ∈ (0, 1), we have with probability
larger than 1− δ:∣∣∣∣∣∣În − I∣∣∣∣∣∣

Φ
≤ 2E [Rn(Φ)] +MΦ

√
2 log(2/δ)

n
, (3)

where the Rademacher average associated to the
set {(ϕ(U1), . . . , ϕ(Un)) : ϕ ∈ Φ} is denoted
by Rn(Φ) = Eε1, ..., εn

[
supϕ∈Φ

1
n |
∑n
i=1 εiϕ(Ui)|

]
and

ε1, . . . , εn are independent Rademacher variables, in-
dependent from the Ui’s. The expected Rademacher
average measures the richness of the class Φ, see e.g.
[15]. Classically [24], if Φ is a Vapnik-Chervonenkis
VC major class of functions of finite VC dimen-
sion V < ∞ (i.e. if the collection of sub-level sets
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{{ϕ(x) ≥ t} : (ϕ, t) ∈ Φ × R} is of finite VC dimen-
sion V < +∞), we have E [Rn(Φ)] ≤ C

√
V/n, where

C < +∞ is a universal constant and the basic Monte
Carlo procedure permits to approximate the integrals
(1) uniformly over the class Φ at the rate 1/

√
n in this

case. Except in pathologic situations, a basic CLT
argument can be used to prove that this rate bound
cannot be improved. Whereas many refinements of the
bounds stated (involving the variance of the ϕ(Ui)’s or
other measures of complexity for classes of functions,
such as metric entropies) can be considered, focus is
here on an alternative method, significantly improving
upon Monte Carlo integration in terms of order of the
(nonasymptotic) rate bound achieved.

2.2 A Kernel Smoothing Alternative

We now describe at length the integral estimation pro-
cedure promoted in this paper. As an alternative to
(2), it is proposed in [7] to consider the estimate

Ĩn(ϕ) =
1

n

n∑
i=1

ϕ(Xi)

f̂n,i(Xi)
, (4)

denoting by

f̂n,i(x) =
1

n− 1

∑
1≤j≤n, j 6=i

Kh(x−Xj) (5)

the smoothed leave-one-out estimator of f(x) based on
kernel K and bandwidth 0 < h ≤ h0, computed with
all the Xj ’s except Xi, for 1 ≤ i ≤ n. The expectation
of the estimate (5) is equal to the convolution product
Kh∗f(x). Assume in addition that the kernel function
K is of order bβc with β > 0, meaning that x ∈ Rd 7→
||x||l|K(x)| is integrable for all l ≤ bβc and∫

x∈Rd

d∏
i=1

x
αj
i K(x)dx = 0

for all α ∈ Nd such that |α| ≤ bβc. Provided that f
belongs to the Hölder space Hβ,L(Rd) for some L > 0,
the deviation |Kh ∗ f(x)− f(x)| is of order O(hβ), see
Lemma 5 in the supplementary file. As shall be seen at
length in the next subsection, though biased and com-
plex (the quantities involved in the average (4) exhibit
a strong dependence structure), the estimator (4) is
significantly more accurate, under specific hypotheses
(on the decay rate of h as n → +∞ and the smooth-
ness of f in particular), than the (unbiased) IS Monte
Carlo estimate

Īn(ϕ) =
1

n

n∑
i=1

ϕ(Xi)

f(Xi)
,

obtained when replacing the leave-one-out estimators
f̂n,i(Xi) by the true values f(Xi) of the instrumental

density in (4). Although the smoothing stage induces
a bias in the estimation of (1), it may drastically ac-
celerate the convergence, as claimed in limit results
proved in [7]. Before investigating the accuracy of (4),
uniformly over a class of functions of controlled com-
plexity (in a sense that shall be specified later) from a
nonasymptotic angle, a few remarks are in order.

Remark 1. (Multivariate kernel) Many uni-
variate kernels have been proposed in the literature:
u 7→ (1/2)I{−1 ≤ u ≤ +1} (rectangular), u 7→
(1 − |u|)I{−1 ≤ u ≤ +1} (triangular), u 7→
(1/
√

2π) exp(−u2)/2 (Gaussian) or u 7→ (3/4)(1 −
u2)I{−1 ≤ u ≤ +1} (Epanechnikov). Extensions to
the multivariate framework is straightforward by ten-
sorization: for any univariate kernel K(u) of order
m ∈ N, the product kernel defined below is a multivari-
ate kernel of same order: ∀d ≥ 1, u = (u1, . . . , ud) ∈
Rd 7→

∏d
i=1K(ui).

Remark 2. (On computational complexity)
The fact that the theoretical results stated in [7] and
in the next section (see Theorem 1 therein) are valid
whathever the dimension d ≥ 1 makes the method de-
scribed above very attractive. Truth be told, the latter
is appropriate in low/moderate dimensional settings
only. In high dimensions, kernel smoothing methods
behave poorly as they face the dimensionality curse,
see [21]. In addition, the computational budget of Ĩn
(in n2) is larger than that of Īn (in n). This makes

Ĩn particularly appropriate in these situations: (i) real
dataset when f is unknown (see [2]) and (ii) numer-
ical integration when ϕ is computationally expensive
(see [19]).

3 NON-ASYMPTOTIC BOUNDS

It is the purpose of this section to establish nonasymp-
totic upper bounds for the maximal deviation

||Ĩn − I||Φ = sup
ϕ∈Φ

∣∣∣Ĩn(ϕ)− I(ϕ)
∣∣∣ (6)

of estimated integrals based on kernel smoothing from
their true values. As previously mentioned, the vari-
ables ϕ(Xi)/f̂n,i(Xi) averaged in (4) are identically
distributed and ”close” to the ϕ(Xi)/f(Xi)’s but are,
in contrast, highly dependent: a same subset of n− 2
original observations is involved in the computation
of any pair of such r.v.’s. However, it is well-known
in Statistics that averaging dependent (identically dis-
tributed) random variables may considerably refine ac-
curacy: a U -statistics, say Un, is a typical example
of statistics obtained by averaging strongly dependent
terms and providing estimate of the mean θ = E[Un]
with minimum variance among all unbiased estimates
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of θ, see e.g. [16]1. By means of an appropriate de-
composition of (4) (where, incidentally, the appear-
ance of degenerate U -statistics plays a crucial role),
we shall show that the uniform deviation (6) may be
much smaller than the bound (3) in certain situations
(for proper choice of the bandwidth h = hn in partic-
ular). The following assumptions are involved in the
subsequent analysis.

A1 Let β > 0 and L > 0. The density f belongs to
the Hölder class Hβ,L(Rd).

A2 The class Φ is countable, uniformly bounded, i.e.
MΦ := supϕ∈Φ ||ϕ||∞ < +∞, and of VC type [9]
(w.r.t. the constant envelope MΦ), meaning that
there exist nonnegative constants A and v s.t. for all
probability measures Q on Rd and any 0 < ε < 1:
N (Φ, L2(Q), ε) ≤ (AMΦ/ε)

v, where N (Φ, L2(Q), ε)
denotes the smallest number of L2(Q)-balls of radius
less than ε required to cover class Φ (covering number).

A3 The set DΦ
def
=
⋃
ϕ∈Φ Supp(ϕ) is compact.

A4 The density of the Xi’s is bounded by below on

the domain DΦ: λ
def
= infx∈DΦ

f(x) > 0.

A5 For all ϕ ∈ Φ, the function ϕ/f belongs to the
Hölder class Hβ,L(Rd).

The result stated below reveals that, under these hy-
potheses, the integral approximation method recalled
in subsection 2.2, achieves a rate bound faster than
1/
√
n for an appropriate choice of the bandwidth

hn > 0.

Theorem 1. (Probability rate bounds) Suppose
that assumptions A1 −A5 are fulfilled. For all δ ∈
(0, 1), there exists a set Cδ ⊂ N × R depending on δ,
Φ, K, (β, L) and f such that, for all (n, h) ∈ Cδ, with
probability at least 1− δ, we have:

sup
ϕ∈Φ

∣∣∣Ĩn(ϕ)− I(ϕ)
∣∣∣ ≤ Cδ {hβ +

| log
(
hd/2

)
|

nhd

}
.

where Cδ is a constant depending on δ, Φ, K, (β, L)
and f . In particular, choosing h = hn so that hn =
o(1/n1/(2β)) and 1/n1/(2d) = o(hn) as n→ +∞, which
guarantees that (n, h) ∈ Cδ and is always possible as
soon as β > d, yields a rate bound of order oP(1/

√
n).

Before sketching the argument of the theorem above,
a few comments are in order.

1Let (S,S) be a measurable space. Recall that the
U -statistic of kernel ω : S × S → R based on the i.i.d.
observations Z1, . . . , Zn valued in S is the quantity
1/n(n− 1)

∑
i 6=j ω(Zi, Zj). One says it is degenerate when

E[ω(Z, z)] = E[ω(z, Z)] = 0, for all z ∈ S.

Remark 3. (On complexity/smoothness as-
sumptions) It is supposed here that the class Φ is
of VC type, cf assumption A2, meaning that uniform
entropy numbers grow at a polynomial rate. We recall
for completeness that a uniformly bounded VC major
class of functions of finite VC dimension V < +∞
is of course of VC type (constants A and v can be
expressed as functions of V , see e.g. Theorem 2.6.7
in [24]). The hypothesis that Φ is countable can be
weakened, using the notion of countable approximabil-
ity, see the definition in [17] on p. 492. In addition,
observe that we assumed here that f and the ϕ/f ’s be-
long to the same Hölder class for the sake of simplicity
only. The analysis can be straightforwardly extended
to more general smoothness assumptions, at the price
of more complex formulas for the rate bounds.

Proof. The argument is based on the following decom-
position of the estimator (4) for an arbitrary element
ϕ of class Φ:

Ĩn(ϕ) =
2

n

n∑
i=1

ϕ(Xi)

f(Xi)

− 1

n(n− 1)

∑
1≤i6=j≤n

ϕ(Xi)Kh(Xi −Xj)

f2(Xi)

+
1

n

n∑
i=1

ϕ(Xi)
(
f(Xi)− f̂n,i(Xi)

)2

f2(Xi)f̂n,i(Xi)
.

The first term is an i.i.d. sample mean providing an
unbiased estimate of 2I(ϕ), while the second one is a
U -statistic Un(ϕ) of degree two with kernel given by
H(x, x′) = ϕ(x)Kh(x − x′)/f2(x) for x, x′ in Rd and
that can be considered as a biased estimate of −I(ϕ).
One may classically write the Hoeffding decomposition
(i.e. Hajek projection) of Un(ϕ) [16]:

Un(ϕ) = Tn(ϕ) + Sn(ϕ) +Wn(ϕ)− E [Un(ϕ)] ,

where Wn(ϕ) is a degenerate U -statistic with zero
mean and kernel Qn(x, x′) = H(x, x′)− E[H(x,X)]−
E[H(X,x′)] + E[Un(ϕ)] and

Tn(ϕ) =
1

n

n∑
i=1

E [H(Xi, X) | Xi]

=
1

n

n∑
i=1

ϕ(Xi)

f2(Xi)
(Kh ∗ f) (Xi),

Sn(ϕ) =
1

n

n∑
i=1

E [H(X,Xi) | Xi]

=
1

n

n∑
i=1

(
Kh ∗

ϕ

f

)
(Xi),
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denoting by X a random vector independent from the
Xi’s, distributed according to f(x)dx. Observe inci-
dentally that: ∀n ≥ 1, ∀ϕ ∈ Φ,

E[Un(ϕ)] = E [Tn(ϕ)] = E[Sn(ϕ)]

=

∫
x∈Rd

ϕ(x)

f(x)
(Kh ∗ f)(x)dx.

Hence, the deviation between the estimate (4) and the
target integral (1) can be decomposed as the sum of
four terms:

Ĩn(ϕ)− I(ϕ) = Mn(ϕ) +Wn(ϕ) +Bh(ϕ) +Rn(ϕ),

where

Bh(ϕ) = I(ϕ)− E[Un(ϕ)]

=

∫
ϕ(x)

(
1− (Kh ∗ f)(x)

f(x)

)
dx (7)

is a deterministic term vanishing as h > 0 tends to
zero under adequate conditions (see Lemma 1),

Mn(ϕ) =
2

n

n∑
i=1

ϕ(Xi)

f(Xi)
− Tn(ϕ)− Sn(ϕ)− 2Bh(ϕ)

is a centered sum of i.i.d. random variables and

Rn(ϕ) =
1

n

n∑
i=1

ϕ(Xi)

f2(Xi)f̂n,i(Xi)

(
f(Xi)− f̂n,i(Xi)

)2

.

(8)
The proof consists in establishing bounds showing that
each of these four terms is of order oP(n−1/2) uniformly
over Φ. In contrast to the maximal deviations results
used in general to investigate the accuracy of Empir-
ical Risk Minimization in statistical learning (see e.g.
[3]), one should pay attention to the fact that sharp
inequalities (involving bounds for the maximal vari-
ance) are considered in the present analysis in order
to deal properly with the dependence on n (through
the bandwidth hn) of the classes of functions/kernels
considered, more commonly needed in the asymptotic
study of kernel density estimators, see e.g. [10]. Con-
stants involved in the intermediary results below are
not necessarily the same at each appearance.

Bias. As can be shown by examining the proof of
the lemma below, a bound for the deterministic term
(7) can be obtained using well-known approximation
theoretic arguments under the smoothness hypotheses
stipulated for the elements of class Φ.

Lemma 1. Under asssumptions A1, A2, A3 and A4,
we have the uniform bound: ∀h > 0,

||Bh||Φ = sup
ϕ∈Φ
|Bh(ϕ)| ≤ CµLeb(DΦ)MΦ

λ
· hβ ,

where C = L
bβc!

∑
α∈Nd: |α|=bβc

∫
z∈Rd |K(z)|

∏d
i=1 |zi|αidz.

Its technical proof is deferred to the Supplementary
Material.

Empirical process. As shown in the Supplementary
Material, the maximal deviation result related to the
empirical process {Mn(ϕ)}ϕ∈Φ stated below is proved
by means of a specific version of an exponential in-
equality of [23].

Lemma 2. Suppose that assumptions A1-A5 are ful-
filled. For all δ ∈ (0, 1), there exists nδ ≥ 1 (defined in
(B.2), in the supplementary file), depending on δ, K,
λ and Φ only, such that for all n ≥ nδ, with probability
at least 1− δ, we have:

||Mn||Φ ≤ cΦ
hβ√
n

√
2 max{log(C2/δ)/C3, C2

1 log(2)},

where cΦ, C1, C2 and C3 are constants depending on
Φ, K, (β, L) and λ.

Degenerate U-process. Whereas concentration in-
equalities for degenerate U -processes (i.e. collections
of U -statistics indexed by classes of functions) have
been established in various articles such as [1] in the
context of VC classes (see also [5] for more general re-
sults for instance), the major difficulty here arises from
the fact that the class of kernels considered here de-
pends on n ≥ 1 (through the bandwidth hn namely).
As shown in the Supplementary Material, the following
bound can be proved by means of an exponential in-
equality for degenerate U -processes indexed by classes
of kernels of VC type, involving a bound for the max-
imal variance, established in [17].

Lemma 3. Suppose that assumptions A2, A3 and
A4 are fulfilled. Then, for all δ ∈ (0, 1), there exists
Cδ,1 ⊂ N × R (defined in (C.2), in the supplementary
file) depending on δ, K, Φ and λ only, such that, for
all (n, h) ∈ Cδ,1, with probability greater than 1− δ, we
have:

‖Wn‖Φ ≤
γΦ

(n− 1)hd/2
×

max
{

log(C2/δ)/C3, C1 log
(

2GΦ/(γΦh
d/2)

)}
,

where γΦ, C1, C2 and C3 are constants depending on
Φ, λ and K.

Residuals. We now turn to the residual term (8).
The lemma below is established in the Supplementary
Material. Its proof is based on the control of the proba-
bility that the f̂n,i(Xi)’s get close to zero in particular.

Lemma 4. Suppose that assumptions A1-A5 are ful-
filled. For all δ ∈ (0, 1), there exists Cδ,2 ⊂ N×R (de-
fined in (D.1) and (D.2), in the supplementary file)
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depending on δ, K, Φ and λ only, such that, for all
(n, h) ∈ Cδ,2, with probability at least 1− δ, we have:

||Rn||Φ ≤

γ̃Φ

max

{
log(C2

δ )
C3

, C1 log
(

2‖K‖∞
cK,fhd/2

)}
nhd

+ h2β

 ,

where γ̃Φ, cK,f , C1, C2 and C3 are constants depend-
ing on Φ, K, (β, L) and λ.

Derivation of the stated bound. The bound in
Theorem 1 results from those stated in Lemmas 1-4 by
taking Cδ as the intersection of Cδ,1 (in Lemma 3), Cδ,2
(Lemma 4), n ≥ nδ (in Lemma 2), and also values of
(n, h ≤ h0) such that the bound for the bias in Lemma
1 (resp. for the residuals in Lemma 4) is larger than
the bound for the empirical process term in Lemma 2
(resp. the U -process term in Lemma 3).

4 APPLICATION TO SHIFT
COVARIATE IN REGRESSION

We now present an application of the method anal-
ysed in the previous section in order to illustrate its
performance in practice. After a brief presentation of
the framework of covariate shift regression, a diagnos-
tic tool for evaluating the quality of the prediction in a
given covariate region is introduced (see e.g. [4]) and
implemented by means of the method promoted based
on toy data.

Covariate shift regression. Let (xi, yi)i=1,...,n de-
note a training dataset of size n ≥ 1 where, for each
i ∈ {1, . . . , n}, yi ∈ Y stands for the output and
xi ∈ X is the covariate/input vector. The regres-
sion task consists in (i) learning a predictor g from
the training data in order to (ii) predict unobserv-
able yte with g(xte) for a so called test covariate
xte. Classical regression is concerned with a test co-
variate xte ∈ X that is similarly distributed as the
training covariates. In contrast, covariate shift regres-
sion considers situations where xte ∈ X is not dis-
tributed in the same way as the training covariates.
That is, when learning g, the main risk is to focus
too much on regions containing the xi’s but faraway
from xte. Under covariate shift and mispecification,
it is known [20] that standard regression techniques
such as maximum likelihood estimation does not pro-
vide accurate estimate. The most popular approach
to the covariate shift regression problem is based on
a re-weighting strategy (see [22], [14] and the refer-
ences therein). Suppose for simplicity that the training
dataset forms an i.i.d. sequence distributed according

to (Y,X). The conditional risk of the predictor g given
X = x is denoted by R(g|x) = E[(Y − g)2|X = x].
The marginal distribution of xi is denoted by f trX . If
f teX denotes the test distribution, i.e. the distribution
of xte, then the underlying risk can be expressed as
Rte(g) =

∫
R(g|x)f teX (x)dx. A natural estimate of this

risk is then given by

R̂te(g) = n−1
n∑
i=1

(yi − g(xi))
2wi, (9)

with wi = f teX (xi)/f
tr
X (xi). As the weights wi are un-

known in practice, one should estimate them based
on the training sample and, when available, the test
sample. The naive strategy (subject to the curse of
dimensionality) is to estimate f teX and f trX using kernel
smoothing estimates and then to replace the unknown
weights in (9) by the estimates. More sophisticated
methods relying on the Kullback-Leibler divergence
and on the least-squares distance are proposed in [22]
and [14], respectively.

Diagnostic tool for prediction quality in covari-
ate regions. When no test covariate xte is observed
(making impossible an estimation of the importance
weights wi), an interesting issue is to know whether
or not a given region in the covariate space X has
a prediction of good quality. In the following, a re-
gion (µ,Γ) is represented by the Gaussian distribu-
tion with center µ ∈ X ⊂ Rp and a dispersion ma-
trix Γ ∈ Rp×p. The risk related to the region (µ,Γ)
is given by Rµ,Γ(g) =

∫
R(g|x)φµ,Γ(x)dx, where φµ,Γ

stands for the density of N (µ,Γ). The empirical “or-
acle” counter part (because it requires to know f trX )

is R̂
(or)
µ,Γ (g) = n−1

∑n
i=1(φµ,Γ(xi)/f

tr
X (xi))(yi−g(xi))

2,
and, the estimator based on the kernel smoothing ap-
proach is

R̂µ,Γ(g) = n−1
n∑
i=1

φµ,Γ(xi)

f̂n,i(xi)
(yi − g(xi))

2, (10)

where f̂n,i is the leave-one-out estimator, defined in
(5), associated to xi. The estimation error associated

to R̂µ,Γ(g) has two component: one is related to the
error between g(x) and E[Y |X = x] and one associated
to the noise Y − E[Y |X = x]. Theorem 1 can be used
to handle the first component in the error decomposi-
tion, i.e., the function ϕ in Theorem 1 is taken equal
to x 7→ φµ,Γ(x)(g(x) − E[Y |X = x])2 which in many
cases verifies each of our assumptions except the com-
pact support assumption on ϕ stated in A3 and (con-
sequently) the lower bound assumption on fX stated in
A4. This problem can be solved in practice by consid-
ering a trimming version (as proposed for instance in

[11]), i.e., ignoring the terms with a too small f̂n,i(xi)
in (10). Addressing these technicalities is beyond the
scope of the paper.
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Ordinary least squares with misspecification.
To illustrate our proposal we consider a toy model
according to which we generate the training dataset
(xi, yi)i=1,...,n for n = 500. It is given by yi =
x2
i,1I{xi,1 > 0} + εi, where xi = (xi,1, . . . , xi,p) ∼
N ((a, 0, 0, . . . , 0)T , Ip) , εi ∼ N (0, s2), s is chosen such
that the signal-noise quotient is 0.5 and p = 10. The
parameter a is either −1 or 2 in order to highlight
different situations. Estimation of g is made through
ordinary least squares, with g(xi) = α̂ + β̂Txi, where

(α̂, β̂) ∈ argminα,β
∑n
i=1(yi−α−βTxi)2. To avoid the

dimensionality curse, we consider regions associated to
one specific covariate xi,1, that is, the distribution φµ,Γ
is Gaussian. We set Γ = 1/2. We are interested in

the performance of R̂
(or)
µ,Γ (g) (ORACLE) and R̂µ,Γ(g),

when µ varies in in the range of xi,1 estimating Rµ,Γ(g)

(TRUE). For R̂µ,Γ(g), f̂n,i is either the classical kernel
density estimator based on xi,1 (KDE), or the leave-
one-out estimator based on xi,1(KDE-LOO). The pa-
rameter h for the density estimate in (10) is picked via
the “rule of thumb” in [21], giving h = 1.06σ̂2n−1/5,
where σ̂2 is the empirical estimator of the variance of
xi,1, i = 1, . . . , n. Fig. 1 provides an illustration for
one particular dataset. The estimation accuracy (re-
flected by small values of Rµ,Γ(g)) is not homogeneous.
When a = −1, g is not sharp in the right tail of xi,1
whereas when a = 2, g performs poorly in both the
left and the right tails. For each value of a, KDE-
LOO recovers this trend pretty well. Fig. 2 confirms
that estimating Rµ,Γ(g) is more difficult when only few
points xi,1 are lying around µ. Notice that KDE-LOO
over performs KDE for any value of µ. The ORACLE
presents less bias, but a larger variance than KDE.

5 CONCLUSION

We provided a sound nonasymptotic analysis of the
performance of a kernel smoothing integral estima-
tion method that can be used as an alternative to
the Monte-Carlo technique and compares favourably
with it under certain assumptions. Precisely, though
biased and involving highly dependent averaged com-
ponents, the integral estimates thus produced achieve
rate bounds that surpass those attained by traditional
Monte Carlo methods (of order OP(1/

√
n)) provided

the instrumental density is sufficiently smooth and
the kernel/bandwidth used are picked appropriately,
uniformly over a class of functions of controlled com-
plexity. The main tools exploited for establishing this
striking result are an appropriate decomposition of the
deviation between the target integrals and their esti-
mates plus sharp concentration inequalities involving
the variance of the functionals thus considered. Be-
yond theoretical results, a numerical example illus-
trates the practical performance of our method pro-
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Figure 1: Top/middle : graph of Rµ,Γ(g) for TRUE,
KDE-LOO, KDE and ORACLE, when µ lives in the
whole range of xi,1 (top) and zooming around the
mean of xi,1. Bottom : outputs yi and predicted values
g(xi,1) versus xi,1. Red and grey colors reflects large
and small values of KDE-LOO. In the right, a = −1.
In the left a = 2. The signal-noise quotient is 0.5.
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Figure 2: Boxplot (based on 100 replications) of the
error for KDE-LOO, KDE and ORACLE when esti-
mating Rµ,Γ(g) for different values of µ in the range
of xi,1. In the right, a = −1. In the left a = 2. The
signal-noise quotient is 0.5.

moted here.
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