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A Background: CountSketch and TensorSketch

We start by describing the CountSketch transform Charikar et al. (2004). Let m be the target dimension. When
applied to n-dimensional vectors, the transform is specified by a 2-wise independent hash function h : [n] ! [m]
and a 2-wise independent sign function s : [n] ! {�1,+1}. When applied to v, the value at coordinate i of the
output, i = 1, 2, . . . ,m is

P
j|h(j)=i s(j)vj . Note that CountSketch can be represented as an m⇥ n matrix in

which the j-th column contains a single non-zero entry s(j) in the h(j)-th row.

We now describe the TensorSketch transform Pagh (2013). Suppose we are given points vi 2 Rni , where
i = 1, . . . , q and so �(v1, . . . , vq) = v1 ⌦ v2 ⌦ · · · ⌦ vq 2 Rn1n2···nq , and the target dimension is again m. The
transform is specified using q 3-wise independent hash functions hi : [ni] ! [m], and q 4-wise independent sign
functions si : [ni] ! {+1,�1}, where i = 1, . . . , q. TensorSketch applied to v1, . . .⌦ vq is then CountSketch
applied to �(v1, . . . , vq) with hash function H : [n1n2 · · ·nq] ! [m] and sign function S : [n1n2 · · ·nq] ! {+1,�1}
defined as follows:

H(i1, . . . , iq) = h1(i1) + h2(i2) + · · ·+ hq(iq) mod m,

and

S(i1, . . . , iq) = s1(i1) · s2(i2) · · · sq(iq),

where ij 2 [nj ]. It is well-known that if H is constructed this way, then it is 3-wise independent Carter and
Wegman (1979); Patrascu and Thorup (2012). Unlike the work of Pham and Pagh Pham and Pagh (2013), which
only used that H was 2-wise independent, our analysis needs this stronger property of H.

The TensorSketch transform can be applied to v1, . . . , vq without computing �(v1, . . . , vq) as follows. Let
vj = (vj`) 2 Rnj . First, compute the polynomials

p`(x) =
B�1X

i=0

xi
X

j`|h`(j`)=i

vj` · s`(j`),

for ` = 1, 2, . . . , q. A calculation Pagh (2013) shows

qY

`=1

p`(x) mod (xB � 1) =
B�1X

i=0

xi
X

(j1,...,jq)|H(j1,...,jq)=i

vj1 · · · vjqS(j1, . . . , jq),

that is, the coe�cients of the product of the q polynomials mod (xm � 1) form the value of
TensorSketch(v1, . . . , vq). Pagh observed that this product of polynomials can be computed in O(qm logm)
time using the Fast Fourier Transform. As it takes O(qmax(nnz(vi))) time to form the q polynomials, the overall
time to compute TensorSketch(v) is O(q(max(nnz(vi)) +m logm)).

B TensorSketch is an Oblivious Subspace Embedding (OSE)

Let S be the m⇥ (n1n2 · · ·nq) matrix such that TensorSketch (v1, . . . , vq) is S · �(v1, . . . , vq) for a randomly
selected TensorSketch. Notice that S is a random matrix. In the rest of the paper, we refer to such a matrix
as a TensorSketch matrix with an appropriate number of rows, i.e., the number of hash buckets. We will
show that S is an oblivious subspace embedding for subspaces in Rn1n2···nq for appropriate values of m. Notice
that S has exactly one non-zero entry per column. The index of the non-zero in the column (i1, . . . , iq) is
H(i1, . . . , iq) =

Pq
j=1 hj(ij) mod m. Let �a,b be the indicator random variable of whether Sa,b is non-zero. The

sign of the non-zero entry in column (i1, . . . , iq) is S(i1, . . . , iq) =
Qq

j=1 sj(ij). We show that the embedding
matrix S of TensorSketch can be used to approximate matrix product and is an oblivious subspace embedding
(OSE).

Theorem B.1. Let S be the m⇥ (n1n2 · · ·nq) matrix such that

TensorSketch(v1, . . . , vq)

is S · �(v1, . . . , vq) for a randomly selected TensorSketch. The matrix S satisfies the following two properties.
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1. (Approximate Matrix Product :) Let A and B be matrices with n1n2 · · ·nq rows. For m � (2 + 3q)/(✏2�),
we have

Pr
S

⇥
kA>S>SB �A>Bk2F  ✏2kAk2F kBk2F

⇤
� 1� �.

2. (Subspace Embedding :) Consider a fixed k-dimensional subspace V . If m � k2(2 + 3q)/(✏2�), then with
probability at least 1� �, kSxk = (1± ✏)kxk simultaneously for all x 2 V .

We establish the theorem via two lemmas as in Avron et al. (2016). The first lemma proves the approximate
matrix product property via a careful second moment analysis.

Lemma B.2 (Approximate matrix product). Let A and B be matrices with n1n2 · · ·nq rows. For m �
(2 + 3q)/(✏2�), we have

Pr
S

⇥
kA>S>SB �A>Bk2F  ✏2kAk2F kBk2F

⇤
� 1� �.

Proof. The proof follows that in Avron et al. (2016). Let C = A>S>SB. We have

Cu,u0 =
mX

t=1

X

i,j2[n1n2···nq ]

S(i)S(j)�t,i�t,jAi,uBj,u0 =
mX

t=1

X

i 6=j2[n1n2···nq ]

S(i)S(j)�t,i�t,iAi,uBj,u0 + (A>B)u,u0

Thus, E[Cu,u0 ] = (A>B)u,u0 .

Next, we analyze E[((C �A>B)u,u0)2]. We have

((C �A>B)u,u0)2 =
mX

t1,t2=1

X

i1 6=j1,i2 6=j22[n1n2···nq ]

S(i1)S(i2)S(j1)S(j2) · �t1,i1�t1,j1�t2,i2�t2,j2 ·Ai1,uAi2,uBj1,u0Bj2,u0

For a term in the summation on the right hand side to have a non-zero expectation, it must be the case
that E[S(i1)S(i2)S(j1)S(j2)] 6= 0. Note that S(i1)S(i2)S(j1)S(j2) is a product of random signs (possibly with
multiplicities) where the random signs in di↵erent coordinates in {1, . . . , q} are independent and they are 4-wise
independent within each coordinate. Thus, E[S(i1)S(i2)S(j1)S(j2)] is either 1 or 0. For the expectation to be
1, all random signs must appear with even multiplicities. In other words, in each of the q coordinates, the 4
coordinates of i1, i2, j1, j2 must be the same number appearing 4 times or 2 distinct numbers, each appearing
twice. All the subsequent claims in the proof regarding i1, i2, j1, j2 agreeing on some coordinates follow from this
property.

Let S1 be the set of coordinates where i1 and i2 agree. Note that j1 and j2 must also agree in all coordinates
in S1 by the above argument. Let S2 ⇢ [q] \ S1 be the coordinates among the remaining where i1 and j1
agree. Finally, let S3 = [q] \ (S1 [ S2). All coordinates in S3 of i1 and j2 must agree. Similarly as before, note
that i2 and j2 agree on all coordinates in S2 and i2 and j1 agree on all coordinates in S3. We can rewrite
i1 = (a, b, c), i2 = (a, e, f), j1 = (g, b, f), j2 = (g, e, c) where a = (a`), g = (g`) with ` 2 S1, b = (b`), e = (e`) with
` 2 S2 and c = (c`), f = (f`) with ` 2 S3.

First we show that the contribution of the terms where i1 = i2 or i1 = j2 is bounded by 2kAuk2
2kBu0k2

2
m , where Au

is the uth column of A and Bu0 is the u0th column of B. Indeed, consider the case i1 = i2. As observed before,
we must have j1 = j2 to get a non-zero contribution. Note that if t1 6= t2, we always have �t1,i1�t2,i2 = 0 as H(i1)
cannot be equal to both t1 and t2. Thus, for fixed i1 = i2, j1 = j2,

E

"
mX

t1,t2=1

S(i1)S(i2)S(j1)S(j2) · �t1,i1�t1,j1�t2,i2�t2,j2 ·Ai1,uAi2,uBj1,u0Bj2,u0

#

= E

"
mX

t1=1

�2i1,t1�
2
j1,t1A

2
i1,uB

2
j1,u0

#

=
A2

i1,uB
2
j1,u0

m
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Summing over all possible values of i1, j1, we get the desired bound of kAuk2
2kBu0k2

2
m . The case i1 = j2 is analogous.

Next we compute the contribution of the terms where i1 6= i2, j1, j2 i.e., there are at least 3 distinct numbers
among i1, i2, j1, j2. Notice that E[�t1,i1�t1,j1�t2,i2�t2,j2 ]  1

m3 because the �t,i’s are 3-wise independent. For fixed
i1, j1, i2, j2, there are m2 choices of t1, t2 so the total contribution to the expectation from terms with the same
i1, j1, i2, j2 is bounded by m2 · 1

m3 · |Ai1,uAi2,uBj1,u0Bj2,u0 | = 1
m |Ai1,uAi2,uBj1,u0Bj2,u0 |.

Therefore,

E[((C �A>B)u,u0)2]

 2kAuk22kBu0k22
m

+
1

m

X

partition S1,S2,S3

X

a,g,b,e,c,f

|A(a,b,c),uB(g,b,f),u0A(a,e,f),uB(g,e,c),u0 |

 2kAuk22kBu0k22
m

+
3q

m

X

a,b,c,g,e,f

|A(a,b,c),uB(g,b,f),u0A(a,e,f),uB(g,e,c),u0 |

 2kAuk22kBu0k22
m

+
3q

m

X

g,e,f

✓X

a,b,c

A2
(a,b,c),u

◆1/2✓X

a,b,c

B2
(g,b,f),u0A2

(a,e,f),uB
2
(g,e,c),u0

◆1/2

=
2kAuk22kBu0k22

m
+

3qkAuk
m

X

g,e,f

✓X

b

B2
(g,b,f),u0

◆1/2✓X

a,c

A2
(a,e,f),uB

2
(g,e,c),u0

◆1/2

 2kAuk22kBu0k22
m

+
3qkAuk

m

X

e

✓X

b,g,f

B2
(g,b,f),u0

◆1/2✓ X

a,c,g,f

A2
(a,e,f),uB

2
(g,e,c),u0

◆1/2

=
2kAuk22kBu0k22

m
+

3qkAuk · kBu0k
m

X

e

✓X

a,f

A2
(a,e,f),u

◆1/2✓X

g,c

B2
(g,e,c),u0

◆1/2

 2kAuk22kBu0k22
m

+
3qkAuk · kBu0k

m

✓X

a,e,f

A2
(a,e,f),u

◆1/2✓X

g,e,c

B2
(g,e,c),u0

◆1/2

=
(2 + 3q)kAuk22kBu0k22

m
,

where the second inequality follows from the fact that there are at most 3q partitions of [q] into 3 sets. The other
inequalities are from Cauchy-Schwarz.

Combining the above bounds, we have E[((C �A>B)u,u0)2]  (2+3q)kAuk2
2kBu0k2

2
m . For m � (2 + 3q)/(✏2�), by the

Markov inequality, kA>S>SB �A>Bk2F  ✏2kAk2F kBk2F with probability 1� �.

The second lemma proves that the subspace embedding property follows from the approximate matrix product
property.

Lemma B.3 (Oblivious subspace embeddings). Consider a fixed k-dimensional subspace V ⇢ Rn1n2···nq . If
m � k2(2 + 3q)/(✏2�), then with probability at least 1� �, kSxk2 = (1± ✏)kxk2 simultaneously for all x 2 V .

Proof. Let B be a (n1n2 · · ·nq) ⇥ k matrix whose columns form an orthonormal basis of V . Thus, we have
B>B = Ik and kBk2F = k. The condition that kSxk2 = (1± ✏)kxk2 simultaneously for all x 2 V is equivalent to
the condition that the singular values of SB are bounded by 1± ✏. By Lemma B.2, for m � (2 + 3q)/((✏/k)2�),
with probability at least 1� �, we have

kB>S>SB �B>Bk2F  (✏/k)2kBk4F = ✏2

Thus, we have kB>S>SB � Ikk2  kB>S>SB � IkkF  ✏. In other words, the squared singular values of SB
are bounded by 1± ✏, implying that the singular values of SB are also bounded by 1± ✏. Note that kAk2 for a
matrix A denotes its operator norm.
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C Missing Proofs

C.1 Proofs for Tensor Product Least Square Regression

Theorem 3.1. (Tensor regression) Suppose ex is the output of Algorithm 1 with tensorsketch S 2 Rm⇥n, where
m = 8(d1d2 · · · dq+1)2(2+3q)/(✏2�). Then the following approximation k(A1⌦A2⌦· · ·⌦Aq)ex�bk2  (1+✏)OPT,
holds with probability at least 1� �.

Proof. It is easy to see that

k(A1 ⌦A2 ⌦ · · ·⌦Aq)x� bk2 =

����
⇥
(A1 ⌦A2 ⌦ · · ·⌦Aq) b

⇤  x
�1

�����
2

,

and identifying

y =
⇥
(A1 ⌦A2 ⌦ · · ·⌦Aq) b

⇤  x
�1

�
2 Rn1n2···nq

and y is a vector of a subspace V ⇢ Rn1n2···nq with dimension at most d1d2 · · · dq + 1, we can use Lemma B.3 to
conclude that

Pr [|kSyk2 � kyk2|  ✏kyk2] � 1� �

when m = (d1d2 · · · dq + 1)2(2 + 3q)/(✏2�).

Thus we have

k(A1 ⌦A2 ⌦ · · ·⌦Aq)ex� bk2  1

1� ✏
kS(A1 ⌦A2 ⌦ · · ·⌦Aq)ex� Sbk2

and

kS(A1 ⌦A2 ⌦ · · ·⌦Aq)x� Sbk2  (1 + ✏)k(A1 ⌦A2 ⌦ · · ·⌦Aq)x� bk2

hold with probability at least 1� �. Then using a union bound, we have

k(A1 ⌦A2 ⌦ · · ·⌦Aq)ex� bk2

 1

1� ✏
kS(A1 ⌦A2 ⌦ · · ·⌦Aq)ex� Sbk2

 1

1� ✏
kS(A1 ⌦A2 ⌦ · · ·⌦Aq)x� Sbk2

 1 + ✏

1� ✏
k(A1 ⌦A2 ⌦ · · ·⌦Aq)x� bk2

holds with probability at least 1� 2�.

Corollary 3.2. (Sketch for tensor nonnegative regression) Suppose x̃ = minx�0 kSAx�Sbk2 with tensorsketch
S 2 Rm⇥n, where m = 8(d1d2 · · · dq+1)2(2+3q)/(✏2�). Then the following approximation k(A1⌦A2⌦· · ·⌦Aq)ex�
bk2  (1 + ✏)OPT holds with probability at least 1� �, where OPT = minx�0 k(A1 ⌦A2 ⌦ · · ·⌦Aq)x� bk2.

Proof. The proof of Theorem. 3.2 is similar to the proof of theorem 3.1. Denote x̃ = minx�0 kSAx� Sbk2 and
x⇤ = minx�0 kAx� bk2. Using Lemma. B.3, we have:

kAx̃� bk2  1

1� ✏
kSAx̃� Sbk2, (6)

with probability at least 1� �, and

kSAx⇤ � Sbk2  (1 + ✏)kAx⇤ � bk2, (7)
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with probability at least 1� �. Hence applying a union bound we have:

kAx̃� bk2 (8)

 1

1� ✏
kSAx̃� Sbk2

 1

1� ✏
kSAx⇤ � Sbk2

 1 + ✏

1� ✏
kAx⇤ � bk2, (9)

with probability at least 1� 2�.

C.2 Proofs for P-Splines

Lemma 4.1. Let x⇤ 2 Rd, A 2 Rn⇥d and b 2 Rn as above. Let U1 2 Rn⇥d denote the first n rows of an

orthogonal basis for
h

Ap
�L

i
2 R(n+p)⇥d. Let sketching matrix S 2 Rm⇥n have a distribution such that with

constant probability

(I) kU>
1 S>SU1 � U>

1 U1k2  1/4,

and

(II) kU>
1 (S>S � I)(b�Ax⇤)k2 

p
✏OPT /2.

Let ex denote argminx2RdkS(Ax� b)k22 + �kLxk22. Then with probability at least 9/10,

kAex� bk22 + �kLexk22  (1 + ✏)OPT .

Proof. Let Â 2 R(n+d)⇥d have orthonormal columns with range(Â) = range(
h

Ap
�L

i
). (An explicit expression for

one such Â is given below.) Let b̂ ⌘
⇥

b
0d

⇤
. We have

min
y2Rd

kÂy � b̂k2 (10)

equivalent to kb�Axk22 +�kLxk22, , in the sense that for any Ây 2 range(Â), there is x 2 Rd with Ây =
h

Ap
�L

i
x,

so that kÂy�b̂k22 = k
h

Ap
�L

i
x�b̂k22 = kb�Axk22+�kLxk22. Let y⇤ = argminy2RdkÂy�b̂k2, so that Ây⇤ =

h
Ax⇤

p
�Lx⇤

i
.

Let Â =
⇥
U1
U2

⇤
, where U1 2 Rn⇥d and U2 2 Rd⇥d, so that U1 is as in the lemma statement.

We define Ŝ to be
h

S 0m⇥d

0d⇥n Id

i
and Ŝ satisfies Property (I) and (II) of Lemma 4.1.

Using kU>
1 S>SU1 � U>

1 U1k2  1/4, with constant probability

kÂ>Ŝ>ŜÂ� Idk2 = kU>
1 S>SU1 + U>

2 U2 � Idk2 = kU>
1 S>SU1 � U>

1 U1k2  1/4. (11)

Using the normal equations for Eq. (10), we have

0 = Â>(b̂� Ây⇤) = U>
1 (b�Ax⇤)�

p
�U>

2 x⇤,

and so
Â>Ŝ>Ŝ(b̂� Ây⇤) = U>

1 S>S(b�Ax⇤)�
p
�U>

2 x⇤ = U>
1 S>S(b�Ax⇤)� U>

1 (b�Ax⇤).

Using Property (II) of Lemma 4.1, with constant probability

kÂ>Ŝ>Ŝ(b̂� Ây⇤)k2
= kU>

1 S>S(b�Ax⇤)� U>
1 (b�Ax⇤)k2


p
✏OPT /2

=
p
✏/2kb̂� Ây⇤k2. (12)
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It follows by a standard result from (11) and (12) that the solution ỹ ⌘ argminy2RdkŜ(Ây� b̂)k2 has kÂỹ� b̂k2 
(1 + ✏)miny2RdkÂy � b̂k2, and therefore that x̃ satisfies the claim of the theorem.

For convenience we give the proof of the standard result: (11) implies that Â>Ŝ>ŜÂ has smallest singular value
at least 3/4. The normal equations for the unsketched and sketched problems are

Â>(b̂� Ây⇤) = 0 = Â>Ŝ>Ŝ(b̂� Âỹ).

The normal equations for the unsketched case imply kÂỹ � b̂k22 = kÂ(ỹ � y⇤)k22 + kb̂� Ây⇤k22, so it is enough to
show that kÂ(ỹ � y⇤)k22 = kỹ � y⇤k22  ✏OPT. We have

(3/4)kỹ � y⇤k2  kÂ>Ŝ>ŜÂ(ỹ � y⇤)k2 by Eq. (11)

= kÂ>Ŝ>ŜÂ(ỹ � y⇤)� Â>Ŝ>Ŝ(b̂� Âỹ)k2 by Normal Equation

= kÂ>Ŝ>Ŝ(b̂� Ây⇤)k2

p
✏OPT /2 by Eq. (12),

so that kỹ � y⇤k22  (4/3)2✏OPT /2  ✏OPT. The lemma follows.

The following lemma computes the statistical dimension sd�(A,L) that will be used for computing the number of
rows of sketching matrix S.

Lemma C.1. For U1 as in Lemma 4.1, kU1k2F = sd�(A,L) =
P

i 1/(1 + �/�2
i ) + d� p, where A has singular

values �i. Also kU1k2 = max{1/
p
1 + �/�2

1 , 1}.

Proof. Suppose we have the GSVD of (A, L). Let

D ⌘

⌃>⌃+ �⌦>⌦ 0p⇥(n�p)

0(n�p)⇥p Id�p

��1/2

.

Then

Â =

2

4 U

2

4 ⌃ 0p⇥(n�p)

0(n�p)⇥p Id�p

3

5D

p
�V

h
⌦ 0p⇥(n�p)

i
D

3

5

has Â>Â = Id, and for given x, there is y = D�1RQ>x with Ây =
h

Ap
�L

i
x. We have kU1k2F =

����U


⌃ 0p⇥(n�p)

0(n�p)⇥p Id�p

�
D

����
2

F

=

����


⌃ 0p⇥(n�p)

0(n�p)⇥p Id�p

�
D

����
2

F

=
Pp

i=1 1/(1 + �/�2
i ) + d� p as claimed.

Theorem 4.3. (P-Spline regression) There is a constant K > 0 such that for m � K(✏�1 sd�(A,L)+sd�(A,L)2)
and S 2 Rm⇥n a sparse embedding matrix (e.g., Countsketch) with SA computable in O(nnz(A)) time, Property
(I) and (II) of Lemma 4.1 apply, and with constant probability the corresponding ex = argminx2RdkS(Ax� b)k2 +
�kLxk22 is an ✏-approximate solution to minx2Rdkb�Axk22 + �kLxk22.

Proof. Recall that sd�(A,L) = kU1k2F . Sparse embedding distributions satisfy the bound for approximate matrix
multiplication

kW>S>SH �W>HkF  CkWkF kHkF /
p
m,

for a constant C (Clarkson and Woodru↵, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013); this is
also true of OSE matrices. We set W = H = U1 and use kXk2  kXkF for all X and m � KkU1k4F to obtain

Property (I) of Lemma 4.1, and set W = U1, H = b� Ax⇤ and use m � KkU1k2F /✏ to obtain Property (II) of
Lemma 4.1. (Here the bound is slightly stronger than Property (II), holding for � = 0.) With Property (I) and
Property (II), the claim for x̃ from a sparse embedding follows using Lemma 4.1.
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C.3 Proofs for Tensor Product `1 Regression

Lemma 5.3. For any p � 1. Condition(A) computes AU/(d�p) which is an (↵,�
p
3d(tw)|1/p�1/2|, p)-well-

conditioned basis of A, with probability at least 1�
Qq

i=1(ni/wi)�.

Proof. This lemma is similar to arguments in Clarkson et al. (2013), we simply adjust notation and parameters
for completeness. Applying Theorem 5.2, we have that with probability at least 1�

Qq
i=1(ni/wi)�, for all x 2 Rr,

if we consider y = Ax and write y> = [z>1 , z>2 , . . . , zQq
i=1 ni/wi

]>, then for all i 2 [
Qq

i=1 ni/wi],

q
1
2kzik2  kSizik2 

q
3
2kzik2,

where Si 2 Rmi⇥
Qq

i=1 wi . In the following, suppose mi = t. By relating the 2-norm and the p-norm, for 1  p  2,
we have

kSizikp  t1/p�1/2kSzik2  t1/p�1/2
q

3
2kzik2  t1/p�1/2

q
3
2kzikp,

and similarly,

kSizikp � kSizik2 �
q

1
2kzik2 �

q
1
2w

1/2�1/pkzikp, w =
qY

j=1

wj .

If p > 2, then

kSizikp  kSizik2 
q

3
2kzik2 

q
3
2w

1/2�1/pkzikp,

and similarly,

kSizikp � t1/p�1/2kSizik2 � t1/p�1/2
q

1
2kzik2 � t1/p�1/2

q
1
2kzikp.

Since kAxkpp = kykpp =
P

i kzikpp and kSAxkpp =
P

i kSizikpp, for p 2 [1, 2] we have with probability 1 �Qq
i=1(ni/wi)� q

1
2w

1/2�1/pkAxkp  kSAxkp 
q

3
2 t

1/p�1/2kAxkp,

and for p 2 [2,1) with probability 1�
Qq

i=1(ni/wi)�

q
1
2 t

1/p�1/2kAxkp  kSAxkp 
q

3
2w

1/2�1/pkAxkp.

In either case,
kAxkp  �pkSAxkp 

p
3(tw)|1/p�1/2|kAxkp. (13)

We have, from the definition of an (↵,�, p)-well-conditioned basis, that

kSAUkp  ↵ (14)

and for all x 2 Rd,

kxkq  �kSAUxkp. (15)

Combining (13) and (14), we have that with probability at least 1�
Qq

i=1(ni/wi)�,

kAU/(r�p)kp 
X

i

kAUi/r�pkp 
X

i

kSAUi/rkp  ↵.

Combining (13) and (15), we have that with probability at least 1�
Qq

i=1(ni/wi)�, for all x 2 Rr,

kxkq  �kSAUxkp  �
p
3r(tw)|1/p�1/2|kAU

1

r�p
xkp.

Hence AU/(r�p) is an (↵,�
p
3r(tw)|1/p�1/2|, p)-well-conditioned basis.
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Theorem 5.4. (Main result) Given ✏ 2 (0, 1), A 2 Rn⇥d and b 2 Rn, Alg. 3 computes bx such that with probability
at least 1/2, kAx̂� bk1  (1 + ✏)minx2Rd kAx� bk1. For the special case when q = 2, n1 = n2, the algorithm’s
running time is O(n1

3/2 poly(
Q2

i=1 di/✏)).

Proof. For notational simplicity, let us denote n[q1] =
Qq1

i=1 ni, n[q]\[q1] =
Qq

i=q1+1 n1, d[q1] =
Qq1

i=1 di, and

d[q]\[q1] =
Qq

i=q1+1 di. For any row-block A1
i1 ⌦ . . . ⌦ A(q)

iq
, computing Si1i2...iq(A

1
i1 ⌦ . . . ⌦ A(q�1)

iq
) takes

O(d(
Pq

k=1 nnz(A
(k)
ik

)) + dqm log(m)) (see Sec 2). Hence for SA, it takes:

0

@d
qX

k=1

nnz(Ak)
qY

i2[q]\{k}

ni/wi

1

A+

 
dqm log(m)

qY

i=1

ni/wi

!

where S 2 R(m
Qq

i=1(ni/wi))⇥
Qq

i=1 wi and m � 100
Qq

i=1 d
2
i (2 + 3q)/✏2 = O(poly(d/✏)). We need to compute an

orthogonal factorization SA = QRA in O(qmd2) and then compute U = R�1
A in O(d3) time. Hence the total

running time of Algorithm Condition(A) is O(qmd2 + d3). Thus the total running time of computing SA and
Condition(A) is

O

0

@

0

@
qX

k=1

nnz(Ak)
qY

i2[q]\{k}

ni/wi

1

A+

 
qY

i=1

ni/wi

!
poly(d/✏) + qmd2 + d3

1

A ,

We will compute UG in O(d2 log n) time. We compute eE = E(Aq1+1 ⌦ . . .⌦Aq)T in O(dn[q]\[q1]) time.

Then we can compute R(A1 ⌦ · · ·⌦Aq1) eEj in O(n[q1]d[q1] log n+ d[q1]n[q]\[q1] log n) time.

Since computation of the median �i takes O(log n) time, computing all �i and then �e takes O(n[q]\[q1] log n)
time.

As AUG has O(log n) columns, we need to compute �e for each AUG using the above procedure and hence it
takes in total O(d(n[q1] + n[q]\[q1]) log

2 n) time.

Sampling a column of AUG using �e takes O(log n) time, sampling an entry in M takes in total O(n[q1]+n[q]\[q1])
time.

Since we need
pQq

k=1 wk poly(r) samples to select rows, the running time is d(n[q1] + n[q]\[q1]) log
2 n ·pQq

k=1 wk poly(r).

Now for simplicity, we set q = 2, ni = n0 for i 2 [2]. Note that it is optimal to choose wi = w for i 2 [2].
Substituting q = 2, ni = n0 and wi = w, we that the total running time of Alg. 3:

O
�
dw�1n0(nnz(A1) + nnz(A2)) + w�2n2

0 poly(d/✏) + wn0 poly(d) log(n)
�
.

For dense A1 and A2, nnz(A1) + nnz(A2) = O(n0) time, and so ignoring poly and log terms that do not depend
on n0, the total running time can be simplified to:

O(w�1n2
0 + wn0).

Setting w =
p
n0, we can minimize the above running time to O(n3/2

0 ), which is faster than the n2
0 time for

solving the problem by forming A1 ⌦A2.


	INTRODUCTION
	Our Contributions
	Notation

	BACKGROUND:TensorSketch 
	TENSOR PRODUCT LEAST SQUARES REGRESSION
	 P-SPLINES 
	Sketching for P-Spline
	Tensor Sketching for Multi-Dimensional P-Spline

	TENSOR PRODUCT ABSOLUTE DEVIATION REGRESSION 
	NUMERICAL EXPERIMENTS
	Background: CountSketch and TensorSketch
	TensorSketch is an Oblivious Subspace Embedding (OSE)
	Missing Proofs
	Proofs for Tensor Product Least Square Regression
	Proofs for P-Splines
	Proofs for Tensor Product 1 Regression


