
Sketching for Kronecker Product Regression and P-splines

Huaian Diao
hadiao@nenu.edu.cn

Zhao Song
zhaos@utexas.edu

Wen Sun
wensun@cs.cmu.edu

David P. Woodru↵
dwoodruf@cs.cmu.edu

Northeast Normal University Harvard U & UT-Austin Carnegie Mellon University Carnegie Mellon University

Abstract

TensorSketch is an oblivious linear sketch
introduced in (Pagh, 2013) and later used
in (Pham and Pagh, 2013) in the context of
SVMs for polynomial kernels. It was shown
in (Avron et al., 2014) that TensorSketch
provides a subspace embedding, and therefore
can be used for canonical correlation analy-
sis, low rank approximation, and principal
component regression for the polynomial ker-
nel. We take TensorSketch outside of the
context of polynomials kernels, and show its
utility in applications in which the underly-
ing design matrix is a Kronecker product of
smaller matrices. This allows us to solve Kro-
necker product regression and non-negative
Kronecker product regression, as well as regu-
larized spline regression. Our main technical
result is then in extending TensorSketch to
other norms. That is, TensorSketch only
provides input sparsity time for Kronecker
product regression with respect to the 2-norm.
We show how to solve Kronecker product re-
gression with respect to the 1-norm in time
sublinear in the time required for computing
the Kronecker product, as well as for more
general p-norms.

1 INTRODUCTION

In the overconstrained least squares regression problem,
we are given an n ⇥ d matrix A called the “design
matrix”, n � d, and an n ⇥ 1 vector b, and the goal
is to find an x which minimizes kAx � bk2. There
are many variants to this problem, such as regularized
versions of the problem in which one seeks an x so

Full version is at https://arxiv.org/abs/1712.09473v1
Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

as to minimize kAx � bk22 + kLxk22 for a matrix L,
or regression problems which seek to minimize more
robust loss functions, such as `1-regression kAx� bk1.

In the era of big data, large scale matrix computa-
tions have attracted considerable interest. To obtain
reasonable computational and time complexities for
large scale matrix computations, a number of random-
ized approximation algorithms have been developed.
For example, in (Woodru↵, 2014), it was shown how
to output a vector x0 2 Rd for which kAx0 � bk2 
(1 + ✏)minx2Rd kAx� bk2 in nnz(A) + poly(d/✏) time,
where nnz(A) denotes the number of non-zero entries
of matrix A. We refer the reader to the recent surveys
(Kannan and Vempala, 2009; Mahoney, 2011; Woodru↵,
2014) for a detailed treatment of this topic.

In this work we focus on regression problems for which
the design matrix is a Kronecker product matrix, that is,
it has the form A⌦B for A 2 Rn1⇥d1 and B 2 Rn2⇥d2 .
Also, b 2 Rn1n2 , and one seeks to solve the problem
minx2Rd1d2 k(A ⌦ B)x � bk2 in the standard setting,
which can also be generalized to regularized and robust
variants. One can also ask the question when the
design matrix is a Kronecker product of more than two
matrices.

Kronecker product matrices have many applications
in statistics, linear system theory, signal processing,
photogrammetry, multivariate data fitting, etc.; see
(Golub and Van Loan, 2013; Van Loan and Pitsianis,
1993; Van Loan, 1992). The linear least squares prob-
lem involving the Kronecker product arises in many
applications, such as structured linear total least norm
on blind deconvolution problems (Oh and Yun, 2005),
constrained linear least squares problems with a Kro-
necker product structure, the bivariate problem of sur-
face fitting and multidimensional density smoothing
(Eilers and Marx, 2006).

One way to solve Kronecker product regression is
to form the matrix C = A ⌦ B explicitly, where
A 2 Rn1⇥d1 , B 2 Rn2⇥d2 , and then apply a random-
ized algorithm to C. However, this takes at least
nnz(A) · nnz(B) time and space. It is natural to ask if

Sketching for Kronecker Product Regression and P-splines

it is possible to solve the Kronecker product regression
problem in time faster than computing A⌦B. This is
in fact the case, as Fausett and Fulton (Fausett and Ful-
ton, 1994) show that one can solve Kronecker product
regression in O(n1d21+n2d22) time; indeed, the solution
vector x = vec((B?)>D�1A?), where D = vec(b) and
vec(E) for a matrix E denotes the operation of stacking
the columns of E into a single long vector. While such
a computation does not involve computing A⌦B, it is
more expensive than what one would like.

A natural question is if one can approximately solve
Kronecker product regression in nnz(A) + nnz(B) +
poly(d/✏) time, which, up to the poly(d/✏) term, would
match the description size of the input. Another natu-
ral question is Kronecker product regression with regu-
larization. Such regression problems arise frequently in
the context of splines (Eilers and Marx, 2006). Finally,
what about Kronecker product regression with other,
more robust, norms such as the `1-norm?

1.1 Our Contributions

We first observe that the random linear map Ten-
sorSketch, introduced in the context of problems
for the polynomial kernel by Pagh (2013), Pham and
Pagh (2013), is exactly suited for this task. Namely,
in (Avron et al., 2014) it was shown that for a d-
dimensional subspace C of Rn, represented as an n⇥ d
matrix, there is a distribution on linear maps S with
O(d2/✏2) rows such that with constant probability, si-
multaneously for all x 2 Rd, kSCxk2 = (1± ✏)kCxk2.
That is, S provides an Oblivious Subspace Embed-
ding (OSE) for the column span of C. Further, it
is known that if b is an n-dimensional vector, then
one has that kS[C, b]xk2 = (1 ± ✏)k[C, b]xk2 for all
x 2 Rd+1. Consequently, to solve the regression prob-
lem minx2Rd kCx�bk2, one can instead solve the much
smaller problem minx2Rd kSCx � Sbk2, and the solu-
tion x0 to the latter problem will satisfy kCx0 � bk2 
(1 + ✏)minx2Rd kCx� bk2.

Importantly, if n = n1 · n1 and there is a basis for the
column span of C of the form A1⌦A1, A2⌦A2, . . . , Ad⌦
Ad, then given A1, . . . , Ad, it holds that SC can be
computed in nnz(A) time, where A is the n1⇥d matrix
whose i-th column is Ai. Further, given a vector b with
nnz(b) non-zero entries, one can compute Sb in nnz(b)
time. Thus, one obtains a (1+ ✏)-approximate solution
to the regression minx2Rd kCx�bk2 in nnz(A)+nnz(b)+
poly(d/✏) time.

While not immediately useful for our problem, we show
that via simple modifications, the claim about Ten-
sorSketch above can be generalized to the case when
there is a basis for the column span of C of the form
Ai ⌦ Bj for arbitrary vectors A1, . . . , Ad1 2 Rn1 and
vectors B1, . . . , Bd2 2 Rn2 . That is, we observe that

in this case SC can be computed in nnz(A) + nnz(B)
time, where A is the n1 ⇥ d1 matrix whose i-th col-
umn is Ai, and B is the n2 ⇥ d2 matrix whose i-
th column is Bi. In this case C = A ⌦ B, which
is exactly the case of Kronecker product regression.
Using the above connection to regression, we ob-
tain an algorithm for Kronecker product regression
in nnz(A) + nnz(B) + nnz(b) + poly(d1d2/✏) time. Us-
ing the fact that kSCx � Sbk2 = (1 ± ✏)kCx � bk2
for all x, we have in particular that this holds for all
non-negative x, and so also obtain the same reduction
in problem size for non-negative Kronecker product
regression, which occurs often in image and text data;
see e.g., (Chen and Plemmons, 2010).

The above observation allows us to extend many ex-
isting variants of least squares regression to the case
when C is a Kronecker product of two matrices. For
example, the results in (Avron et al., 2016) for the ridge
regression problem minx2Rd kAx� bk22 + �kxk22 imme-
diately hold when C is a Kronecker product matrix,
since the conditions needed for the oblivious embed-
ding in (Avron et al., 2016) come down to a subspace
embedding and an approximate matrix product condi-
tion, both of which are known to hold for TensorS-
ketch (Avron et al., 2014). More interestingly we
are able to extend the results in (Avron et al., 2016)
for Kronecker ridge regression to the case when the
regularizer is a general matrix, namely, to the problem
minx2Rd kAx� bk22 + �kLxk22, where L is an arbitrary
matrix. Such problems occur in the context of spline
regression (Eilers and Marx, 1996, 2006; Eilers et al.,
2015). The number of rows of TensorSketch depends
on a generalized notion of statistical dimension depend-
ing on the generalized singular values �i of [A;L], and
may be much smaller than d1 or d2. In (Avron et al.,
2016), only results for L equal to the identity were
obtained.

Finally, our main technical result is to extend our re-
sults to least absolute deviation Kronecker product
regression minx2Rd kCx� bk1, which, since it involves
the 1-norm, is often considered more robust than least
squares regression (Rousseeuw and Leroy, 2005) and
has been widely used in applications such as com-
puter vision (Zheng et al., 2012). We in fact extend
this to general p-norms but focus the discussion on
p = 1. We give the first algorithms for this problem
that are faster than computing C = A⌦B explicitly,
which would take at least nnz(A) ·nnz(B) � n1n2 time.
Namely, and for simplicitly focusing on the case when
n1 = n2, for which the goal is to do better than n2

1

time, we show how to output an x 2 Rd1⇥d2 for which
kCx0 � bk1  (1 + ✏)minx2Rd1d2 kCx � bk1 in time
n3/2 poly(d1d2/✏). While this is more expensive than
solving Kronecker product least squares, the 1-norm

Diao, Song, Sun, Woodru↵

may lead to significantly more robust solutions. From
a technical perspective, TensorSketch when applied
to a vector actually destroys the 1-norm of a vector,
preserving only its 2-norm, so new ideas are needed.
We show how to use multiple TensorSketch matri-
ces to implicitly obtain very crude estimates to the
so-called `1-leverage scores of C, which can be inter-
preted as probabilities of sampling rows of C in order
to obtain an `1-subspace embedding of the column span
of C (see, e.g., (Woodru↵, 2014)). However, since C
has n1n2 rows, we cannot even a↵ord to write down
the `1-leverage scores of C. We show how to implicitly
represent such leverage scores and to sample from them
without ever explicitly writing them down. Balancing
the phases of our algorithm leads to our overall time.

1.2 Notation

We consider Kronecker Product of q 2-d matrices A1⌦
A2 ⌦ ... ⌦ Aq, where each Ai 2 Rni⇥di . We denote
A = A1⌦A2⌦ ...⌦Aq, n =

Qq
i=1 ni, and d =

Qq
i=1 di.

We denote [n] as the set {1, 2, 3, · · · , n}. The `p norm

for a vector x 2 Rd is defined as kxkp = (
Pd

i=1 |xi|p)1/p,
where xi stands for the i’th entry of the vector x. For
any matrix M , we use Mi,⇤ to represent the i’th row
of M and M⇤,j as the j’th column of M .

We define a Well-Conditioned Basis and Statistical
Dimension as follow (similar definitions can be found
in Clarkson (2005); Dasgupta et al. (2009); Sohler and
Woodru↵ (2011); Meng and Mahoney (2013); Song
et al. (2017a,b) and Avron et al. (2016)):

Definition 1.1 (Well-Conditioned Basis). Let A be an
n⇥m matrix with rank d, let p 2 [1,1), and let k · kq
be the dual norm of k · kp, i.e., 1/p + 1/q = 1. Then
an n⇥ d matrix U is an (↵,�, p)-well-conditioned basis
for the column space of A, if the columns of U span
the column space of A and (1) kUkp  ↵, and (2) for
all z 2 Rd, kzkq  �kUzkp.

Consider the classic Ridge Regression: minx kAx �
bk22 + �kxk22. The Statistical Dimension is defined as:

Definition 1.2 (Statistical Dimension). Let A be an
n⇥m matrix with rank d and singular values �i, i 2 [d].
For � � 0, the statistical dimension sd�(A) is defined
as the quantity sd�(A) =

P
i2[d] 1/(1 + �/�2

i).

2 BACKGROUND:TensorSketch

We briefly introduce TensorSketch (Pagh, 2013;
Avron et al., 2014) and how to apply TensorSketch
to the Kronecker product of multiple matrices e�ciently
without explicitly computing the tensor product.1

We want to find a oblivious subspace embedding
S such that for any x 2 Rn, we have kSAxk2 =

1We refer readers to (Avron et al., 2014) for more details
about TensorSketch.

(1± ✏)kAxk2, where the notation a = (1± ✏b) stands
for (1 � ✏)b  a  (1 + ✏)b, for any a, b 2 R. Con-
sider the (i1, i2, ..., iq)’th column of A (ij 2 [dj]):
A1⇤,i1

⌦A2⇤,i2
⌦ · · ·⌦Aq⇤,iq . Assume the sketching tar-

get dimension is m. TensorSketch is defined using q
3-wise indepedent hash functions hi : [ni]! [m], and
q 4-wise independent sign functions si : [ni]! {�1, 1},
8i 2 [q]. Define hash function H : [n1] ⇥ [n2] ⇥
· · · ⇥ [nq] ! [m] as H(i1, i2, ..., iq) = ((

Pq
k=1 hk(ik))

mod m), and sign function S : [n1]⇥ [n2]⇥ · · ·⇥ [nq]!
{�1, 1} as S(i1, i2, ..., iq) =

Qq
k=1 sk(ik). Applying

Tensorsketch to the Kronecker product of vectors
A1⇤,i1

, ..., Aq⇤,iq is equivalent to applying CountS-
ketch (Charikar et al., 2004) defined with H and S to
the vector (A1⇤,i1

⌦ ... ⌦ Aq⇤,iq). To apply Tensors-
ketch to A, we just need to apply CountSketch
defined with H and S to the columns of A one by one.

Applying tensorsketch to the Kronecker product of
(A1⇤,i1

, ..., Aq⇤,iq) naively would require at least O(n)
time. Pagh (2013) shows that one can apply tensors-
ketch to the Kronecker product of (A1⇤,i1

, ..., Aq⇤,iq)
without explicitly computing the Kronecker product
of these vectors using the Fast Fourier Transformation.
Particularly, Pham and Pagh (2013) show that one
only needs O(

Pq
j=1 nnz(Aj⇤,ij

) + qm log(m)) time to

compute S(A1⇤,i1
⌦ ...⌦Aq⇤,iq) where Ai⇤,j stands for

the j’th column of Ai. As A has d columns, comput-
ing SA takes O(d(

Pq
i=1 nnz(Ai)) + dqm log(m)) time,

which is much smaller than O(
Qq

i=1 ni), which is the
least amount of time one needs for explicitly computing
A. In the rest of the paper, we assume that we com-
pute SA using the above e�cient procedure without
explicitly computing A1 ⌦ . . .⌦Aq.

3 TENSOR PRODUCT LEAST

SQUARES REGRESSION

Consider the tensor product least squares regression
problem minx kAx� bk2 where A 2 Rn⇥d and b 2 Rn.
Let S 2 Rm⇥n be the matrix form of TensorSketch
of Section 2. We propose a TensorSketch -type
Algorithm 1 for the tensor product regression problem.
The following theorem shows that the solution obtained
from Alg. 1 is a good approximation of the optimal
solution of the original tensor product regression.

Let us define OPT to be the optimal cost of the opti-
mization problem, e.g., OPT = minx kAx� bk2. The
following theorem shows that Alg. 1 computes a good
approximate solution.

Theorem 3.1. (Tensor regression) Suppose ex is the
output of Algorithm 1 with tensorsketch S 2 Rm⇥n,
where m = 8(d1d2 · · · dq + 1)2(2 + 3q)/(✏2�). Then the
following approximation k(A1⌦A2⌦ · · ·⌦Aq)ex�bk2 
(1 + ✏)OPT, holds with probability at least 1� �.

Sketching for Kronecker Product Regression and P-splines

Algorithm 1 Tensor product regression

1: procedure TRegression(A, b, ✏, �)
2: m (d1d2 · · · dq + 1)2(2 + 3q)/(✏2�)
3: Choose S to be an m⇥ (n1n2 · · ·nq) TensorS-

ketch matrix
4: Compute S(A1 ⌦A2 ⌦ · · ·⌦Aq) and Sb
5: ex minx kS(A1 ⌦A2 ⌦ · · ·⌦Aq)x� Sbk2
6: return ex
7: end procedure

The proof of Theorem 3.1 can be found in Appendix
C.1. Theorem 3.1 shows that we can achieve an ✏-close
solution by solving a much smaller regression problem
with a number of samples of order O(poly(d/✏)), which
is independent of the large dimension n. Using the
technique we introduced in Sec. 2, we can also compute
SA without explicitly computing the tensor product.

We can extend Theorem 3.1 to the nonnegative ten-
sor product regression problem minx�0 k(A1 ⌦ A2 ⌦
· · ·⌦ Aq)x� bk2, where Ai 2 Rni⇥di , i = 1, . . . , q and
b 2 Rn1n2···nq . Suppose x is the optimal solution. Sim-
ilarly, let S 2 Rm⇥(n1n2···nq) be the matrix form of
TensorSketch of Section 2. If ex is the optimal so-
lution to minx�0 kS(A1 ⌦A2 ⌦ · · ·⌦Aq)x� Sbk2., we
have the following:

Corollary 3.2. (Sketch for tensor nonnegative regres-
sion) Suppose x̃ = minx�0 kSAx � Sbk2 with ten-
sorsketch S 2 Rm⇥n, where m = 8(d1d2 · · · dq +
1)2(2 + 3q)/(✏2�). Then the following approxima-
tion k(A1 ⌦ A2 ⌦ · · · ⌦ Aq)ex � bk2  (1 + ✏)OPT
holds with probability at least 1 � �, where OPT =
minx�0 k(A1 ⌦A2 ⌦ · · ·⌦Aq)x� bk2.

The proof of Corollary 3.2 can be found in Ap-
pendix C.1.

4 P-SPLINES

B-splines are local basis functions, consisting of low
degree (e.g., quadratic, cubic) polynomial segments.
The positions where the segments join are called the
knots. B-splines have local support and are thus suit-
able for smoothing and interpolating data with complex
patterns. Unfortunately, control over smoothness is
limited: one can only change the number and positions
of the knots. If there are no reasons to assume that
smoothness is non-uniform, the knots will be equally
spaced and the only tuning parameter is their (discrete)
number. In contrast P-spline (Eilers and Marx, 1996)
equally spaces B-splines, discards the derivative com-
pletely, and controls smoothness by regularizing the
sum of squares of di↵erences of coe�cients. Specifically
Eilers and Marx Eilers and Marx (1996) proposed the
P-spline recipe: (1) use a (quadratic or cubic) B-spline

basis with a large number of knots, say 10-50; (2) intro-
duce a penalty on (second or third order) di↵erences
of the B-spline coe�cients; (3) minimize the resulting
penalized likelihood function; (4) tune smoothness with
the weight of the penalty, using cross-validation or AIC
to determine the optimal weight.

We give a brief overview of B-Splines and P-Splines
below. Let b and u, each vectors of length n, represent
the observed and explanatory variables, respectively.
Once a set of knots is chosen, the B-spline basis A
follows from u. If there are d basis functions then A is
n⇥ d. In the case of normally distributed observations
the model is b = Ax + e, with independent errors e.
In the case of B-spline regression the sum of squares
of residuals kb�Axk2 is minimized and the normal
equations A>Ax̂ = A>b are obtained; the explicit solu-
tion x̂ = (A>A)�1A>b results. The P-spline approach
minimizes the penalized least-squares function

kb�Axk22 + �kLxk22, (1)

where L 2 Rp⇥n is a matrix that forms di↵erences of
order `, i.e., L`x = �`x. Examples of this matrix, for
` = 1 and ` = 2 are :

L1 =

2

4
�1 1 0 0
0 �1 1 0
0 0 �1 1

3

5 , L2 =

2

4
1 �2 1 0 0
0 1 �2 1 0
0 0 1 �2 1

3

5 .

The parameter � determines the influence of the penalty.
If � is zero, we are back to B-spline regression; increas-
ing � makes x̂, and hence b̂ = Ax̂, smoother.

Let x⇤ denote argminx2RdkAx�bk22+�kLxk22, and OPT
denote kAx⇤� bk22+�kLx⇤k22. In general x⇤ = (A>A+
�L>L)�1A>b = A>(AA> + �LL>)�1b, so x⇤ can be
found in O(nnz(A)min(n, d)) time using an iterative
method (e.g., LSQR). Our first goal in this section is
to design faster algorithms that find an approximate ex
in the following sense:

kAex� bk22 + �kLexk22  (1 + ✏)OPT . (2)

4.1 Sketching for P-Spline

We first introduce a new definition of Statistical Di-
mension that extends the statistical dimension defined
for Ridge Regression (i.e., L is an identity matrix in
Eq. 1) (Avron et al., 2016) to P-Spline regression.

The problem (1) can also be analyzed by general-
ized singular value decomposition (GSVD) Golub and
Van Loan (2013). For matrices A 2 Rn⇥d and

L 2 Rp⇥d with rank(L) = p and rank

✓
A
L

�◆
= d,

the GSVD of (A,L) is given by the pair of factoriza-

tions A = U


⌃ 0p⇥(n�p)

0(n�p)⇥p Id�p

�
RQ> and L =

Diao, Song, Sun, Woodru↵

V
⇥
⌦ 0p⇥(n�p)

⇤
RQ>, where U 2 Rm⇥n has orthonor-

mal columns, V 2 Rp⇥p, Q 2 Rd⇥d are orthogonal, R 2
Rd⇥d is upper triangular and nonsingular, and ⌃ and
⌦ are p⇥ p diagonal matrices: ⌃ = diag(�1,�2, . . . ,�p)
and ⌦ = diag(µ1, µ2, . . . , µp) with 0  �1  �2  . . . 
�p < 1 and 1 � µ1 � µ2 � . . . � µp > 0, satisfying
⌃>⌃+ ⌦>⌦ = Ip. The generalized singular values �i
of (A,L) are defined by the ratios �i = �i/µi (i = [p]).

In this section we design an algorithm that is aimed
at the case when n � d. The general strategy is to
design a distribution on matrices of size m-by-n (m is
a parameter), sample an S from that distribution, and
solve ex ⌘ argminx2RdkS(Ax� b)k22 + �kLxk22 .

The following lemma defines conditions on the distribu-
tion of S that guarantees Eq. (2) holds with constant
probability (which can be boosted to high probability
by repetition and taking the minimum objective).

Lemma 4.1. Let x⇤ 2 Rd, A 2 Rn⇥d and b 2 Rn as
above. Let U1 2 Rn⇥d denote the first n rows of an

orthogonal basis for
h

Ap
�L

i
2 R(n+p)⇥d. Let sketching

matrix S 2 Rm⇥n have a distribution such that with
constant probability

(I) kU>
1 S>SU1 � U>

1 U1k2  1/4,

and

(II) kU>
1 (S>S � I)(b�Ax⇤)k2 

p
✏OPT /2.

Let ex denote argminx2RdkS(Ax�b)k22+�kLxk22. Then
with probability at least 9/10,

kAex� bk22 + �kLexk22  (1 + ✏)OPT .

Define the statistical dimension for P-Splines as follows:

Definition 4.2 (Statistical Dimension for P-Splines).
For S-Spline in Eq. (1), the statistical dimension is
defined as sd�(A,L) =

P
i 1/(1 + �/�2

i) + d� p.

The following theorem shows that there is a sparse
subspace embedding matrix S 2 Rm⇥n (e.g., CountS-
ketch), with m � K(sd�(A,L)/✏+ sd�(A,L)2), that
satisfies Property (I) and (II) of Lemma 4.1, and hence
achieves an ✏�approximation solution to problem 1:

Theorem 4.3. (P-Spline regression) There is a con-
stant K > 0 such that for m � K(✏�1 sd�(A,L) +
sd�(A,L)2) and S 2 Rm⇥n a sparse embedding ma-
trix (e.g., Countsketch) with SA computable in
O(nnz(A)) time, Property (I) and (II) of Lemma 4.1
apply, and with constant probability the correspond-
ing ex = argminx2RdkS(Ax � b)k2 + �kLxk22 is an ✏-
approximate solution to minx2Rdkb�Axk22 + �kLxk22.

Note sd�(A,L) is upper bounded by d. The above the-
orem shows that the statistical dimension allows us to

Algorithm 2 P-Spline Tensor product regression

1: procedure PTRegression(A, b,K,L, ✏, �)
2: m K(✏�1 sd�(A, L) + sd�(A, L)2)
3: Choose S to be a m⇥n TensorSketch matrix
4: Compute S(A1 ⌦A2 ⌦ · · ·⌦Aq) and Sb
5: ex = argminx2RdkS(Ax� b)k22 + �kLxk22.
6: return ex
7: end procedure

design smaller sketch matrices whose size only depends
on O(poly(sd�(A,L)/✏)) instead of O(poly(d/✏)), with-
out sacrificing the approximation accuracy.

4.2 Tensor Sketching for Multi-Dimensional
P-Spline

Tensor products allow a natural extension of one-
dimensional P-spline smoothing to multi-dimensional
P-Spline. We focus on 2-dimensional P-Spline but our
results can be generalized to the multi-dimensional
setting. Assume that in addition to u we have a
second explanatory variable v. We have data triples
(ui, vj , b(i�1)·n2+j) for i = 1, . . . , n1 and j = 1, . . . , n2.
We seek a smooth surface f(u, v) which gives a good
approximation to the response b. Let A1, n⇥ d1, be a
B-spline basis along u, and A2, n⇥ d2, be a B-spline
basis along v. We form the tensor product basis as
A1 ⌦ A2. When n1 and n2 are large, we do not com-
pute A1 ⌦A2. We apply tensorsketch here to avoid
explicitly forming A1 ⌦A2 to speed up computation.

Let X = [xkl] be a d1 ⇥ d2 matrix of co-
e�cients. Then, for given X, the value fit
at (u, v) is f(u, v) =

P
k

P
l A2,k(v)A1,l(u)xkl

and so X may be chosen using least squares
by minimizing

P
i,j [b(i�1)·n2+j � f(ui, vi)]2 =

P
i

⇥
b(i�1)·n2+j �

P
k

P
l A2,k(vi)A1,l(ui)xkl

⇤2
. Using

Kronecker product, the above minimization can be writ-
ten in the form min kb�Axk2 , where A = A1 ⌦A2 2
Rn1n2⇥d1d2 and x = vec(X). Again the P-spline ap-
proach minimizes the penalized least-squares function
kb� (A1 ⌦A2)xk22 + �kLxk22. Consider the tensor p-
spline regression problem minx k(A1⌦A2⌦· · ·⌦Aq)x�
bk22 + �kLxk22, where L 2 Rp⇥n, Ai 2 Rni⇥di , i =
1, . . . , q and b 2 Rn. Let S 2 Rm⇥n be the matrix
form of TensorSketch of Section 2. Algorithm 2
summarizes the procedure for e�ciently solving multi-
dimensional P-Spline.

Let A = A1 ⌦A2 ⌦ · · ·⌦Aq. Replacing the matrix A
in Theorem 4.3 with A, we have the following corollary
for multi-dimensional P-Spline:

Corollary 4.4 (P-Spline tensor regression). Suppose
�  �2

1/✏. There is a constant K > 0 such that for
m � K(✏�1 sd�(A, L) + sd�(A, L)2) and S 2 Rm⇥n

a TensorSketch matrix with SA computable in

Sketching for Kronecker Product Regression and P-splines

O(nnz(A)) time, Property (I) and Property (II) of
Lemma 4.1 apply, and with constant probability the cor-
responding ex = argminx2RdkS(Ax�b)k2+�kLxk22 is an
✏-approximate solution to minx2Rdkb�Axk22+�kLxk22.

5 TENSOR PRODUCT ABSOLUTE

DEVIATION REGRESSION

We extend our previous results for the `2 norm (i.e.,
least squares regression) to general `p norms, with a
focus on p = 1 (i.e., absolute deviation regression).
Specifically we consider minx kAx � bkp, where A =
A1 ⌦A2 ⌦ · · ·⌦Aq. We will show in this section that
with probability at least 2/3, we can quickly find an x̃
for which kAx̃� bk1  (1 + ✏)minx kAx� bk1.

As in Clarkson and Woodru↵ (2013), for each i, in
O(nnz(Ai) log(di)) + O(r3i) time we can replace the
input matrix Ai 2 Rni⇥di with a new matrix with the
same column space of Ai and full column rank. We
therefore assume A has full rank in what follows.

Suppose S is the TensorSketch matrix defined in
Section 2. Let wi 2 N and assume wi | ni. Split Ai

into ni/wi matrices A(i)
1 , . . . , A(i)

ni/wi
, each wi ⇥ di, so

that A(i)
j is the submatrix of Ai indexed by the j-th

block of wi rows. Note A can be written as:

2

66664

A(1)
1 ⌦A(2)

1 ⌦ · · ·⌦A(q�1)
1 ⌦A(q)

1

A(1)
1 ⌦A(2)

1 ⌦ · · ·⌦A(q�1)
1 ⌦A(q)

2
...

A(1)
n1/w1

⌦A(2)
n2/w2

⌦ · · ·⌦A(q�1)
nq�1/wq�1

⌦A(q)
nq/wq

.

3

77775
.

For each A(1)
i1
⌦A(2)

i2
⌦ · · ·⌦A(q)

iq
, we can use the Ten-

sorSketch matrix Si1i2...iq 2 Rm⇥
Qq

i=1 wi , where we
set m � 100

Qq
i=1 d

2
i (2 + 3q)/✏2, such that with proba-

bility at least .99, kSi1i2...iqA
(1)
i1
⌦A(2)

i2
⌦· · ·⌦A(q)

iq
xk2 =

(1± ✏)kA(1)
i1
⌦A(2)

i2
⌦ · · ·⌦A(q)

iq
xk2 simultaneously for

all x 2 Rd as Si1i2...iq is an oblivious subspace embed-
ding (Lemma. B.3) . Now we use Algorithm 4 from
(Liang et al., 2014) to boost the success probability
by computing t = O(log(1/�)) independent TensorS-

ketch products S(j)
i1i2...iq

A(1)
i1
⌦A(2)

i2
⌦ · · ·⌦A(q)

iq
, j = [t],

each with only constant success probability, and then
running a cross validation procedure similar to that in
Algorithm 4 of Liang et al. (2014), to find one which
succeeds with probability at least 1� �:

Lemma 5.1 ((Liang et al., 2014)). For �, ✏ 2 (0, 1),
let t = O(log 1/�) and m � 100

Qq
i=1 d

2
i (2 + 3q)/✏2.

Running algorithm Algorithm 4 in (Liang et al., 2014)
with parameters t,m, we can obtain a tensorsketch
S 2 Rm⇥

Qq
i=1 wi such that with probability at least 1��,

kSA(1)
i1
⌦A(2)

i2
⌦ · · ·⌦A(q)

iq
xk2 = (1± ✏)kA(1)

i1
⌦A(2)

i2
⌦

· · ·⌦A(q)
iq

xk2 for all x 2 Rd.

After computing a tensorsketch Si1i2...iq 2
Rm⇥

Qq
i=1 wi using lemma 5.1 for each

row-block A(1)
i1
⌦ ... ⌦ A(q)

iq
, we compose

a single tensorsketch for A as S =
diag(S1,··· ,1, · · · , Si1,··· ,iq , · · · , S(n1/w1),··· ,(nq/wq)) 2
Rm

Qq
i=1 ni/wi⇥

Qq
i=1 ni , which is defined as:

2

6666664

S1,··· ,1
. . .

Si1,··· ,iq
. . .

S(n1/w1),··· ,(nq/wq)

3

7777775
,

where each block on the diagonal is from Lemma 5.1.
Note that A has in total

Qq
i=1(ni/wi) many blocks.

Using Lemma 5.1 with a union bound over all blocks
of A, we have the following theorem which shows S is
an oblivious subspace embedding for A in `2 norm:

Theorem 5.2 (`2 OSE for tensor matrices). Given
�, ✏ 2 (0, 1), let S 2 Rm

Qq
i=1 ni/wi⇥

Qq
i=1 ni denote

the matrix that has
Qq

i=1 ni/wi diagonal block matri-
ces where each diagonal block Si1i2...iq 2 Rm⇥

Qq
i=1 wi

is from Lemma 5.1. With probability at least 1 �Qq
i=1(ni/wi)�, kSAxk2 = (1± ✏)kAxk2, 8x 2 Rd.

It is known that for any matrix A 2 Rn⇥r, we can
compute a change of basis U 2 Rr⇥r such that AU
is an (↵,�, p) well-conditioned basis of A (see Defi-
nition 1.1), in time polynomial with respect to n, r
(Dasgupta et al., 2009). Specifically, Theorem 5 in
(Dasgupta et al., 2009) shows that we can compute a
change of basis U for which AU is a well-conditioned
basis of A in time O(nr5 log(n)) time. However we can-
not a↵ord to directly use the results from (Dasgupta
et al., 2009) to compute a well-conditioned basis for A,
which requires time at least ⌦(n). Instead we compute
a well-conditioned basis for A through a sketch SA
where S is the tensorsketch from Theorem 5.2.

Specifically we define the following procedure
Condition(A) for computing a well-conditioned basis
for A. Given A = A1 ⌦ · · ·⌦Aq 2 Rn⇥r, 1) Compute
SA; 2) Compute a d ⇥ d change of basis matrix U
so that SAU is an (↵,�, p)-well-conditioned basis of
the column space of SA; 3) Output AU/(d�p), where
�p ⌘

p
2t1/p�1/2 for p  2, and �p ⌘

p
2w1/2�1/p

for p � 2, where t =
Qq

i=1 mi and w =
Qq

i=1 wi. The
following Lemma 5.3 (the proof can be found in the Ap-
pendix) is the analogue of that in Clarkson et al. (2013)
proved for the Fast Johnson Lindenstauss Transform.

Lemma 5.3. For any p � 1. Condition(A) computes
AU/(d�p) which is an (↵,�

p
3d(tw)|1/p�1/2|, p)-well-

conditioned basis of A, with probability at least 1 �Qq
i=1(ni/wi)�.

Diao, Song, Sun, Woodru↵

Lemma 5.3 indicates that Condition(A) computes a
(↵,� · poly(max(d, log n)), p)-well-conditioned basis. A
well-conditioned basis can be used to solve `p regres-
sion problems, via sampling a subset of rows of the
well-conditioned basis AU with probabilities propor-
tional to the p-th power of the `p norm of the rows
(Woodru↵, 2014). However the first issue for sampling
is that we cannot a↵ord to compute AU as this requires
O(nnz(A)d) time. To fix this, we apply a Gaussian
sketch matrix G 2 Rd⇥log(n) with i.i.d normal ran-
dom variables (Drineas et al., 2011) on the right hand
side of AU . Note that AUG can be computed e�-
ciently by first compuing UG and then A(UG) in time
O(d2 log(n) + nnz(A) log(n)). The second issue is that
even with AUG, computing the `p norm of each row
of AUG takes O(n) time, but we want sublinear time.
This leads us to the following sampling technique.

The high level idea is that since AUG only has
O(log(n)) columns, we can a↵ord to sample columns of
AUG with probability proportional to the p-th power
of the `p norms of the columns, if we can e�ciently
estimate the `p norms of the columns (note that näıvely
computing the `p norm of a column also takes O(n)
time). Let us denote the first of column of UG as
e 2 Rlog(n). We focus on how to e�ciently estimate
the `p norm of the first column of AUG, which is Ae,
and all the left columns can be estimated in the same
way. We first reshape the vector Ae into a 2-d matrix

M = A1 ⌦ ...⌦Aq1E(Aq1+1 ⌦ ...⌦Aq)
>, (3)

where M 2 R(n1n2...nq1)⇥(nq1+1...nq), E is obtained
from reshaping e into a (d1d2...dq1) ⇥ (dq1+1..dq) ma-
trix and q1 2 [1, q] is chosen such that (n1n2...nq1) ⇡
(nq1+1...nq). Namely we reshape the column Ae into a
(nearly) square matrix. Focusing now on p = 1, note
that kAek1 =

Pnq1+1...nq

i=1 kM⇤,ik1. Hence to estimate
kAek1, we only need to estimate the `1 norm of the
columns of M .

Let us apply a sketch matrix R 2 RO(log(n))⇥
Qq1

i=1 ni ,
whose entries are sampled i.i.d. from the Cauchy distri-
bution, to the left hand side of M . For the i’th column
of M , let us define random variables zil = R>

l,⇤Mi,
for l 2 [O(log(n))], where Rl,⇤ is the l’th row of R.
Due to the 1-stability property of the Cauchy distri-

bution, we have that {zil}
O(logn)
l=1 are O(log n) inde-

pendent Cauchys scaled by kMik1. Applying a Cher-
no↵ bound to independent half-Cauchys (see Claims
1, 2 and Lemmas 1, 2 in Indyk (2006)), we have
0.5kMik1  medianl2[O(logn)]{|zij |}  1.5kMik1 with

probability at least 1 � 2e�cO(log(n)), with constant

c � 0.07. Denote the median of {|zil |}
O(log(n))
l=1 as �i.

By a union bound over all columns of M , we have that

Algorithm 3 `1 tensor product regression

1: procedure L1TRregression(A, b, ✏, �)
2: Construct a tensorsketch S 2

R(m
Qq

i=1
ni
wi

)⇥n.
3: Run Condition(A) using S to compute U/(d�p).
4: Generate a Gaussian matrix G 2 Rd⇥O(log(n))

and a Cauchy sketch matrix R 2 Rlog(n)⇥n.
5: for for each column e in UG do
6: Reshape Ae to M (Eq. 3).
7: Compute �i and �e =

P
i �i (Eq 4 and 5).

8: end for
9: for i 2 [

pQq
i=1 wi poly(d)] do

10: Sample a column (AUG)⇤,e with probability
proportional to �e. . . e 2 [O(log(n))]

11: Reshape (AUG)⇤,e to M , sample a column
M⇤,j with probability proportional to �j .

12: Sample an entry Mk,j with probability pro-
portional to |Mk,j |.

13: Convert (k, j) back to the corresponding row
index in A, denoted as ri.

14: end for
15: ex minx kD(A1⌦A2⌦· · ·⌦Aq)x�Dbk1, where

D is a diagonal matrix to select the r1, r2, ..., rN -th
rows of A and b with N =

pQq
i=1 wi poly(d).

16: return ex . ex 2 Rd1d2···dq

17: end procedure

with probability at least 1� n[q]\[q1]2e
�cO(log(n)):

�i = (1± 0.5)kMik1, 8i 2 [n[q]\[q1]], (4)

�e =

n[q]\[q1]X

i=1

�i = (1± 0.5)kAek1 (5)

where n[q]\[q1] =
Qq

i=q1+1 ni.

Note that since AUG only has O(log n) columns, we
can a↵ord to compute the `1 norm of all the columns
using the above procedure. Let us denote the `1 norms
of the columns of AUG by �1,�2, ...,�O(logn). We can
sample a column (AUG)⇤,i with probability propor-
tional to �i (Line 10 in Alg. 3). Once we sample a
column AUG⇤,i, we need to sample an entry j 2 [n]
with probability proportional to the absolute value of
the entry |(AUG)j,i|. As we cannot a↵ord to compute
|(AUG)j,i| for all j 2 [n], we use the reshaped 2-d ma-
trix M of (AUG)⇤,i. Note that sampling an entry in M
with probability proportional to the absolute values of
entries of M is equivalent to sampling an entry j 2 [n]
from (AUG)⇤,i with probability proportional to the ab-
solute value of the entries of (AUG)⇤,i. We first sample
a column M⇤,j from all the columns of M with proba-
bility proportional to �j for j 2 [

Qq
i=q1+1 ni]. We then

sample an entry Mk,j with probability proportional to
|Mk,j | for k 2 [

Qq1
i=1 ni]. Noting that k 2 [

Qq1
i=1 ni]

and j 2 [
Qq

i=q1+1 ni], the pair (k, j) uniquely deter-

Sketching for Kronecker Product Regression and P-splines

mines a corresponding row index r in A, for some
r 2 [

Qq
i=1 ni]. Hence we successfully sample a row

from AUG without ever computing the `p norm of the
rows. The above sampling procedure is summarized
in Line 10 to Line 13 in Alg. 3. We use the above
procedure to sample

pQq
i=1 wi poly(d) rows of A. Let

D be a diagonal matrix that selects the corresponding
sampled rows from A. We can now solve a smaller
ADL problem as minx kDA � Dbk1. Note that our
analysis focuses on the `1 norm. We can extend the
analysis to general `p norms by using a sketching ma-

trix R 2 RO(logn)⇥
Qq1

i=1 ni with entries sampled i.i.d.
from a p-stable distribution for p 2 [1, 2].

We now present our main theorem and defer the proofs
to the appendix:

Theorem 5.4. (Main result) Given ✏ 2 (0, 1), A 2
Rn⇥d and b 2 Rn, Alg. 3 computes bx such that
with probability at least 1/2, kAx̂ � bk1  (1 +
✏)minx2Rd kAx � bk1. For the special case when
q = 2, n1 = n2, the algorithm’s running time is
O(n1

3/2 poly(
Q2

i=1 di/✏)).

For the special case where q = 2 and n1 = n2, we
can see from theorem 5.4 our algorithm computes bx
in time O(n1

3/2 poly(d̂)), which is faster than O(n1
2)—

the time needed for forming A1 ⌦ A2. Note that we
can run Alg. 3 O(log(1/�)) times independently and
pick the best solution among these independent runs to
boost the success probability to be 1� �, for � 2 [0, 1).

6 NUMERICAL EXPERIMENTS

We generate matrices A1, A2 and b with all entries
sampled i.i.d from a normal distribution. The baseline
we compared to is directly solving regression with-
out sketching. We let T1 be the time for directly
solving the regression problem, and T2 be the time
of our algorithm. The time ratio is rt = T2/T1.
The relative residual percentage is defined by re =
100| k(A1⌦A2)ex�bk2�k(A1⌦A2)x

⇤�bkp |
k(A1⌦A2)x⇤�bkp

, where ex is the out-

put of our algorithms and x⇤ is the optimal solution.
Throughout the simulations, we use a moderate input
matrix size in order to accommodate the brute force
algorithm and to compare to the exact solution.

Example 6.1 (`2 Regression). We create a design
matrix with moderate size by fixing n1 = n2 = 300
and d1 = d2 = 15. Thus A 2 R90000⇥225. We do 10
rounds to compute the mean values of re and rt, which
is reported in Table 1 (Left).

From Table 1 (left), we can see that when the number
m of sampled rows in Algorithm 1 increases from 8000
to 12000, the mean values of re decrease while the mean
values of rt increase. In general we can see that we can
achieve around 1% relative error while being 5 times

Table 1: Examples 6.1 and 6.2: the values of re and rt
with respect to di↵erent sampling parameters m.

m re rt m re rt

`2

8000 1.79% 0.11
`1

8000 1.89% 0.06
12000 1.24% 0.18 12000 1.33% 0.11
16000 1.01% 0.25 16000 0.992% 0.18

Table 2: Example 6.3: the mean values of re and rt
with respect to di↵erent sampling parameters m and
regularization parameters �.

� m re rt
1 2000 4.43e-2% 0.52

4000 2.99e-2% 0.70
6000 7.92e-2% 0.91

0.1 2000 6.98e-2% 0.47
4000 4.07e-2% 0.72
6000 5.41e-2% 0.94

0.01 2000 3.78e-2% 0.46
4000 1.07e-1% 0.71
6000 2.97e-2% 0.95

faster than the direct method.

Example 6.2 (`1 Regression). We set n1 = n2 = 300,
d1 = d2 = 15. For minx kAx � bk1, we solve it by a
Linear Programming solver in Gurobi (Gurobi Opti-
mization, 2016). We tested di↵erent numbers of sam-
pled rows m (the number of rows in D in Alg. 3). The
results are summarized in Table 1 (Right).

As we can see from Table 1 (right), our method is
around 10 times faster than directly solving the prob-
lem, with relative error only around 1%.

Example 6.3 (P-Spline Regression). For P-spline re-
gression, L3 is fixed. We use 30 knots and cubic B-
splines. The data u = (ui) 2 Rn1 , v = (vj) 2 Rn2

and b 2 Rn1n2 are generated i.i.d from the normal
distribution. We compute the B-spline basis matrices
A1 2 Rn1⇥d1 and A2 2 Rn2⇥d2 separately, if there are
d1 and d2 basis functions for the B-spline. We set
n1 = n2, d1 = d2, with n1n2 = 104 and d1d2 = 529.
The original and sketched P-spline regression problem
are both solved by Regularization Tools (Hansen,
1994) via computing their GSVDs. We test di↵erent
choices of �. The results are shown in Table 2.

From Table 2, sampling only 20% of the rows can give
around 0.05% relative error, while the computation
time is half of the time of directly solving the p-spline.

ACKNOWLEDGEMENT

Wen Sun is supported in part by O�ce of Naval Re-
search contract N000141512365 and H.-A. Diao was sup-
ported in part by the Fundamental Research Funds for
the Central Universities under the grant 2412017FZ007.

Diao, Song, Sun, Woodru↵

References

H. Avron, H. Nguyen, and D. Woodru↵. Subspace
embeddings for the polynomial kernel. In Advances
in Neural Information Processing Systems(NIPS),
pages 2258–2266, 2014.

H. Avron, K. L. Clarkson, and D. P. Woodru↵. Sharper
bounds for regression and low-rank approximation
with regularization. CoRR, abs/1611.03225, 2016.

L. Carter and M. N. Wegman. Universal classes of
hash functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

D. Chen and R. J. Plemmons. Nonnegativity con-
straints in numerical analysis. In The birth of nu-
merical analysis, pages 109–139. World Sci. Publ.,
Hackensack, NJ, 2010.

K. Clarkson, P. Drineas, M. Magdon-Ismail, M. Ma-
honey, X. Meng, and D. P. Woodru↵. The fast
Cauchy transform and faster robust linear regression.
In SODA, 2013.

K. L. Clarkson. Subgradient and sampling algorithms
for `1 regression. In Proceedings of the sixteenth an-
nual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 257–266, 2005.

K. L. Clarkson and D. P. Woodru↵. Low rank ap-
proximation and regression in input sparsity time.
In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 81–90. https://arxiv.org/pdf/1207.6365,
2013.

A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and
M. W. Mahoney. Sampling algorithms and coresets
for `p regression. SIAM J. Comput., 38(5):2060–2078,
2009.

P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and
D. P. Woodru↵. Fast approximation of matrix coher-
ence and statistical leverage. CoRR, abs/1109.3843,
2011.

P. H. Eilers and B. D. Marx. Multidimensional density
smoothing with p-splines. In Proceedings of the 21st
international workshop on statistical modelling, 2006.

P. H. C. Eilers and B. D. Marx. Flexible smoothing
with B-splines and penalties. Statist. Sci., 11(2):
89–121, 1996.

P. H. C. Eilers, B. D. Marx, and M. Durbán. Twenty
years of P-splines. SORT, 39(2):149–186, 2015. ISSN
1696-2281.

D. W. Fausett and C. T. Fulton. Large least squares
problems involving Kronecker products. SIAM J.
Matrix Anal. Appl., 15(1):219–227, 1994.

G. H. Golub and C. F. Van Loan. Matrix computations.
Johns Hopkins Studies in the Mathematical Sciences.
Johns Hopkins University Press, Baltimore, MD,
2013.

I. Gurobi Optimization. Gurobi optimizer reference
manual, 2016. URL http://www.gurobi.com.

P. C. Hansen. Regularization tools: A matlab pack-
age for analysis and solution of discrete ill-posed
problems. Numerical Algorithms, 6(1):1–35, 1994.

P. Indyk. Stable distributions, pseudorandom genera-
tors, embeddings, and data stream computation. J.
ACM, 53(3):307–323, 2006.

R. Kannan and S. Vempala. Spectral algorithms. Foun-
dations and Trends in Theoretical Computer Science,
4(3-4):157–288, 2009.

Y. Liang, M.-F. F. Balcan, V. Kanchanapally, and
D. Woodru↵. Improved distributed principal com-
ponent analysis. In Advances in Neural Information
Processing Systems, pages 3113–3121, 2014.

M. W. Mahoney. Randomized algorithms for matri-
ces and data. Foundations and Trends in Machine
Learning, 3(2):123–224, 2011.

X. Meng and M. W. Mahoney. Low-distortion sub-
space embeddings in input-sparsity time and ap-
plications to robust linear regression. In Proceed-
ings of the forty-fifth annual ACM symposium on
Theory of computing, pages 91–100. ACM, https:
//arxiv.org/pdf/1210.3135, 2013.

J. Nelson and H. L. Nguyên. Osnap: Faster nu-
merical linear algebra algorithms via sparser sub-
space embeddings. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science
(FOCS), pages 117–126. IEEE, https://arxiv.org/
pdf/1211.1002, 2013.

S. Oh, S. Kwon and J. Yun. A method for struc-
tured linear total least norm on blind deconvolution
problem. Applied Mathematics and Computing, 19:
151–164, 2005.

R. Pagh. Compressed matrix multiplication. ACM
Trans. Comput. Theory, 5(3):9:1–9:17, 2013.

M. Patrascu and M. Thorup. The power of simple
tabulation hashing. J. ACM, 59(3):14, 2012.

N. Pham and R. Pagh. Fast and scalable polynomial
kernels via explicit feature maps. In Proceedings of
the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining(KDD), pages
239–247. ACM, 2013.

P. J. Rousseeuw and A. M. Leroy. Robust regression
and outlier detection, volume 589. John wiley & sons,
2005.

https://arxiv.org/pdf/1207.6365
http://www.gurobi.com
https://arxiv.org/pdf/1210.3135
https://arxiv.org/pdf/1210.3135
https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1211.1002

Sketching for Kronecker Product Regression and P-splines

C. Sohler and D. P. Woodru↵. Subspace embeddings
for the `1-norm with applications. In Proceedings of
the forty-third annual ACM symposium on Theory
of computing (STOC), pages 755–764. ACM, 2011.

Z. Song, D. P. Woodru↵, and P. Zhong. Low rank
approximation with entrywise `1-norm error. In Pro-
ceedings of the 49th Annual Symposium on the The-
ory of Computing (STOC). ACM, https://arxiv.
org/pdf/1611.00898, 2017a.

Z. Song, D. P. Woodru↵, and P. Zhong. Relative
error tensor low rank approximation. arXiv preprint
arXiv:1704.08246, 2017b.

C. Van Loan. Computational frameworks for the fast
Fourier transform, volume 10 of Frontiers in Applied
Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992.

C. F. Van Loan and N. Pitsianis. Approximation with
Kronecker products. In Linear algebra for large scale
and real-time applications (Leuven, 1992), volume
232 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages
293–314. Kluwer Acad. Publ., Dordrecht, 1993.

D. P. Woodru↵. Sketching as a tool for numerical lin-
ear algebra. Foundations and Trends in Theoretical
Computer Science, 10(1-2):1–157, 2014.

Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Oku-
tomi. Practical low-rank matrix approximation un-
der robust l 1-norm. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference
on, pages 1410–1417. IEEE, 2012.

https://arxiv.org/pdf/1611.00898
https://arxiv.org/pdf/1611.00898

	INTRODUCTION
	Our Contributions
	Notation

	BACKGROUND:TensorSketch
	TENSOR PRODUCT LEAST SQUARES REGRESSION
	 P-SPLINES
	Sketching for P-Spline
	Tensor Sketching for Multi-Dimensional P-Spline

	TENSOR PRODUCT ABSOLUTE DEVIATION REGRESSION
	NUMERICAL EXPERIMENTS
	Background: CountSketch and TensorSketch
	TensorSketch is an Oblivious Subspace Embedding (OSE)
	Missing Proofs
	Proofs for Tensor Product Least Square Regression
	Proofs for P-Splines
	Proofs for Tensor Product 1 Regression

