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A Evidence Lower Bound £;(q)
Using Jensen’s inequality, we bound the marginal
log likelihood of the observed sequence {yq}.

Hereafter we omit hyper-parameters ag, by, , H in
Inp(Y;ag, by, a, H) for simplicity.
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First we introduce a lemma (Paisley, [2010)).

Lemma 1. (Paisley, |2010) Let {X}5 | be a set of
positive random variables, then
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or equivalently if Xy = exp(Yy) where Yy, is a random
variable, then
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Proof. The function In(-) is concave. Using an auxil-
iary probability vector, (p1,...,px), where py > 0 and
Zle pr = 1, it follows from Jensens inequality that
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Taking derivatives with respect to {py}, we have

exp(Eln X
Y e exp(Eln X,)

Inserting this back, we obtain the desired bound. [

Using LemmalT] we could further bound the first term
to allow for a practical variational inference. This re-
sult is the same as the one obtained by following the
methodology in LPPA (Lloyd et al., [2016).
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Using Equation , we implicitly collapse the indica-
tor variables and obtain a lower bound of ELBO:
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And the expectation parts in Equation can be com-
puted as:
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G(z),x < 0 is calculated by a precomputed multi-
resolution look-up table. C'is a constant and ¥ €
RMXM gy 0 = fTﬁk(ti,x)nk(m,tj)dm. U, is deter-
mined by the kernel hyper-parameter in xj; and the
region T .

The expectation with regard to beta distribution is:

Elln(1 — 64.)] = 9 (Tar1) — (Tak,0 + Tak.1),
E[n(0%,)] = ¥ (Tar,0) — ¥(Tak,0 + Tak,1)-

After adding augmented Lagrangian penalty function,
the modified evidence lower bound is:
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A.1 Details of Derivatives

Based on the modified evidence lower bound in Equa-
tion 7 we could derive the parameter learning
method.

o 7g. We list the term related to 14 in Equation
(15) first.
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Obviously, there is a closed form update for 7y
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There is no closed form update for these variables,
we use coordinate ascent method.
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where we have
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o {3, ux}. Take uy for an example.
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Hyper-parameter part: We could update the
hyper-parameters in a similar way.

e Gaussian process hyper-parameters &g arasr, o
Similar to that in {Xg, g}

e Beta distribution prior a.
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Then we have a closed form update for a.
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A.2 Proof of Upper Bound

Theorem 1. FEach optimization problem is upper
bounded.

Loy (®,w;) < Inp(Y) + Y 2k

Proof. L£1(q) can be easily bounded by variational in-
ference framework

L1(g) <Inp(Y)

Let hix = [ Eq[f7(s)]ds — A, and then we have
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Combining these two parts finishes the proof. O

A.3 A Bias When Using Lemma

Although the bound in Lemmal[]is rather tight, it can
still add a bias which may lead to the over-shrinking
phenomenon in the model. We illustrate the bias
through the following simple model.

Y1 = X127 Yo = X227 X1 NN(23 1)7 Xo NN(234)7
where N (+) is the normal distribution. Using Lemma
we can arrive the following inequality:

Liest 2 By In (w¥i + (1 - w)¥3) (17)
>1In (w exp(EInY7) + (1 — w) exp(Eln Yg))

é ETighta w e [07 1]

We vary the value of w and plot L,;gx+ and Ljc¢+. The
result is given in Figure [l We can see that the for
Lrignt the optimal is w = 1 while for L., the optimal
is obviously a mixture of two components. This is be-
cause the logarithm function will punish values which
are closer to zero harder. Since Y5 has a large variance,
there will be a large proportion of samples near zero
which makes the corresponding E In Y5 smaller and less
favorable. This bias in the inequality may account for
the shrinkage in LPPA and BaNPPA.

B Test Likelihood

In LPPA, the allocation matrix © is treated as hyper-
parameters and all the parameters are {u, X, H, O}.
Let ® = {H,0}. In variational inference we use
the variational distribution ¢(f; ®) to approximate the
posterior p(f|Yirain; ®). The test likelihood can be
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Figure 1: Bias in the inference with lower bound. Left:
The histogram of Y7 and Y,. Right: Licps (Blue) ver-
sus Lright (Red) and the round marker indicates the
maximum of the curve.

lower-bounded as follows.
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In BaNPPA, all the parameters to be optimized are
{n, 7, %, H,ap,bp,a}. Let & = {H, ag,by,a}.
However, if we follow the same deduction as LPPA,
we will not arrive at a fair comparison since the in-
equality in Equation is different in principle for
LPPA and BaNPPA, and therefore, we draw L sam-
ples from variational distribution ¢(s, 64; ag, b, ) for
s, 04 and then follow the lower bound in Equation .
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C Additional Experiment Results

C.1 Details of the Data Sets

e Synthetic dataset;i. ~
A) In Ag(t) = 84D p—y Oarf (t;9), t € [0,60].
sq ~ Gamma(2, 3),
64 ~ Dirichlet(1.2,1,0.8,0.6),
o (t — 15+ 10k)?
F(tin) o exp (= ")
(t—55+ 10k)2)
10 ’
Each f(t; ) is either a Gaussian distribution or a

mixture of two Gaussian distributions normalized
by its integral.
B) In )\d(t) = S84 22:1 Gdkfk(t).
sq ~ Gamma(2, 3),
04 ~ Dirichlet(1.2,1,0.8,0.6,0.5,0.5),
= t — 15 + 10k)?
) o exp (- LTI H IR
(t—75+ 10k)2)
10 ’
Each f(t;4) is either a Gaussian distribution or
a mixture of two Gaussian distributions normal-
ized by its integral. We use the rejection sampling

method for the inhomogeneous Poisson process to
generate the time sequences.

+exp(—

—|—exp<—

e citation dataset. Two examples with different
citation patterns are given in Figure [3]

C.2 The Comparison of the Train Likelihood

The comparison of the train likelihood Ly is given
in Figure 2} We can notice that for LPPA, the train
likelihood keeps increasing when we increase K. This
is also a sign of over-fitting.

C.3 Computation Time

We plot the change of the training likelihood in one
trial in Figure [l For total computational complexity,
both BaNPPA-NC and BaNPPA take more computa-
tion time but are still comparable to LPPA. Two rea-
sons account for this fact. One is that there are more
parameters to be optimized in BaNPPA and BaNPPA-
NC and the other is that BaNPPA potentially has an
infinite number of problems to be solved. In Figure [4]
we can notice that the training likelihood for BaNPPA
and the training likelihood for BaNPPA-NC stabilize
rather quickly. This is because we use Equation
to calculate the likelihood and there are no divergence
terms in it.
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Figure 2: The comparison of the train likelihood for three algorithms. For LPPA, we change the number of
latent functions K. For BaNPPA /BaNPPA-NC, we fix K = 14 and optimize the hyper-parameter « using the
variational expectation-maximization. Error bars and shaded area represent the 95% confidence intervals.
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Figure 3: Citation data set. Top: A paper which
slowly gets citation and becomes popular many years
later. Bottom: A paper which quickly gets citation af-
ter being published. Smooth lines are the mean inten-
sity function inferred from LPPA and BaNPPA. Small
bars is the time of each citation. The x-axis indicates
the time in year after publication.

C.4 Synthetic Data Sets with a Relatively
Large K

We add three more synthetic data set with a larger K.

C) We sample 200 sequences from A4(t)
Sq 22=1 Oar f (t; 1), where sq4, 6,4 are drawn from
Dirichlet distribution and Gamma distribution.

sq ~ Gamma(2, 3),

6, ~ Dir(0.8,0.4,0.2,0.2,0.2,0.2).
We use f(t;95) = exp(—(t — 15 + 10k)2/10), k
1,...,6, t € [0,60] as basis intensity functions.

D) We 200 from  Ag(t)
Sd Zizl f(t; ), where s4, 64 are drawn from

sample sequences

Dirichlet distribution and Gamma distribution.

sq ~ Gamma(2, 3),
6, ~ Dir(0.8,0.4,0.4,0.2,0.2,0.2,0.1,0.1).

We use f(t;9) o< exp(—(t — 15 + 10k)2/10), k =
1,...,8,t €0, 80] as basis intensity functions.

We sample 200 sequences from \g(t)
Sd Ziil f(t; ), where sq4, 64 are drawn from

Dirichlet distribution and Gamma distribution.

sq ~ Gamma(2, 3),
0, ~ Dir(0.8,0.6,0.4,0.4,0.4,0.2,0.2,0.2,0.1,0.1).

We use f(t;9) o< exp(—(t — 15 + 10k)2/10), k =
1,...,10, t € [0,100] as basis intensity functions.

In the experiment, we fix the hyper-parameter ag and
by and the length-scale hyper-parameters in all £ aras
to be 4.3081 (Close to the half of the span of f(t;y)).
This means we only optimize the mixture weights and
the variational distribution ¢(m,S) for Gaussian pro-
cesses.

We vary the hyper-parameter o = [1.1,2, 3,4, 5]. The
result is given in Figure. We can see that BaNPPA-NC
tends to over-shrink the components even when av = 5
and gets a worse result.
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Figure 4: The comparison of the training likelihood versus time for four data sets (K=14) when optimizing the
hyper-parameter o. The result of one trial is shown.
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