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Abstract

Analyzing the underlying structure of mul-
tiple time-sequences provides insights into
the understanding of social networks and hu-
man activities. In this work, we present the
Bayesian nonparametric Poisson process al-
location (BaNPPA), a latent-function model
for time-sequences, which automatically in-
fers the number of latent functions. We
model the intensity of each sequence as an
infinite mixture of latent functions, each of
which is obtained using a function drawn
from a Gaussian process. We show that a
technical challenge for the inference of such
mixture models is the unidentifiability of the
weights of the latent functions. We propose
to cope with the issue by regulating the vol-
ume of each latent function within a varia-
tional inference algorithm. Our algorithm is
computationally efficient and scales well to
large data sets. We demonstrate the useful-
ness of our proposed model through experi-
ments on both synthetic and real-world data
sets.

1 Introduction

The Internet age has made it possible to collect a
huge amount of temporal data available in the form of
time-sequences. Each time-sequence consists of time-
stamps which record the arrival times of events, e.g.,
postings of tweets on Twitter or announcements of
life events on Facebook. In real-world problems aris-
ing in areas such as social science (Gao et al., 2015),
health care (Lian et al., 2015) and crime prevention
(Liu and Brown, 2003), time-sequence modeling is ex-
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tremely useful since it can help us in predicting future
events and understanding the reasons behind them.

When modeling a collection of time-sequences, a key
idea is to cluster the data into groups while allow-
ing the groups to remain linked to share statistical
strengths among them (Teh et al., 2005). Several mod-
els have been proposed on the basis of this simple idea,
e.g., the convolution process (Gunter et al., 2014), non-
negative matrix factorization (NMF) (Miller et al.,
2014), and latent Poisson process allocation (LPPA)
(Lloyd et al., 2016). These models employ latent fac-
tors to share statistical strengths and combine these
functions to model the correlations within and among
time-sequences.

Among these models, LPPA is a powerful approach
because it uses latent functions obtained from a Gaus-
sian process (GP). Such continuous latent functions
are able to flexibly model complex structures in the
data, and do not require a careful discretization such
as that used in NMF. However, a limitation of LPPA
is that the number of latent functions needs to be set
beforehand. If the chosen number is much larger than
the actual number of latent functions required to ex-
plain the data, LPPA will still use all the latent func-
tions. There is no mechanism in LPPA to prevent this
“spread” of allocation, which creates a problem when
our goal is to understand the reasons behind the events
observed in the data. For example, this might make
it difficult to explain the retweet patterns in Twitter
where a sudden avalanche of retweets is quite common
(Gao et al., 2015). For such cases, LPPA will sim-
ply use all its latent functions to explain these spiky
patterns.

In theory, the above problem can be solved by using
Bayesian nonparametric (BNP) methods (Hjort et al.,
2010) which can automatically determine the number
of relevant latent functions. However, as we show
in this paper, a direct application of existing BNP
methods to LPPA is challenging. An obvious issue
is that such an application typically requires the use
of Markov Chain Monte Carlo (MCMC) algorithms
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Figure 1: This figure illustrates that, even when a large
number of latent functions are provided, BaNPPA au-
tomatically selects only a few to explain the data,
while LPPA uses them all. The bottom plots show
the weights of the latent functions for the Microblog
dataset, where we see that BaNPPA assigns zero
weights to many latent functions, while LPPA assigns
every latent function to at least a few time-sequences.
The top plots show a score which measures the aver-
age responsibility of the latent functions. See Section
5 for details.

which are slow to converge for large data sets. A more
essential and technically intricate issue is that a naive
application of BNP methods to LPPA suffers from an
unidentifiability issue because the GP-modulated la-
tent functions are not normalized. Unidentifiability is
bad news when our focus is to understand the reasons
behind the events.

In this paper, we propose a new model to solve these
problems. Our model, which we call the Bayesian
nonparametric Poisson process allocation (BaNPPA)
model, enables automatic inference of the number of
latent functions while retaining the accuracy, inter-
pretability, and scalability of LPPA. Unlike hierarchi-
cal models (Teh et al., 2005) which promote sharing
through a common base measure, latent functions in
our model are shared across all time-sequences due to
the size-biased ordering which promotes sharing by pe-
nalizing latent functions that belong to higher indices
(Gopalan et al., 2014; Pitman et al., 2015). The size-
biased ordering restricts the use of all latent functions.
Figure 1 illustrates this on a real data set.

We propose a computationally efficient variational in-
ference algorithm for BaNPPA and solve the unidenti-
fiability issue by adding a constraint within the infer-
ence algorithm to regulate the volume of each latent
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Figure 2: Illustrations of intensity functions obtained
with BaNPPA on the Microblog dataset. Each plot
shows a time-sequence (with small bars at the bot-
tom) and the corresponding estimated intensity func-
tion (with solid lines). The top and bottom plots are
for tweets posted during active and inactive hours of
the day, respectively.

function. Overall, we present a scalable and accurate
Bayesian nonparameteric approach for time-sequence
modeling. Figure 2 shows an example of the results
obtained with BaNPPA on a real-world dataset.

2 Time-Sequence Modeling and Its
Challenges

Our goal is to develop a flexible model for time-
sequences. We consider time-sequence that contain
a set of time-stamps which record the occurrence of
events. We denote a time-sequence by yd = {tdn ∈
T }Nd

n=1, where tdn is the n’th time-stamp in the d’th
time-sequence, T ⊂ R+ is a specified time window,
and Nd is the number of events. The set of D time-
sequences is denoted by Y .

A common approach to model such time-sequences
is to use the temporal Cox process (Adams et al.,
2009; Lloyd et al., 2015) which uses a stochastic in-
tensity function λ(t) : R+ → R+ to model the ar-
rival times (Kingman, 1993). Given the intensity func-
tion λ(t) and a time window T ⊂ R+, the number of
events N(T ) is Poisson distributed with rate parame-
ter
∫
T λ(s)ds. Therefore, the likelihood of a sequence

yd drawn from the temporal Cox process is equal to:

P(yd|λd) = exp
(
−
∫
T
λd(s)ds

) Nd∏
n=1

λd(tdn). (1)

In LPPA, to model multiple time-sequences, the d’th
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time-sequence is assumed to be generated by a tempo-
ral Cox process with an intensity function λd(t) which
is modeled as follows:

λd(t) =

K∑
k=1

θdkf
2
k (t), θdk ≥ 0, (2)

where fk(t) is a function drawn from a GP prior, θdk
is its weight, and K is the number of latent functions.
To ensure the non-negativity of λd, fk are squared and
weights θdk are required to be non-negative.

LPPA is a powerful approach which also enables scal-
able inference. Due to the GP prior, LPPA is capable
of generating intensity functions with complex shapes.
Scalable inference is made possible by using variational
inference for sparse GPs (Titsias, 2009). The overall
computational complexity is O(KNM2), where N is
the total number of events in Y and M is the number
of pseudo inputs in sparse GPs.

One issue with LPPA is that K needs to be set before-
hand. This not only increases the computation cost,
but also creates a serious interpretability issue which is
undesirable when our goal is to understand the reasons
behind the data. Specifically, when the number of la-
tent functions is much larger than what it needs to be,
LPPA uses all of them, making it difficult to interpret
the results. We give empirical evidence in support of
this claim and correct this behavior by using a BNP
method.

Unfortunately, a direct application of the existing BNP
methods increases the computation cost and limits the
flexibility of the model. The problem lies in the strict
requirement that the latent functions needs to be a
normalized density function, i.e., a function with a vol-
ume1 equal to 1. For example, previous studies, such
as Kottas (2006); Ihler and Smyth (2007), model the
intensity functions with the following Dirichlet process
mixture model,

λd(t) = sd

∞∑
k=1

θdkf̃(t;ψk), (3)

where f̃ are normalized density functions with parame-
ters ψk and the weights θdk are non-negative and sum
to one

∑∞
k=1 θdk = 1 (sd > 0 is the rate parameter

that models the number of events N(T )). Since the
function f̃ needs to be normalized, the choices are lim-
ited to well-known density function which may not be
very flexible to model complex time-sequences, e.g.,
Kottas (2006) used the beta distribution and Ihler
and Smyth (2007) used the truncated Gaussian dis-
tribution. In addition, such models require MCMC

1The volume of a function f(t), t ∈ T is defined as the
integral

∫
T f(t)dt.

sampling algorithms which usually converge slowly on
large data sets. To the best of our knowledge, it is
still unclear how to build a nonparametric prior for
such normalized density functions while enabling scal-
able inference, e.g., via variational methods.

We propose a nonparameteric model, called the
Bayesian nonparameteric Poisson process allocation
(BaNPPA), which avoids the need to explicitly spec-
ify the number of latent functions while retaining the
flexibility and scalability of the LPPA model. Our
method combines the models shown in Equation (2)
and (3). We show that this direct combination has an
unidentifiability issue, and we fix the issue within a
variational-inference algorithm. Our approach there-
fore combines the strengths of the LPPA and BNP
models while keeping their best features.

3 Bayesian Nonparametric Poisson
Process Allocation (BaNPPA)

As discussed earlier, we need to set the number of la-
tent functions beforehand for LPPA. We fix this issue
by proposing a new model called BaNPPA that com-
bines the non-parametric model of Equation (3) with
the LPPA model shown in Equation (2). Specifically,
we let f̃ in Equation (3) to be equal to f2

k (t), as follows:

λd(t) = sd

∞∑
k=1

θdkf
2
k (t), where sd, θdk > 0,

∞∑
k=1

θdk = 1.

(4)
Similar to LPPA, we draw functions fk(t) from a
Gaussian process. We draw the weights θdk using a
stick-breaking process, and use a Gamma prior for the
scalar rate parameter sd. The final generative model
of BaNPPA is shown below:

1. Draw fk ∼ GP(mk(t), κk(t, t′)) for k = 1, . . . ,∞.

2. For each sequence d = 1, . . . , D,

• Draw θ′dk ∼ Beta(1, α) for k = 1, . . . ,∞.

• Calculate θdk = θ′dk
∏k−1

l=1 (1− θ′dl).
• Draw sd ∼ Gamma(a0, b0).

• Draw the points yd ∼ PP(sd
∑∞

k=1 θdkf
2
k (t)).

In the model, we denote a Poisson process with rate
parameter λ by PP(λ), a beta distribution with shape
parameters a and b by Beta(a, b) and a gamma distri-
bution with shape parameter a and rate parameter b
by Gamma(a, b).

The above model automatically determines the num-
ber of latent functions due to the size-biased order-
ing (Pitman et al., 2015) obtained by using the stick-
breaking process. Both the latent functions {f2

k (t)}
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and the weights {θdk} use the same set of indices
k = 1, . . . ,∞. This implies that when generating the
d’th time-sequence, the latent function at a lower in-
dex k is more likely to be assigned a larger weight θdk.
This encourages the model to use some latent functions
more than the others.

Unfortunately, the above model is unidentifiable. This
is because, unlike the nonparametric model of Equa-
tion (3), the latent functions {f2

k} are unnormalized,
and therefore many combinations of sd, {θdk} and {fk}
might give us the same model. For example, the fol-
lowing transformation gives the same intensity func-
tion for any εk > 0:

sdε̄d,

{
θdkεk
ε̄d

}
,

{
fk√
εk

}
, (5)

where ε̄d :=
∑∞

v=1 θdvεv. We can check this by substi-
tuting the triplet in Equation (4). Since the volume
of each fk is not regulated, we can move the “mass”
around between the components of the model.

This type of unidentifiability is problematic when our
goal is to understand the reasons behind the patterns
in the data. In our experiments, we observe that this
leads to a shrinkage of the latent functions which af-
fects interpretability as well as the quality of the es-
timated hyperparameters. In Section 4.2, we propose
a way to fix this issue by adding a constraint on the
volume of the latent function.

There is also another common identifiability problem
in such mixture models. Lloyd et al. (2016) claimed
that LPPA is unidentifiable and non-unique since there
may be multiple decompositions that are well sup-
ported by the data. In BaNPPA, due to the order-
ing constraints imposed by size-biased ordering, this
unidentifiability issue is reduced.

We also need to guarantee that the expected intensity
function at any time E[λd(t)] is finite. This can be
achieved by fixing the GP hyperparameters. For ex-
ample, assuming a constant mean function mk(t) ≡ g
with g being the constant, and an automatic relevance
determination (ARD) covariance functions κk(t, t′) =
γk exp(−(t− t′)2/(2a2

k)), we can fix the hyperparame-
ters g and γk, which ensures that the mean and vari-
ance of each latent function fk are finite. In that case,
the value of E[λd(t)] is bounded due to the following
relation:

E[λd(t)] = E

[
sd

∞∑
k=1

θdkf
2
k (t)

]
≤ E[sd] max

k
E[f2

k (t)]

=
a0

b0
max

k

(
E2[fk(t)] + Var[fk(t)]

)
. (6)

4 Inference

In this section, we first describe the general variational
inference framework and provide a solution to the iden-
tifiability issue in Section 4.2. A derivation of the evi-
dence lower bound (ELBO) and its derivatives are pro-
vided in the Appendix A.

4.1 Variational Inference

Denote s
∆
= {sd}, Θ

∆
= {θdk} and f

∆
= {fk}. Let H

be the set of hyperparameters of the GP covariance
function. The joint distribution of BaNPPA can be
expressed as

p(Y,Θ, s, f) =

D∏
d=1

p(yd|f, θd, sd)

D∏
d=1

∞∏
k=1

p(θdk;α)

×
D∏

d=1

p(sd; a0, b0)

∞∏
k=1

p(fk; g,H).

We approximate the posterior distribution over Θ and
f , while computing a point estimate of s. We fol-
low Blei et al. (2006) to truncate the number of latent
functions to K which we select to be larger than the
expected number of latent functions used by the data.
For the GP part, we use the same set of pseudo inputs
{tm}Mm=1, M < N for each fk to reduce the number
of variational parameters (Lloyd et al., 2016). Denote
fk,M to be the vector [fk(t1), . . . , fk(tM )]>, κk,MM to
be a covariance matrix whose i, j’th entry is equal to
κk(ti, tj), and gM ∈ RM to be a vector all of whose
elements are equal to g. We choose the following forms
for the variational distributions of θdk and fk,M :

q(θdk) = I(k < K)Gamma(τdk,0, τdk,1)

+ I(k = K)δ(1) + I(k > K)p(θdk),

q(fk,M ) = I(k ≤ K)N (µk,Σk)

+ I(k > K)N (gM , κk,MM ),

where I(·) is the indicator function, δ(·) is a dirac-delta
function, and µk and Σk are the mean and covari-
ance of a Gaussian distribution. Following Lian et al.
(2015), we use the re-parametrization Σk = LkL

T
k by

Cholesky decomposition.

Using the approximation of Titsias (2009) and a mean-
field assumption over Θ, we can use the following final
variational distribution:

q(f ,Θ)
∆
=

∞∏
k=1

p(fk,N |fk,M )q(fk,M )

D∏
d=1

∞∏
k=1

q(θdk).

Denoting τ
∆
= {(τdk,0, τdk,1)} and L

∆
= {Lk},

we get the following set of variational parame-
ters and hyperparameters to be optimized: Φ =
{τ ,µ,L,H, a0, b0, α, s}.
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4.2 An Alleviation Solution to the
Identifiability Problem

So far, the framework seems very traditional. How-
ever, as we mentioned in Section 3, this model has an
additional identifiability problem which might make
interpretability difficult. In this section, we propose a
solution to alleviate this issue.

A straightforward option is to directly impose a
constraint on the volume of the latent functions∫
T f

2
k (t)dt, where fk is drawn from the posterior pro-

cess p(fk|Y ). However this is intractable. In order to
obtain a tractable constraint, we could instead impose
a constraint on the following expectation:∫∫

T
p(fk|Y )f2

k (s)dsdfk = A, k = 1, . . . ,K, (7)

where A is a positive constant. Within the variational
inference framework, we use the variational distribu-
tion q(fk) to approximate the posterior p(fk|Y ), and
add the following constraint to each latent function:∫∫

T
q(fk)f2

k (s)dsdfk = A, k = 1, . . . ,K. (8)

The above constraint can be easily computed unlike
the volume constraint on the function fk. In our ex-
periments, we set A = N/D where N is the total num-
ber of events in the data and D is the number of time-
sequences in Y .

4.3 Optimization with Equality Constraints

Given the equality constraints in Equation (8), the op-
timization process can be formulated as follows, where
we denote the ELBO as L1(Φ):

max
Φ
L1(Φ) s.t. hk(Φ) = 0, k = 1, . . . ,K, (9)

hk(Φ) =

∫
T
Eq[f2

k (s)]ds−A.

Problem (9) is an optimization problem with equal-
ity constraints and we use the augmented Lagrangian
method (Bertsekas, 2014) to transform Problem (9)
into a series of related optimization problems indexed
by i:

max
Φ
L1(Φ)−

K∑
k=1

(
wikhk(Φ) +

1

2
vikh

2
k(Φ)

)
, (10)

where {wik} is a bounded sequence and {vik} is a
non-negative monotonically-increasing sequence with
respect to i. We denote this objective Lvi

(Φ,wi).
For each optimization problem in Equation (10),
Lvi

(Φ,wi) is still upper bounded (a proof is given in

Table 1: Data sets used for the experiments. Here, D
is the number of time-sequences, Ntrain and Ntest are
the total number of events in the training and test set
respectively, and T is the time window.

Data set D Ntrain Ntest T

Synthetic A 200 6,304 6,010 [0,60]
Synthetic B 250 8,074 8,110 [0,80]
Microblog 500 44,628 44,352 [3,15]
Citation 600 106,113 106,340 [0,20]

Appendix A). Thus if we use coordinate ascent with
respect to Φ, the algorithm is guaranteed to arrive at
a local maximum.

To set vik and wik, we follow the suggestions from
Bertsekas (2014), and set vi+1,k = 4vik and wi+1,k =
wik + vikhk(Φi). We initialize v1k = 4, w1k = 1,∀k.

4.4 Computational Complexity

Optimization problems shown in Equation (10) are
not significantly more expensive than the original op-
timization problem. Although in Equation (10), we
have to optimize additional parameters, the bottleneck
is still the matrix-matrix multiplication in the evalua-
tion of q(fk,N ). For one iteration of the training pro-
cedure, the computational complexity is O(KNM2) ,
which is the same as LPPA.

One might expect that the total computational com-
plexity of our algorithm is worse than LPPA because
we have to solve a sequence of problems. We find that
“warm starts” are very effective in improving the con-
vergence of our algorithm (Bertsekas, 2014). Namely,
we reuse the final value Φi−1 of the previous optimiza-
tion as the starting value for the i’th round and ter-
minate the training process when the relative change
in the likelihood is small. In our experiments, we ob-
served that the convergence of BaNPPA is rather fast
and comparable to LPPA.

5 Experiments

In this section, we evaluate our proposed BaNPPA
model and compare it with LPPA. To measure the
effect of adding the constraint shown in Equation (8),
we also compare to a variant of BaNPPA which does
not contain any constraints. We call it BaNPPA
with No Constraints, i.e., BaNPPA-NC. This gives us
three methods to compare: LPPA, BaNPPA-NC, and
BaNPPA. The code to reproduce our experiments can
be found at github.com/Dinghy/BaNPPA.

We test the three methods on two synthetic and two

github.com/Dinghy/BaNPPA
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Figure 3: Latent functions used to create synthetic
data set A and B are shown in the top and bottom
plots, respectively. In both the data sets, there are
two latent functions with two modes while the rest
have only one mode.

real-world data sets. Table 1 summarizes the overall
statistics and we give detailed information below.

1) Synthetic A. We sample 200 time-sequences from
a mixture of 4 latent functions f̄(t) shown in the
top plot of Figure 3. The intensity function is de-
fined as follows: λd(t) = sd

∑4
k=1 θdkf̄(t), where sd ∼

Gamma(2, 3) and θd ∼ Dir(1.2, 1, 0.8, 0.6). Here Dir(·)
denotes the Dirichlet distribution. More details on the
data generation process can be found in Appendix C.

2) Synthetic B. This data set is similar to Synthetic
A but there are 6 latent functions shown in the bot-
tom plot of Figure 3. In Synthetic B data set, sd ∼
Gamma(2, 3) and θd ∼ Dir(1.2, 1, 0.8, 0.6, 0.5, 0.5).

3) Microblog data set. This data set contains 500
tweets and all retweets of each tweet from 7 tweet-
posters on Sina micro-blog platform obtained through
the official API2. Two examples are shown in Figure
2. Through time-sequence modeling, we can try to
understand the retweet patterns. For example, one
reason could be that the tweets posted at an inactive
hour (late at night) will regain the attention from the
followers several hours later next morning (Ding and
Wu, 2015; Gao et al., 2015). BaNPPA could help us
understand such reasons as illustrated in Figure 2.

4) Citation data set. This data set contains the
Microsoft academic graph until February 5th, 2016 ob-
tained from the KDDcup 2016 3. The original data set
contains 126,909,021 papers and we use a subset of it.
Time-sequence modeling can be used to understand
the patterns of citations, e.g., some papers quickly get
citations while some others get it slowly. Two exam-

2http://open.weibo.com/wiki/Oauth/en
3https://kddcup2016.azurewebsites.net/

ples of this data set are given in the Appendix C.1.

Evaluation Metrics. We evaluate the methods using
the two metrics described below.

To measure the predictive performance, we follow
Lloyd et al. (2015) and use the following approxi-
mation to the test likelihood which we denote by
Ltest(Ytest,Θ, s) =

D∑
d=1

Nd
test∑

n=1

ln
(
sd

K∑
k=1

θdk exp
(
Eq(ln f2

k (tdn))
))

−
D∑

d=1

sd

K∑
k=1

θdk

∫
T
Eq[f2

k (s)]ds. (11)

This is a lower bound to the test likelihood
ln p(Ytest|Ytrain) and a higher value means a better ap-
proximation of the test likelihood. For LPPA, the allo-
cation parameters θdk are the point-estimated weights
and the rate parameter sd = 1. For BaNPPA and
BaNPPA-NC, we report averaged value over q(θd).
We can compute a similar approximation Ltrain on the
training data. Detailed derivations and explanations
are given in Appendix B.

To measure the responsibility of each latent function
in the model, we first define the normalized allocation
matrix Θ̂ ∈ RD×K

+ whose (d, k)’th entry is equal to,

θ̂dk =
Eq[θdk

∫
T f

2
k (s)ds]∑K

m=1 Eq[θdm
∫
T f

2
m(s)ds]

. (12)

The normalization in the above matrix tries to remove
the unidentifiability introduced due to the uncon-
strained volume of the latent functions in LPPA and
BaNPPA-NC. Based on Θ̂, we can compute a normal-
ized score that can measure the responsibility of each
latent function. We define the normalized expected re-
sponsibility (NER) υ̂k =

∑D
d=1 θ̂dk/D, k = 1, . . . ,K.

A larger NER indicates that the corresponding latent
function is more often occupied by the model. Another
measure is the unnormalized expected responsibility
(UNER) υk =

∑D
d=1 Eq[θdk]/D, k = 1, . . . ,K, which

omits the contribution of the volume of f2
k .

Experimental settings. Our goal is to measure
the improvements obtained with the automatic infer-
ence of K using BaNPPA. To do so, we fix K to 14
for BaNPPA and BaNPPA-NC, and compare them
to LPPA with a range of values for K. We expect
BaNPPA to give a comparable performance to the best
setting of K in LPPA.

Choice of K also affects hyperparameter estimation.
To measure it, we conduct experiments for two differ-
ent methods of setting the hyper-parameter α. In the
first method, we learn α within a variational frame-
work (initialize α = 1, see details in Appendix A). In

http://open.weibo.com/wiki/Oauth/en
https://kddcup2016.azurewebsites.net/
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Figure 4: BaNPPA gives the best test-likelihoods (higher is better) and performs comparably to the best setting
of K for LPPA. For BaNPPA/BaNPPA-NC, we use a fixed value of K = 14. Error bars and shaded areas show
the 95% confidence intervals.
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Figure 5: For a variety of hyperparameter values, BaNPPA gives the best performance which is also comparable
to the best performance of LPPA and much better than LPPA with K = 14. Performance of BaNPPA-NC
degrades with increasing α while performance of BaNPPA is relatively stable.

the second method, we do not learn α rather fix it
to one of the value in the set {1.1, 2, 4, 6, 8}. In both
methods, all experiments were repeated five times. We
use a random initialization for the allocation matrix Θ
and τ . For sparse GPs, we use 18, 24, 30 and 30
pseudo inputs for the four data sets, respectively. We
follow the common practice and add a jitter term εI
to the covariance matrix κk,MM to avoid numerical in-
stability (Bauer et al., 2016). For hyper-parameters a0

and b0 in the gamma distribution, we use the counts
of events {Nd

train}Dd=1 to initialize (a0, b0).

To maintain the positivity constraints on L and τ , we
use the limited-memory projected quasi-Newton algo-
rithm (Schmidt et al., 2009). For BaNPPA, we stop
the training process when the relative change between
Lvi

(Φi,wi) and Lvi+1
(Φi+1,wi+1) is less than 10−3.

For other methods, we terminate the training process
when the relative change in ELBO is less than 10−3.

Performance Evaluation. Figure 4 shows a com-
parison of the test-likelihoods when optimizing α,
while Figure 5 shows the same when α is fixed. In
Figure 4, the test likelihood of LPPA drops when in-

creasing the number of latent functions K. As desired,
BaNPPA achieves comparable results to the best set-
ting of K in LPPA. BaNPPA-NC also performs well
but slightly worse than BaNPPA. In Figure 5, when
increasing α, the performance of BaNPPA stays rel-
atively stable and comparable to the best setting of
LPPA. The performance of BaNPPA-NC however de-
grades with increasing α for all data sets. This shows
that the volume constraint in BaNPPA improves the
performance. Other performance measures such as the
training likelihood and computation time as well as the
value of optimized α are given in Appendix C.

For the Synthetic A data set, we further plot the NER
scores (averaged over the five trials for K = 14) in
the top plot in Figure 6. We see that, under LPPA, all
latent functions have nonzero NER, while for BaNPPA
only a small number of latent functions have high NER
score. In the bottom plot in Figure 6, we show the
top four latent functions sorted according to the NER
scores. For these plots, we used the best runs shown
in Figure 4. We see that LPPA does not recover the
true latent functions, while BaNPPA gives very similar
results to the truth.
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Figure 6: This figure shows that BaNPPA can reliably
identify true latent functions for the Synthetic A data
set. The top plot shows the NER scores for BaNPPA
and LPPA for K = 14 where we see that, under LPPA,
all latent functions have nonzero NER, while, under
BaNPPA, only a handful of them have significant NER
scores. The bottom plot shows the top four latent
functions (sorted according to NER) obtained for both
the methods along with the true latent functions. We
see that BaNPPA recovers functions very similar to
the true functions.

To visualize the responsibilities further, we plot the
NER score and the normalized allocation matrix Θ̂ for
the Mircoblog dataset in Figure 1. We show results for
LPPA and BaNPPA. We choose runs that obtained the
best test-likelihood in Figure 4, and visualize 100 time-
sequences sampled randomly. We see that as expected
LPPA uses all latent functions to explain the data,
while BaNPPA assigns almost zero weights to latent
functions with higher indices. This further confirms
that, even when a large number of latent functions
are given, BaNPPA automatically selects only a few
to explain the data, while LPPA might overfit.

Finally, we further explore the impact of the volume
constraint of Equation (8) in BaNPPA. We compare
BaNPPA and BaNPPA-NC on the Synthetic B data
set in Figure 7. We use results for K = 14 and α = 8.
In the top plot, we see that BaNPPA and BaNPPA-
NC both give similar UNER scores, yet as shown in the
bottom plot, BaNPPA-NC does not recover the true
latent functions. This result can be explained by look-
ing at the expected volume Eq[

∫
T f

2
k (t)dt] shown in the

middle plot. For BaNPPA, the volumes of all latent
functions are equal, while, for BaNPPA-NC, the latent
functions with higher UNER scores are assigned higher
volume which eventually also get higher weights. This
imbalance in the weights for some functions makes the
results of BaNPPA-NC and BaNPPA different from
each other. This result clearly shows that the volume
constraint in BaNPPA plays an important role to re-
cover the true latent functions which is important for
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Figure 7: This figures shows that the volume con-
straint in BaNPPA is crucial to discover the true la-
tent functions. Both BaNPPA and BaNPPA-NC ob-
tain similar UNER score (top plot), yet the top latent
functions obtained with the two methods are differ-
ent (bottom plot). The imbalance in the volumes for
BaNPPA-NC (middle plot) is the reason behind this
difference. See the text for details.

interpretability.

Overall, BaNPPA-NC performs similarly to BaNPPA
when the latent structure is simple but becomes less
favorable when the structure gets complicated. We
give three additional synthetic data experiments in
Appendix C where the true K is large.

6 Conclusions and Future Work

We proposed a model for time-sequence data, called
BaNPPA, to automatically infer the number of latent
functions. We combined BNP methods with the exist-
ing LPPA method, and showed that this combination
might result in undentifiability. We solve this problem
by imposing a volume constraint within variational in-
ference. In the future, we will consider further investi-
gating the reasons behind the identifiability problem.
We will also investigate ways to combine the volume
constraint and the Gaussian process prior.
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