
Slow and Stale Gradients Can Win the Race: Error-Runtime

Trade-offs in Distributed SGD

Sanghamitra Dutta⇤ Gauri Joshi⇤ Soumyadip Ghosh⇤⇤ Parijat Dube⇤⇤ Priya Nagpurkar⇤⇤
⇤ Carnegie Mellon University ⇤⇤ IBM TJ Watson Research Center

Abstract

Distributed Stochastic Gradient Descent
(SGD) when run in a synchronous manner,
suffers from delays in waiting for the slow-
est learners (stragglers). Asynchronous meth-
ods can alleviate stragglers, but cause gradi-
ent staleness that can adversely affect con-
vergence. In this work we present the first
theoretical characterization of the speed-up of-
fered by asynchronous methods by analyzing
the trade-off between the error in the trained
model and the actual training runtime (wall-
clock time). The novelty in our work is that
our runtime analysis considers random strag-
gler delays, which helps us design and com-
pare distributed SGD algorithms that strike
a balance between stragglers and staleness.
We also present a new convergence analysis of
asynchronous SGD variants without bounded
or exponential delay assumptions, and a novel
learning rate schedule to compensate for gra-
dient staleness.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the backbone
of most state-of-the-art machine learning algorithms.
Thus, improving the stability and convergence rate of
SGD algorithms is critical for making machine learning
algorithms fast and efficient.

Traditionally SGD is run serially at a single node. How-
ever, for massive datasets, running SGD serially at a
single server can be prohibitively slow. A solution that
has proved successful in recent years is to parallelize
the training across many learners (processing units).
This method was first used at a large-scale in Google’s

Proceedings of the 21st International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,

Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

 E
rr

or
 in

 C
on

ve
rg

en
ce

Wall clock time

Async SGD
K-Batch Async
K-Async SGD

K=4

K=3

K=2
K=2

Fully Sync
Batch Sync

K=3
K=4

Figure 1: SGD variants span the error-runtime trade-
off between fully Sync-SGD and fully Async-SGD. K is
the number of learners or mini-batches the PS waits for
before updating the model parameters, as we elaborate
in Section 2.

DistBelief [Dean et al., 2012] which used a central pa-
rameter server (PS) to aggregate gradients computed by
learner nodes. While parallelism dramatically speeds
up training, distributed machine learning frameworks
face several challenges such as:

Straggling Learners. In synchronous SGD, the PS
waits for all learners to push gradients before it updates
the model parameters. Random delays in computation
(referred to as straggling) are common in today’s dis-
tributed systems [Dean and Barroso, 2013]. Waiting for
slow and straggling learners can diminish the speed-up
offered by parallelizing the training.

Gradient Staleness. To alleviate the problem of
stragglers, SGD can be run in an asynchronous man-
ner, where the central parameters are updated without
waiting for all learners. However, learners may return
stale gradients that were evaluated at an older version
of the model, and this can make the algorithm unstable.

The key contributions of this work are:

1. Most SGD algorithms optimize the trade-off be-
tween training error, and the number of iterations
or epochs. However, the wallclock time per iteration
is a random variable that depends on the gradient
aggregation algorithm. We present the first rigor-
ous analysis of the trade-off between error and the
actual runtime (instead of iterations). This analysis
is then used to compare different SGD variants such
as K-sync SGD, K-async SGD and K-batch-async

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

SGD, as illustrated in Figure 1.

2. We present a new convergence analysis of asyn-
chronous SGD and its variants, where we relax sev-
eral commonly made assumptions such as bounded
delays and gradients, exponential service times, and
independence of the staleness process.

3. We propose a novel learning rate schedule to com-
pensate for gradient staleness, and improve the sta-
bility and convergence of asynchronous SGD, while
preserving its fast runtime.

1.1 RELATED WORKS

Single Node SGD: Analysis of gradient descent dates
back to classical works [Boyd and Vandenberghe, 2004]
in the optimization community. The problem of interest
is the minimization of empirical risk of the form:

min

w

(

F (w)

def
=

1

N

N

X

n=1

f(w, ⇠
n

)

)

. (1)

Here, ⇠
n

denotes the n�th data point and its label
where n = 1, 2, . . . , N , and f(w, ⇠

n

) denotes the com-
posite loss function. Gradient descent is a way to
iteratively minimize this objective function by updat-
ing the parameter w in the opposite direction of the
gradient of F (w) at every iteration, as given by:

w
j+1

= w
j

� ⌘rF (w
j

) = w
j

� ⌘

N

N

X

n=1

rf(w
j

, ⇠
n

).

The computation of
P

N

n=1

rf(w
j

, ⇠
n

) over the entire
dataset is expensive. Thus, stochastic gradient de-
scent [Robbins and Monro, 1951] with mini-batching is
generally used in practice, where the gradient is evalu-
ated over small, randomly chosen subsets of the data.
Smaller mini-batches result in higher variance of the
gradients, which affects convergence and error floor
[Dekel et al., 2012, Li et al., 2014, Bottou et al., 2016].
Algorithms such as AdaGrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2015] gradually reduce learning
rate to achieve a lower error floor. Another class of
algorithms includes stochastic variation reduction tech-
niques that include SVRG [Johnson and Zhang, 2013],
SAGA [Roux et al., 2012] and their variants listed
out in [Nguyen et al., 2017]. For a detailed survey of
different SGD variants, refer to [Ruder, 2016].

Synchronous SGD and Stragglers: To process
large datasets, SGD is parallelized across multiple learn-
ers with a central PS. Each learner processes one mini-
batch, and the PS aggregates all the gradients. The
convergence of synchronous SGD is same as mini-batch
SGD, with a P -fold larger mini-batch, where P is the
number of learners. However, the time per iteration

grows with the number of learners, because some strag-
gling learners that slow down randomly [Dean and
Barroso, 2013]. Thus, it is important to juxtapose
the error reduction per iteration with the runtime per
iteration to understand the true convergence speed of
distributed SGD.

To deal with stragglers and speed up machine learning,
system designers have proposed several straggler miti-
gation techniques such as [Harlap et al., 2016] that try
to detect and avoid stragglers. An alternate direction
of work is to use redundancy techniques as proposed in
[Wang et al., 2015, Joshi et al., 2014, Lee et al., 2017,
Tandon et al., 2017, Dutta et al., 2016, Yang et al.,
2017, Ye and Abbe, 2018, Karakus et al., 2017] to deal
with the stragglers.

Asynchronous SGD and Staleness: A complemen-
tary approach to deal with the issue of straggling is
to use asynchronous SGD. In asynchronous SGD, any
learner can evaluate the gradient and update the cen-
tral PS without waiting for the other learners. Asyn-
chronous variants of existing SGD algorithms have also
been proposed and implemented in systems [Dean et al.,
2012, Gupta et al., 2016, Cipar et al., 2013].

In general, analyzing the convergence of asynchronous
SGD with the number of iterations is difficult in itself
because of the randomness of gradient staleness. There
are only a few pioneering works such as [Tsitsiklis et al.,
1986, Lian et al., 2015, Mitliagkas et al., 2016, Recht
et al., 2011, Mania et al., 2017, Chaturapruek et al.,
2015, Zhang et al., 2016] in this direction. In [Tsit-
siklis et al., 1986], a fully decentralized analysis was
proposed that considers no central PS. In [Recht et al.,
2011], a new asynchronous algorithm called Hogwild
was proposed and analyzed under bounded gradient as-
sumption that has been followed upon by several works
such as [Lian et al., 2015]. In Hogwild, every learner
only updates a part of the central parameter vector
w and is thus essentially different in spirit from con-
ventional asynchronous SGD [Lian et al., 2015] where
every learner operates on the entire w.

1.2 OUR CONTRIBUTIONS

Existing machine learning algorithms mostly try to
optimize the trade-off of error with the number of itera-
tions, epochs or “work complexity” [Bottou et al., 2016].
Time to complete a task has traditionally been calcu-
lated in terms of work complexity measures [Sedgewick
and Wayne, 2011], where the time taken to complete a
task is a deterministic function of the size of the task
(number of operations). However, due to straggling
and synchronization bottle-necks in the system, the
same task can often take different time to compute
across different learners or iterations. To the best of

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

our knowledge, the theoretical trade-off of error with
runtime, modelling runtimes as random variables has
not been studied. We bring statistical perspective to
the traditional work complexity analysis that incor-
porates the randomness introduced due to straggling.
In this paper, we provide a systematic approach to
analyze the error with runtime for both synchronous
and asynchronous SGD, and some variants like K-sync,
K-batch-sync, K-async and K-batch-async SGD.

We also propose a new error convergence analysis for
Async and K-async SGD that holds for strongly convex
objectives and can also be extended to non-convex
formulations. In this analysis we relax the bounded
delay assumption in [Lian et al., 2015] and the bounded
gradient assumption in [Recht et al., 2011]. We also
remove the assumption of exponential computation
time and the staleness process being independent of
the parameter values [Mitliagkas et al., 2016] as we
will elaborate in Section 3.2. Interestingly, our analysis
also brings out the regimes where asynchrony can be
better or worse than synchrony in terms of speed of
convergence. Further, we propose a new learning rate
schedule to compensate for staleness, and stabilize
asynchronous SGD.

The rest of the paper is organized as follows. Section 2
describes our problem formulation introducing the sys-
tem model and assumptions. Section 3 provides the
main results of the paper – analytical characterization
of runtime, new convergence analysis for Async and
K-async SGD and the proposed learning rate schedule
to compensate for staleness. The analysis of runtime
is elaborated further in Section 4. Proofs and detailed
discussions are presented in the Supplement.

2 PROBLEM FORMULATION

Our objective is to minimize the risk function of the
parameter vector w as mentioned in (1) given N train-
ing samples. Let S denote the total set of N training
samples, i.e., a collection of some data points with their
corresponding labels or values. We use the notation ⇠
to denote a random seed 2 S which consists of either
a single data and its label or a single mini-batch (m
samples) of data and their labels.

2.1 SYSTEM MODEL

We assume that there is a central parameter server
(PS) with P parallel learners as shown in Figure 2.
The learners fetch the current parameter vector w

j

from the PS as and when instructed in the algorithm.
Then they compute gradients using one mini-batch
and push their gradients back to the PS as and when
instructed in the algorithm. At each iteration, the

Learner 1

Parameter Server
w’ = w – η�f(w)

Learner 2 Learner 3

w �f(w)

w0
= w � ⌘rF (w)

rF (w)

Figure 2: Parameter Server Model

PS aggregates the gradients computed by the learners
and updates the parameter w. Based on how these
gradients are fetched and aggregated, we have different
variants of synchronous or asynchronous SGD.

The time taken by a learner to compute gradient of
one mini-batch is denoted by random variable X

i

for
i = 1, 2, . . . , P . We assume that the X

i

s are i.i.d. across
mini-batches and learners.

2.2 PERFORMANCE METRICS

There are two metrics of interest: Runtime and Error.

Definition 1 (Runtime). The runtime of J iterations
is the expected time to perform a total of J iterations.

Definition 2 (Error). The Error after j iterations is
defined as E [F (w

j

) � F ⇤
], the expected gap of the risk

function from its optimal value.

Our aim is to determine the trade-off between the
error (measures the accuracy of the algorithm) and the
runtime for the different SGD variants.

2.3 VARIANTS OF SGD

We now describe the SGD variants considered in this
paper. Please refer to Figure 3 and Figure 4 for a
pictorial illustration.

L1

L2

L3

PS

w0 w1 w2

L1

L2

L3

PS

w0 w1 w2

Fully Sync-SGD K-sync SGD

L1

L2

L3

PS

K-batch-sync SGD
w0 w1 w2

Figure 3: For K = 2 and P = 3, we illustrate the
K-sync and K-batch-sync SGD in comparison with
fully synchronous SGD. Lightly shaded arrows indicate
straggling gradient computations that are cancelled.

K-sync SGD: This is a generalized form of syn-
chronous SGD, also suggested in [Gupta et al., 2016,
Chen et al., 2016] to offer some resilience to straggling
as the PS does not wait for all the learners to finish.
The PS only waits for the first K out of P learners to
push their gradients. Once it receives K gradients, it
updates w

j

and cancels the remaining learners. The
updated parameter vector w

j+1

is sent to all P learners

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

L1

L2

L3

PS

w0 w1 w3

Async SGD K-async SGD
w2

L1

L2

L3

PS

w0 w1 w3 w2

K-batch-async SGD

L1

L2

L3

PS

w0 w1 w3 w2

Figure 4: For K = 2 and P = 3, we illustrate the
K-async and K-batch-async algorithms in comparison
with fully asynchronous SGD.

for the next iteration. The update rule is given by:

w
j+1

= w
j

� ⌘

K

K

X

l=1

g(w
j

, ⇠
l,j

). (2)

Here ⇠
l,j

denotes the mini-batch of m samples used by
the l-th learner at the j-th iteration and g(w

j

, ⇠
l,j

) =

1

m

P

⇠2⇠l,j
rf(w

j

, ⇠) denotes the average gradient of
the loss function evaluated over the mini-batch ⇠

l,j

of
size m. For K = P , the algorithm is exactly equivalent
to a fully synchronous SGD with P learners.

K-batch-sync: In K-batch-sync, all the P learners
start computing gradients with the same w

j

. Whenever
any learner finishes, it pushes its update to the PS and
evaluates the gradient on the next mini-batch at the
same w

j

. The PS updates using the first K mini-
batches that finish and cancels the remaining learners.
Theoretically, the update rule is still the same as (2)
but here l now denotes the index of the mini-batch
instead of the learner. However K-batch-sync will offer
advantages over K-sync in runtime as no learner is idle.

K-async SGD: This is a generalized version of asyn-
chronous SGD, also suggested in [Gupta et al., 2016].
In K-async SGD, all the P learners compute their re-
spective gradients on a single mini-batch. The PS waits
for the first K out of P that finish first, but it does not
cancel the remaining learners. As a result, for every
update the gradients returned by each learner might
be computed at a stale or older value of the parameter
w. The update rule is thus given by:

w
j+1

= w
j

� ⌘

K

K

X

l=1

g(w
⌧(l,j)

, ⇠
l,j

). (3)

Here ⇠
l,j

is one mini-batch of m samples used by
the l-th learner at the j-th iteration and ⌧(l, j) de-
notes the iteration index when the l-th learner last
read from the central PS where ⌧(l, j)  j. Also,
g(w

⌧(l,j)

, ⇠
l,j

) =

1

m

P

⇠2⇠l,j
rf(w

⌧(l,j)

, ⇠
l,j

) is the av-
erage gradient of the loss function evaluated over the
mini-batch ⇠

l,j

based on the stale value of the parameter
w

⌧(l,j)

. For K = 1, the algorithm is exactly equivalent
to fully asynchronous SGD, and the update rule can
be simplified as:

w
j+1

= w
j

� ⌘g(w
⌧(j)

, ⇠
j

). (4)

Here ⇠
j

denotes the set of samples used by the learner
that updates at the j-th iteration such that |⇠

j

| =

m and ⌧(l, j) denotes the iteration index when that
particular learner last read from the central PS. Note
that ⌧(j)  j.

K-batch-async: Observe in Figure 4 that K-async
also suffers from some learners being idle while others
are still working on their gradients until any K finish.
In K-batch-async (proposed in [Lian et al., 2015]), the
PS waits for K mini-batches before updating itself
but irrespective of which learner they come from. So
wherever any learner finishes, it pushes its gradient
to the PS, fetches current parameter at PS and starts
computing gradient on the next mini-batch based on
the current value of the PS. Surprisingly, the update
rule is again similar to (3) theoretically except that now
l denotes the indices of the K mini-batches that finish
first instead of the learners and w

⌧(l,j)

denotes the
version of the parameter when the learner computing
the l�th mini-batch last read from the PS. While the
error convergence of K-batch-async is similar to K-
async, it reduces runtime as no learner is idle.

2.4 ASSUMPTIONS

Closely following [Bottou et al., 2016], we also make
the following assumptions:

1. F (w) is an L� smooth function. Thus,

||rF (w
1

) � rF (w
2

)||
2

 L||w
1

� w
2

||
2

. (5)

2. F (w) is strongly convex with parameter c. Thus,

2c(F (w) � F ⇤
)  ||rF (w)||2

2

8 w. (6)

Refer to Section 6 in Supplement for discussion on
strong convexity. Our results also extend to non-
convex objectives, as discussed in Section 3.

3. The stochastic gradient is an unbiased estimate of
the true gradient:

E
⇠j |wk

[g(w
k

, ⇠
j

)] = rF (w
k

) 8 k  j. (7)

Observe that this is slightly different from the com-
mon assumption that E

⇠j [g(w, ⇠
j

)] = rF (w) for
all w. Observe that, all w

j

for j > k is actually
not independent of the data ⇠

j

. We thus make the
assumption more rigorous by conditioning on w

k

for k  j. Our requirement k  j means that w
k

is the value of the parameter at the PS before the
data ⇠

j

was accessed and can thus be assumed to
be independent of the data ⇠

j

.

4. Similar to the previous assumption, we also assume
that the variance of the stochastic update given w

k

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

Table 1: List of Notations
Mini-batch Size m
Total Iterations J
Number of learners (Processors) P
Number of learners to wait for K
Learning rate ⌘
Lipschitz Constant L
Strong-convexity parameter c
Runtime of a learner for one mini-batch X

i

Total runtime T

at iteration k before the data point was accessed is
also bounded as follows:

E
⇠j |wk

⇥

||g(w
k

, ⇠
j

) � rF (w
k

)||2
2

⇤

 �2

m
+

M
G

m
||rF (w

k

)||2
2

8 k  j. (8)

3 MAIN RESULTS

3.1 RUNTIME ANALYSIS

We compare the theoretical wall clock runtime of the
different SGD variants to illustrate the speed-up of-
fered by different asynchronous and batch variants. A
detailed discussion is provided in Section 4.
Theorem 1. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. random variables
X

1

, X
2

, . . . , X
P

. Then the ratio of the expected time of
synchronous to asynchronous SGD is

E [T
Sync

]

E [T
Async

]

= P
E [X

P :P

]

E [X]

where X
(P :P)

is the P th order statistic of P i.i.d. ran-
dom variables X

1

, X
2

, . . . , X
P

.

This is the first result that analytically characterizes
the speed-up offered by asynchronous SGD. To prove
this result, we use ideas from renewal theory as we
discuss in Section 4. In the following corollary, we high-
light this speed-up for the special case of exponential
computation time.
Corollary 1. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. exponential random
variables X

1

, X
2

, . . . , X
P

⇠ exp(µ). Then the ratio of
the expected time of synchronous to asynchronous is
approximately given by P log P .

Thus, the speed-up scales with P and can diverge to
infinity for large P . We illustrate the speed-up for
different distributions in Figure 5.

The next result illustrates the advantages offered by
K-batch-sync and async over their corresponding coun-
terparts K-sync and K-async respectively.

Figure 5: Plot of the speed-up using asynchronous
over synchronous: log

E[TSync]

E[TAsync]
with P for different

distributions - exp(1), 1 + exp(1) and Pareto(2, 1).

Processors to wait for (K)
0 5 10 15 20

E
[T

]

102

103

104

105
K-sync
K-async
K-batch-async

Processors to wait for(K)
0 5 10 15 20

E
[T

]

102

103

104

105
K-sync
K-async
K-batch-async

Figure 6: Plot of runtime E [T] for 2000 iterations:
(Left) Pareto distribution Pareto(2, 1) and (Right)
Shifted exponential distribution 1 + exp(1).

Theorem 2. Let the wall clock time of each learner to
process a single mini-batch be i.i.d. exponential random
variables X

1

, X
2

, . . . , X
P

⇠ exp(µ). Then the ratio of
the expected time of K-async (or sync) SGD to K-
batch-async (or sync) SGD is given by

E [T
K�async

]

E [T
K�batch�async

]

=

PE [X
K:P

]

KE [X]

⇡
P log

P

P�K

K

where X
K:P

is the Kth order statistic of i.i.d. random
variables X

1

, X
2

, . . . , X
P

.

To prove this, we derive an exact expression for the
runtime of K-batch-async SGD using renewal theory,
for any given i.i.d. distribution of X

i

s, not necessarily
exponential. The runtime of K-batch-async SGD is
given by JKE[X]

P

(see Lemma 4 in Section 4). The proof
of Theorem 2 is also provided in in Section 4.

Theorem 2 shows that as K

P

increases, the speed-up
using K-batch-async increases and can be upto log P
times higher. For non-exponential distributions, we
simulate the behaviour of E [T] in Figure 6 for K-sync,
K-async and K-batch-async respectively for Pareto
and Shifted Exponential.

3.2 ERROR ANALYSIS UNDER FIXED
LEARNING RATE

Theorem 3 below gives a convergence analysis of K-
async SGD for fixed ⌘, relaxing the following assump-
tions in existing literature.

• [Mitliagkas et al., 2016] assumes that X
i

’s are ex-
ponentially distributed. Our analysis holds for any
general service time X

i

.

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

• [Mitliagkas et al., 2016] also assumes that the stale-
ness process is independent of w. While this assump-
tion simplifies the analysis greatly, it is not true in
practice. For instance, for a two learner case, the pa-
rameter w

2

after 2 iterations depends on whether the
update from w

1

to w
2

was based on a stale gradient
at w

0

or the current gradient at w
1

, depending on
which learner finished first. In this work, we remove
this independence assumption.

• Instead of the bounded delay assumption in [Lian
et al., 2015], we use a general staleness bound
E
⇥

||rF (w
j

) � rF (w
⌧(l,j)

)||2
2

⇤

 �E
⇥

||rF (w
j

)||2
2

⇤

,
which allows for large, but rare delays.

• In [Recht et al., 2011], the norm of the gradient is
assumed to be bounded. However, if ||rF (w)||2

2


M for some constant M , then using (6) we obtain
||w�w⇤||2

2

 2

c

(F (w)�F ⇤
)  M

c

2 implying that the
range of w is bounded which is a very strong and
restrictive assumption, that we relax in this result.

Theorem 3. Suppose the objective F (w) is c-
strongly convex and the learning rate ⌘  1

2L(

MG
Km+

1
K)

.

Also assume that E
⇥

||rF (w
j

) � rF (w
⌧(l,j)

)||2
2

⇤


�E

⇥

||rF (w
j

)||2
2

⇤

, for some �  1. Then, the error
of K-async SGD after J iterations is,

E [F (w
J

)] � F ⇤  ⌘L�2

2c�0Km
+

(1 � ⌘c�0
)

J

(E [F (w
0

)] � F ⇤ � ⌘L�2

2c�0Km
) (9)

where �0
= 1 � � +

p0

2

and p
0

is a lower bound on the
conditional probability that ⌧(l, j) = j, given all the
past delays and parameters.

Here, � is a measure of staleness of the gradients re-
turned by learners; smaller � indicates a less staleness.

We use Lemma 1 to prove Theorem 3. See Section 8.1
and Section 8.2 in Supplement for the full proof.

Lemma 1. Suppose that p
(l,j)

0

is the conditional prob-
ability that ⌧(l, j) = j given all the past delays and all
the previous w, and p

0

 p
(j)

0

for all j. Then,

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

� p
0

E
⇥

||rF (w
j

)||2
2

⇤

. (10)

Proof. By the law of total expectation,

E
⇥

||rF (w
⌧(l,j)

)||2
2

⇤

= p
(l,j)

0

E
⇥

||rF (w
⌧(l,j)

)||2
2

|⌧(j) = j
⇤

+ (1 � p
(l,j)

0

)E
⇥

||rF (w
⌧(l,j)

)||2
2

|⌧(j) 6= j
⇤

� p
0

E
⇥

||rF (w
j

)||2
2

⇤

.

Synchronous

Asynchronous

Time

Lo
g

lo
ss

Figure 7: Theoretical error-runtime trade-off for Sync
and Async-SGD with same ⌘. Async-SGD has faster
decay with time but a higher error floor.

For the exponential distribution, p
0

is equal to 1

P

(see
Section 8.1.1 in Supplement). For non-exponential
distributions, it is a constant in [0, 1]. For some spe-
cial classes of distributions like new-longer-than-used
(new-shorter-than-used) defined in Definition 3, we can
formally show that p

0

lies in [0, 1

P

] ([1
P

, 1]) respectively.
Refer to Section 8.1.1 in Supplement for the proof.

For K-batch-async, the update rule is same as K-async
except that the index l denotes the index of the mini-
batch. Thus, the error analysis will be exactly similar.
Our analysis can also be extended to non-convex F (w)

as we show in Section 8.2.1 in the Supplement.

Now let us compare with K-sync SGD. We observe
that the analysis of K-sync SGD is same as serial SGD
with mini-batch size Km. Thus,
Lemma 2 (Error of K-sync). [Bottou et al., 2016]
Suppose that the objective F (w) is c-strongly convex
and learning rate ⌘  1

2L(

MG
Km+1)

. Then, the error after
J iterations of K-sync SGD is

E [F (w
J

) � F ⇤
]  ⌘L�2

2c(Km)

+

(1 � ⌘c)J
✓

F (w
0

) � F ⇤ � ⌘L�2

2c(Km)

◆

.

Can stale gradients win the race? For the same ⌘,
observe that the error given by Theorem 3 decays at the
rate (1� ⌘c(1�� +

p0

2

)) for K-async or K-batch-async
SGD while for K-sync, the decay rate with number of
iterations is (1 � ⌘c). Thus, depending on the values
of � and p

0

, the decay rate of K-async or K-batch-
async SGD can be faster or slower than K-sync SGD.
The decay rate of K-async or K-batch-async SGD is
faster if p0

2

> �. As an example, one might consider
an exponential or new-shorter-than-used service time
where p

0

� 1

P

and � can be made smaller by increasing
K. It might be noted that asynchronous SGD can still
be faster than synchronous SGD with respect to wall
clock time even if its decay rate with respect to number
of iterations is lower as every iteration is much faster
in asynchronous SGD (Roughly P log P times faster
for exponential service times).

The maximum allowable learning rate for syn-

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

Processors(P)
0 5 10 15 20

lo
g(
E[
T s

yn
c]/
E[
T a

sy
nc
])

10-2

100

102

104

K-batch Async
Asynchronous
Synchronous

Lo
g

lo
ss

Time Processors to wait for(K)

0 5 10 15 20

E[
T]

102

103

104

105
K-sync
K-async
K-batch-async

Figure 8: Error-runtime trade-off comparison of differ-
ent SGD variants for logistic regression on MNIST, with
X

i

⇠ exp(1), P = 8, K = 4, ⌘ = 0.01 and m = 1. K-
batch-async gives intermediate performance, between
Async and sync-SGD (see Section 9 in Supplement).

chronous SGD is max{ 1

c

, 1

2L(

MG
Pm +1)

} which can be
much higher than that for asynchronous SGD,i.e.,
max{ 1

c(1��+

p0
2)

, 1

2L(

MG
m +1)

}. Similarly the error-floor

for synchronous is ⌘L�

2

2cPm

as compared to asynchronous
whose error floor is ⌘L�

2

2c(1��+

p0
2)m

.

In Figure 7, we compare the theoretical trade-offs be-
tween synchronous (K = P in Lemma 2) and asyn-
chronous SGD (K = 1 in Theorem 3). Async-SGD
converges very quickly, but to a higher floor. Figure 8
shows the same comparison on the MNIST dataset,
along with K-batch-async SGD.

3.3 VARIABLE LEARNING RATE FOR
STALENESS COMPENSATION

The staleness of the gradient is random, and can vary
across iterations. Intuitively, if the gradient is less stale,
we want to weigh it more while updating the parameter
w, and if it is more stale we want to scale down its
contribution to the update. With this motivation, we
propose the following condition on the learning rate at
different iterations.

⌘
j

E
⇥

||w
j

� w
⌧(j)

||2
2

⇤

 C (11)

for a constant C. This condition is also inspired from
our error analysis in Theorem 3, because it helps re-
move the assumption E

⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤


�E

⇥

||rF (w
j

)||2
2

⇤

. Our convergence result is as follows:
Theorem 4. Suppose the learning rate in the j-th itera-
tion ⌘

j

 1/2L(

MG
m

+1), and ⌘
j

E
⇥

||w
j

� w
⌧(j)

||2
2

⇤

 C
for some constant C. Then, we have

E [F (w
J

)] � F ⇤  � + (E [F (w
0

)] � F ⇤
)

J

Y

j=1

(1 � ⇢
j

)

where ⇢
j

= ⌘
j

(1 +

p0

2

)c, and the error floor � = �

J

+

(1�⇢
J

)�

J�1

+· · ·+
Q

J

j=1

(1�⇢
j

)�

0

, with �

j

=

⌘

2
jL�

2

2m

+

CL

2

2

.

Iterations
0 500 1000 1500 2000

Lo
g

lo
ss

0.8
0.85
0.9

0.95
1

Fixed
Variable

Figure 9: Async-SGD on CIFAR10 dataset, with X ⇠
exp 20, mini-batch size m = 250 and P = 40 learners.
We compare fixed ⌘ = 0.01, and the variable schedule
given in (13) for ⌘

max

= 0.01 and C = 0.005⌘
max

. The
proposed schedule can give fast convergence, and also
maintain stability, while the fixed ⌘ algorithm becomes
unstable (see Section 9 in Supplement for setup details).

The proof is provided in Section 8.3 in the Supplement.
In our analysis of Asynchronous SGD, we observe that
the term ⌘

2

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

is the most
difficult to bound. For fixed learning rate, we had
assumed that E

⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

is bounded
by �||rF (w

j

)||2
2

. However, if we impose the condition
(11) on ⌘, we do not require this assumption. Our
proposed condition actually provides a bound for the
staleness term as follows:

⌘
j

2

E
⇥

||rF (w
j

) � rF (w
⌧(j)

)||2
2

⇤

 ⌘
j

L2

2

E
⇥

||w
j

� w
⌧(j)

||2
2

⇤

 CL2

2

. (12)

Proposed Algorithmic Modification Inspired by
this analysis, we propose the learning rate schedule,

⌘
j

= min

⇢

C

||w
j

� w
⌧(j)

||2
2

, ⌘
max

�

, (13)

where ⌘
max

is a suitably large ceiling on learning rate.
It ensures stability when the first term in (13) becomes
large due to the staleness ||w

j

� w
⌧(j)

||
2

being small.
The C is chosen of the same order as the desired error
floor. To implement this schedule, the PS needs to
store the last read model parameters for every learner.
In Figure 9 we illustrate how this schedule can stabilize
asynchronous SGD.

4 RUNTIME ANALYSIS

In this section, we provide our results on the runtime
of different variants of SGD. These lemmas are then
used in the proofs of Theorem 1 and Theorem 2.

4.1 RUNTIME OF K-SYNC SGD

Lemma 3 (Runtime of K-sync SGD). The expected
time taken by K-sync SGD to complete J iterations is,

E [T] = JE [X
K:P

] (14)

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

where X
K:P

is the Kth order statistic of P i.i.d. random
variables X

1

, X
2

, . . . , X
P

.

The proof is provided in Section 7.1 in the Supplement.
Remark: For X

i

⇠ exp(µ), the runtime for J iter-
ations is E [T] =

J

µ

P

P

i=P�K+1

1

i

⇡ J

µ

�

log

P
P�K

µ

�

[Shel-
don, 2002]. Refer to Section 7.1.1 in Supplement.

The runtime of K-batch-sync SGD is not tractable in
general, but for X

i

⇠ exp(µ), the time per iteration is
distributed as Erlang(K, Pµ). Thus, E [T] = J K

Pµ

.

4.2 RUNTIME OF K-BATCH-ASYNC SGD

Lemma 4 (Runtime of K-batch-async SGD). The
expected time taken by K-batch-async SGD for J itera-
tions is given by:

E [T] = J
KE [X]

P
. (15)

To prove the result we use ideas from renewal theory.
A brief background on renewal theory is provided in
Section 7.2 in the Supplement for completeness.

Proof of Lemma 4. For the i-th learner, let {N
i

(t), t >
0} be the number of times the i-th learner pushes its
gradient to the PS over in time t. The time between two
pushes is an independent realization of X

i

. Thus, the
inter-arrival times X

(1)

i

, X
(2)

i

, . . . are i.i.d. with mean
inter-arrival time E [X

i

]. Using the elementary renewal
theorem [Gallager, 2013, Chapter 5] we have,

lim

t!1

E [N
i

(t)]

t
=

1

E [X
i

]

. (16)

Thus, the rate of gradient pushes by the i-th learner is
1/E [X

i

]. As there are P learners, the rate of gradient
pushes to the PS is

lim

t!1

P

X

i=1

E [N
i

(t)]

t
=

P

X

i=1

1

E [X
i

]

=

P

E [X]

. (17)

Every K pushes are one iteration. Thus, the time to
complete J iterations or effectively JK pushes is given
by E [T] =

JKE[X]

P

.

Now, we use these lemmas to prove Theorem 1 below.

Proof of Theorem 1. For K = 1, K-batch-async re-
duces to asynchronous SGD, and its runtime E [T] =

J E[X]

P

. By taking the ratio of the runtimes in Lemma 3
with K = P and Lemma 4 with K = 1, we get the
result in Theorem 1.

Corollary 1 also follows by substituting in Theorem 1
that for X

i

⇠ exp(µ), E [X
P :P

] =

P

P

i=1

1

iµ

⇡ logP

µ

.

4.3 RUNTIME OF K-ASYNC SGD

The runtime of K-async SGD is not tractable for non-
exponential X

i

, but we obtain an upper bound on it for
“new-longer-than-used” distributions, defined below.
Definition 3 (New-longer-than-used). A random vari-
able is said to have a new-longer-than-used distribution
if the following holds for all t, u � 0:

Pr(U > u + t|U > t)  Pr(U > u)

Most of the continuous distributions we encounter like
normal, exponential, gamma, beta are new-longer-than-
used. Alternately, the hyper exponential distribution is
new-shorter-than-used and it satisfies Pr(U > u+t|U >
t) � Pr(U > u) for all t, u � 0.
Lemma 5 (Runtime of K-async SGD). Suppose that
each X

i

has a new longer than used distribution. Then,
the expected time taken to complete J iterations by
K-async is upper-bounded as

E [T]  JE [X
K:P

] (18)

where X
K:P

is the Kth order statistic of P i.i.d. random
variables X

1

, X
2

, . . . , X
P

.

The proof is provided in Section 7.3. We use this lemma
to prove Theorem 2 below. A simulation comparing the
error-runtime trade-off of K-async and K-batch-async
variants is provided in Section 7.3.2 in the Supplement.
Proof of Theorem 2. For the exponential X

i

, equal-
ity holds in (18) in Lemma 5, as we justify in Sec-
tion 7.3.1 in the Supplement. The expectation can thus
be derived as E [X

K:P

] =

P

P

i=P�K+1

1

iµ

⇡ log (P/P�K)

µ

.
For exponential X

i

, the runtime of K-batch-async is
E [T] = J KE[X]

P

= J K

µP

from Lemma 4.

5 CONCLUSIONS

The speed of distributed SGD depends on the error
reduction per iteration, as well as the runtime per itera-
tion. To the best of our knowledge, this paper presents
the first runtime analysis of synchronous and asyn-
chronous SGD, and their variants. When juxtaposed
with the error analysis, we get error-runtime trade-offs
that can be used to compare different SGD algorithms.
We also give a new analysis of asynchronous SGD by
relaxing some commonly made assumptions, and a
novel learning rate schedule to compensate for gradient
staleness. In the future we plan to explore methods to
gradually increase synchrony, so that we can achieve
fast convergence as well as low error floor.
Acknowledgements: The work was done when
Gauri Joshi was a Research Staff Member at IBM
and Sanghamitra Dutta was an intern.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, Priya Nagpurkar

References
L. Bottou, F. E. Curtis, and J. Nocedal. Opti-

mization methods for large-scale machine learning.
arXiv:1606.04838, 2016.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

S. Chaturapruek, J. C. Duchi, and C. Ré. Asynchronous
stochastic convex optimization: the noise is in the
noise and sgd don’t care. In Advances in Neural
Information Processing Systems, pages 1531–1539,
2015.

J. Chen, R. Monga, S. Bengio, and R. Józefowicz.
Revisiting distributed synchronous SGD. CoRR,
abs/1604.00981, 2016. URL http://arxiv.org/

abs/1604.00981.

J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger,
G. Gibson, K. Keeton, and E. Xing. Solving the
straggler problem with bounded staleness. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems, 2013.

J. Dean and L. A. Barroso. The tail at scale. Commu-
nications of the ACM, 56(2):74–80, 2013.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le,
et al. Large scale distributed deep networks. In
Advances in Neural Information Processing Systems,
pages 1223–1231, 2012.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao.
Optimal distributed online prediction using mini-
batches. Journal of Machine Learning Research, 13
(1):165–202, 2012.

J. Duchi, E. Hazan, and Y. Singer. Adaptive sub-
gradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
2, July 2011.

S. Dutta, V. Cadambe, and P. Grover. Short-dot:
Computing large linear transforms distributedly us-
ing coded short dot products. In Advances In Neural
Information Processing Systems, pages 2100–2108,
2016.

R. Gallager. Stochastic Processes: Theory for Appli-
cations. Cambridge University Press, 1st edition,
2013.

S. Gupta, W. Zhang, and F. Wang. Model accuracy
and runtime tradeoff in distributed deep learning: A
systematic study. In Proceedings of the International
Conference on Data Mining, pages 171–180, Dec.
2016.

A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing. Addressing
the straggler problem for iterative convergent parallel

ml. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pages 98–111, 2016.

R. Johnson and T. Zhang. Accelerating stochastic gra-
dient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems,
pages 315–323, 2013.

G. Joshi, Y. Liu, and E. Soljanin. On the delay-storage
trade-off in content download from coded distributed
storage systems. IEEE Journal on Selected Areas in
Communications, 32(5):989–997, 2014.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin. Strag-
gler mitigation in distributed optimization through
data encoding. In Advances in Neural Information
Processing Systems, pages 5440–5448, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. International Conference on Learn-
ing Representations (ICLR), 2015.

D. M. Kreps. A course in microeconomic theory, vol-
ume 41. JSTOR, 1990.

A. Krizhevsky and G. Hinton. Learning multiple lay-
ers of features from tiny images. Technical report,
University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105, 2012.

Y. LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and
K. Ramchandran. Speeding up distributed machine
learning using codes. IEEE Transactions on Infor-
mation Theory, 2017.

M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient
mini-batch training for stochastic optimization. In
Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 661–670, 2014.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous
parallel stochastic gradient for nonconvex optimiza-
tion. In Advances in Neural Information Processing
Systems, pages 2737–2745, 2015.

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ram-
chandran, and M. I. Jordan. Perturbed iterate anal-
ysis for asynchronous stochastic optimization. SIAM
Journal on Optimization, 27(4):2202–2229, 2017.

I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré. Asyn-
chrony begets momentum, with an application to
deep learning. In Proceedings of the Allerton Confer-
ence on Communication, Control, and Computing,
pages 997–1004. IEEE, 2016.

http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981

Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč.
Sarah: A novel method for machine learning prob-
lems using stochastic recursive gradient. In Inter-
national Conference on Machine Learning, pages
2613–2621, 2017.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild:
A lock-free approach to parallelizing stochastic gra-
dient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

H. Robbins and S. Monro. A stochastic approximation
method. The annals of mathematical statistics, pages
400–407, 1951.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic
gradient method with an exponential convergence
rate for finite training sets. In Advances in Neural
Information Processing Systems, pages 2663–2671,
2012.

S. Ruder. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

R. Sedgewick and K. Wayne. Algorithms. Addison-
Wesley Professional, 2011.

R. Sheldon. A first course in probability. Pearson
Education India, 2002.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karam-
patziakis. Gradient coding: Avoiding stragglers in
distributed learning. In International Conference on
Machine Learning, pages 3368–3376, 2017.

J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Transactions on Au-
tomatic Control, 31(9):803–812, 1986.

D. Wang, G. Joshi, and G. Wornell. Using straggler
replication to reduce latency in large-scale parallel
computing. ACM SIGMETRICS Performance Eval-
uation Review, 43(3):7–11, 2015.

Y. Yang, P. Grover, and S. Kar. Coded distributed
computing for inverse problems. In Advances in
Neural Information Processing Systems, pages 709–
719, 2017.

M. Ye and E. Abbe. Communication-computation
efficient gradient coding. arXiv preprint
arXiv:1802.03475, 2018.

W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-
aware async-sgd for distributed deep learning. In Pro-
ceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, pages 2350–2356.
AAAI Press, 2016.

