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8 Supplementary Material

8.1 Proof of Lemma 4

We factorize and bound ‖Ĥ−1n,k∇Rn(xm) −
H−1n ∇Rn(xm)‖ as

‖Ĥ−1n,k∇Rn(xm)−H−1n ∇Rn(xm)‖ ≤ (21)

‖I− Ĥ−1n,kHn‖‖H−1n ∇Rn(xm)‖.

Thus, it remains to bound ‖I−Ĥ−1n,kHn‖ by some εn. To do
so, consider that we can factorize Hn = U(Σ + cVnI)UT

and Ĥ−1n as in (8). We can then expand ‖I− Ĥ−1n,kHn‖ as

‖I− Ĥ−1n,kHn‖ = ‖I−U[(Σ̂k + cVnI)−1 × (Σ + cVnI)]UT ‖,
(22)

where Σ̂k ∈ Rp×p is the truncated eigenvalue matrix Σk

with zeros padded for the last p−k diagonal entries. Observe
that the first k entries of the product (Σ̂k + cVnI)−1× (Σ+
cVnI) are equal to 1, while the last p− k entries are equal
to (µj + cVn)/cVn. Thus, we have that

‖I− Ĥ−1n,kHn‖ =
∣∣∣∣µk+1

cVn

∣∣∣∣ . (23)

8.2 Proof of Lemma 5

To begin, recall the result from Lemma 4 in (18). From
this, we use the following result from [25, Lemma 6], which
present here as a lemma.

Lemma 6 Consider the k-TAN step where
‖Ĥ−1n,k∇Rn(xm) − H−1n ∇Rn(xm)‖ ≤
εn‖H−1n ∇Rn(xm)‖. The Newton decrement of the
k-TAN iterate λn(xn) is bounded by

λn(xn) ≤
[
(1 + εn)λn(xm)2 + εnλn(xm)

]
(1− (1 + εn)λn(xm))2

w.h.p

(24)

Lemma 6 provides a bound on the Newton decrement of
the iterate xn computed from the k-TAN update in (6) in
terms of Newton decrement of the previous iterate xm and
the error εn incurred from the truncation of the Hessian.
We proceed in a manner similar to [16, Proposition 4]
by finding upper and lower bounds for the sub-optimality
Sn(x) = Rn(x) − Rn(x

∗
n) in terms of the Newton decre-

ment parameter λn(x). Consider the result from [22, Theo-
rem 4.1.11],

λn(x)− ln (1 + λn(x)) ≤ Rn(x)−Rn(x
∗
n) (25)

≤ −λn(x)− ln (1− λn(x)) .

Consider the Taylor’s expansion of ln(1+ a) for a = λn(x)
to obtain the lower bound on λn(x),

λn(x) ≥ ln (1 + λn(x)) +
1

2
λn(x)

2 − 1

3
λn(x)

3. (26)

Assume that x is such that 0 < λn(x) < 1/4. Then the
expression in (26) can be rearranged and bounded as

1

6
λn(x)

2 ≤ 1

2
λn(x)

2 − 1

3
λn(x)

3 (27)

Now, consider the Taylor’s expansion of ln(1− a) for a =
λn(x) in a similar manner to obtain for λn(x) < 1/4, from
[5, Chapter 9.6.3].

−λn(x)− ln (1− λn(x)) ≤ λn(x)2 (28)

Using these bounds with the inequalities in (25) we obtain
the upper and lower bounds on Sn(x) as

1

6
λn(x)

2 ≤ Sn(x) ≤ λn(x)2. (29)

Now, consider the bound for Newton decrement of the
k-TAN iterate λn(xn) from (24). As we assume that
λn(xm) < 1/4, we have

λn(xn) ≤
4

(3− εn)2
[
(1 + εn)λn(xm)2 + λn(xm)εn

]
.

(30)

We substitute this back into the upper bound in (29) for
x = xn to obtain

Sn(xn) ≤ λn(xn)
2 (31)

≤ 16

(3− εn)4
[
(1 + εn)λn(xm)2 + λn(xm)εn

]2
=

16

(3− εn)4
[(1 + εn)

2λn(xm)4 (32)

+ 2εn(1 + εn)λn(xm)3 + ε2nλn(xm)2].

Consider also from (29) that we can upper bound the New-
ton decrement as λ(xm)2 ≤ 6Sn(xm). We plug this back
into (32) to obtain a final bound for sub-optimality as

Sn(xn) ≤
16

(3− εn)4
[36(1 + εn)

2Sn(xm)2 (33)

+ 30εn(1 + εn)Sn(xm)3/2 + 6ε2nSn(xm)].

8.3 Additional Experiments

In Figure 5, we show results on the BIO dataset used for
protein homology classification in KDD Cup 2004. The
dimensions areN = 145751 and p = 74. In this setting, the
number of samples is very large put the problem dimension
is very small. Observe in Figure 5 that both k-TAN and
AdaNewton greatly outperform the first order methods, due
to the reduced cost in Hessian computation that comes from
adaptive sample size. However, because p is small, the
additional gain from the truncating in the inverse in k-TAN
does not provide significant benefit relative to AdaNewton.
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Figure 5: Convergence of k-TAN, AdaNewton, SGD, and SAGA in terms of number of processed gradients (left) and
runtime (right) for the BIO protein homology classification problem.
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