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8 Supplementary Material

8.1 Proof of Lemmald]

We factorize and bound ||I:IT_L}CVR,L(X,,L)
H, 'VR, ()| as
5V B (xm) = LV R () | < 2D

T —H, [ H YV R (%) -

Thus, it remains to bound ||[I— I:I;jC H,, || by some ¢,,. To do
s, consider that we can factorize H,, = U(X + ¢V, I)UT
and H,, ! as in (§). We can then expand ||T — H;lanH as

10— B | = X UL, + VD)™ x (8 + eV DJUT |

(22)

where ﬁ)k € RP*P is the truncated eigenvalue matrix 3,
with zeros padded for the last p—k diagonal entries. Observe
that the first & entries of the product (X + ¢V, I) ™! x (X +
¢V, I) are equal to 1, while the last p — k entries are equal
to (uj + ¢V4,)/cV,,. Thus, we have that

Hk+1
C‘/n

. (23)

8.2 Proof of Lemmal[3

To begin, recall the result from Lemma []in (I8). From
this, we use the following result from [25, Lemma 6], which

present here as a lemma.
Lemma 6 Consider the k-TAN  step where
IH, \VR.(xm) —  H'VR, (x| <
en|H 'V R, (xm)|l. The Newton decrement of the
k-TAN iterate A\, (x,,) is bounded by

[(1+ €n)An(xm)? + €n A (x|

An(Xn) < (1 — (14 €)M (xm))?

w.h.p
(24)

Lemma [6] provides a bound on the Newton decrement of
the iterate x,, computed from the k-TAN update in (6) in
terms of Newton decrement of the previous iterate x,, and
the error ¢,, incurred from the truncation of the Hessian.
We proceed in a manner similar to [16, Proposition 4]
by finding upper and lower bounds for the sub-optimality
Sp(x) = R, (x) — R, (x},) in terms of the Newton decre-
ment parameter A, (x). Consider the result from [22} Theo-
rem4.1.11],

An(x) —In (14 A, (x)) < R, (x) — Ru(x)) (25)

<R,
<=A(x)—In(1l— A (x)).

Consider the Taylor’s expansion of In(1 + a) for a = A\, (x)
to obtain the lower bound on \,,(x),

An(x) > In (14 An(x)) + %An(x)Q - %An(x)? 26)

Assume that x is such that 0 < A, (x) < 1/4. Then the
expression in can be rearranged and bounded as

1 1 1
“An(x)? < 2 ~An(x)? 27

Now, consider the Taylor’s expansion of In(1 — a) for a =
A (x) in a similar manner to obtain for A\, (x) < 1/4, from

[S, Chapter 9.6.3].
“An(x) = In (1= Ay (x)) < A\p(x)? (28)

An (X)2 -

sing these bounds with the inequalities in (23])) we obtain
e upper and lower bounds on S, (x) as

07 < () < M), (29)

Now, consider the bound for Newton decrement of the
k-TAN iterate A, (x,) from 24). As we assume that
An(Xm) < 1/4, we have

M) < 5= 5 [(1+ €n)An (Xim)® + An (X )en] -
(30)

We substitute this back into the upper bound in (29) for
X = X, to obtain

Sn(%5) < An(xn)? 31)
16 2
< Gt [(1+ €n)An (X )? + An(Xm )€n]
16 )
- m[u + ) A (xm)? (32)

+ 26, (1 + €)M (Xm)® + E X (%m)?].

Consider also from (29) that we can upper bound the New-
ton decrement as \(X,,)? < 65, (x,,). We plug this back
into to obtain a final bound for sub-optimality as

S (%) < ﬁ[%u )28, (x0m)? (33)

+ 3060 (1 4 €0) S0 (Xm)/% 4 6625, (%))
8.3 Additional Experiments

In Figure [5] we show results on the BIO dataset used for
protein homology classification in KDD Cup 2004. The
dimensions are N = 145751 and p = 74. In this setting, the
number of samples is very large put the problem dimension
is very small. Observe in Figure [3] that both k-TAN and
AdaNewton greatly outperform the first order methods, due
to the reduced cost in Hessian computation that comes from
adaptive sample size. However, because p is small, the
additional gain from the truncating in the inverse in k-TAN
does not provide significant benefit relative to AdaNewton.
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Figure 5: Convergence of k-TAN, AdaNewton, SGD, and SAGA in terms of number of processed gradients (left) and
runtime (right) for the BIO protein homology classification problem.
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