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Abstract

Most second order methods are inapplicable to
large scale empirical risk minimization (ERM)
problems because both, the number of samples N
and number of parameters p are large. Large N
makes it costly to evaluate Hessians and large p
makes it costly to invert Hessians. This paper pro-
pose a novel adaptive sample size second-order
method, which reduces the cost of computing the
Hessian by solving a sequence of ERM problems
corresponding to a subset of samples and lowers
the cost of computing the Hessian inverse using
a truncated eigenvalue decomposition. Although
the sample size is grown at a geometric rate, it is
shown that it is sufficient to run a single iteration
in each growth stage to track the optimal classifier
to within its statistical accuracy. This results in
convergence to the optimal classifier associated
with the whole set in a number of iterations that
scales with log(N). The use of a truncated eigen-
value decomposition result in the cost of each iter-
ation being of order p2. Theoretical performance
gains manifest in practical implementations.

1 Introduction

A fundamental tension in learning is between the problem
we would like to solve, which is the minimization (M) of a
statistical risk (SR), and the problem we actually can solve,
which is the minimization (M) of an empirical risk (ER).
Indeed, it is customary to define classifiers or regressors as
the optimal argument of a stochastic program formulated
with respect to the probability distribution of the data. This
distribution is unknown but it is possible to acquire N inde-
pendent training samples and formulate an ERM problem
to approximate the statistical program. The solutions of
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SRM and ERM are not equivalent but their distance – the
statistical accuracy – vanishes as N grows [1, 4, 34].

When it comes to finding solutions of ERM problems, most
existing methods do not exploit the connection between
statistical and empirical risk minimization. Workhorse
stochastic gradient descent methods [3, 27] as well as the
more recent variance reduction [7, 12, 24, 30] and quasi-
Newton [6, 18, 19, 31] variants work just as well for any
finite sum minimization problem. This is not necessarily a
drawback but it is nonetheless true that not exploiting the
connection between SRM and ERM leaves some perfor-
mance gains on the table. Adaptive sample size methods
attempt to collect these gains [16, 20].

To explain adaptive sample size methods, suppose the sta-
tistical accuracy of an ERM formulation with n samples is
1/n. If we consider two ERM formulations with n and 2n
samples, the difference between the corresponding minimiz-
ers is of order 3/2n from the triangle inequality, because
each is within its respective statistical accuracy. Thus, when
doubling the size of the training set, the respective solu-
tions are not far from each other when measured relative
to the statistical accuracy; a fact that holds irrespectively
of n. We can then use the solution of the ERM problem
for n samples as a warm start for solving the problem with
2n samples. Since the optima are close, we can expect
to solve the ERM problem with 2n samples in a few it-
erations and keep progressing geometrically growing the
sample size. This conceptual argument can be formalized
to show that adaptive sample size methods yield meaning-
ful reductions in the number of operations that are needed
for convergence relative to those of conventional stochastic
optimization [20].

Given that adaptive sample size methods solve what is ef-
fectively a sequence of deterministic problems they open
up the opportunity to utilize Newton’s method in ERM [16]
– which is hampered in stochastic optimization by the dif-
ficulty of computing unbiased estimates of Newton steps.
For a problem of dimension p, each Newton iteration would
have a cost of order Np2 to compute a Hessian and of order
p3 to invert it. However, since subsequent optima are close,
we need to run just a few iterations at each growth stage
and since we are growing the sample size geometrically we
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only need in the order of log(N) iterations. In this paper we
propose a novel second-order adaptive sample size method
that uses a truncated eigenvalue decomposition to reduce
the cost of each Newton iteration to order p2 and derive
conditions to permit geometric growth of the sample set
while running a single iteration at each growth stage. This
conditions roughly imply the ability to double the sample
size so that the total number of iterations needed to find
an optimal classifier is of order log2N . We reemphasize
that each of these iterations incurs a cost of order np2 to
compute a Hessian and of order p2 to invert it.

The truncated eigenvalue decomposition that we use here
keeps the eigenvectors associated with the k largest eigen-
values and ignores the remaining p− k. The advantages of
the resulting k-TAN method rely on the ability to use small
k. This is possible because when we approximate the statis-
tical loss with the empirical loss we induce an error on the
order of statistical accuracy. Any further error induced by
an eigenvalue truncation is negligible. Many eigenvalues in
a high dimensional problems are small and thus contribute
little to the Newton direction. We can therefore safely dis-
card all small eigenvalues that induce additional error of the
same order as the statistical accuracy, providing potentially
significant reduction in computational cost.

1.1 Related Work

Adaptive sample size methods grow the sample size geomet-
rically. This is a departure from conventional stochastic de-
scent methods that process one sample per iteration [3, 27].
The same holds true for Nesterov-based methods [2, 23],
variance reduction [12, 24], stochastic average gradient
[7, 30], stochastic majorization-minimization [8, 15], hy-
brid [13], and dual coordinate methods [32, 33]. The phi-
losophy also differs from stochastic second order methods
such as subsampled Newton [9,25,28,29], incremental Hes-
sian [10], stochastic dual Newton ascent [26], and stochastic
quasi-Newton methods [14, 17–19, 21, 31]. These meth-
ods utilize second order information but fail to achieve and
exploit quadratic convergence rates because they are eventu-
ally dominated by noise.

As is the case of the truncated adaptive Newton (k-TAN)
method that we propose here, the adaptive (Ada) sample
size Newton method is such that a single iteration suffices
each time the sample size grows – this also follows as a
particular case of the results presented here with k = p and
is proven in [16]. First order adaptive sample size methods
are analyzed in [20]. First order methods are applicable
when p� N , Ada Newton is applicable when p < N , and
k-TAN fills the intermediate niche of p > N but p 6� N .

2 Problem Formulation

We consider in this paper the empirical risk minimization
(ERM) problem for a convex function f(x, z), where z is a
realization of a random variable Z. More specifically, we
seek the optimal variable x ∈ Rp that minimizes the ex-
pected loss L(x) := EZ [f(x, z)]. Define x∗ as the variable
that minimizes the expected loss, i.e.

x∗ := argmin
x∈Rp

EZ [f(x, z)]. (1)

In general, the problem in (1) cannot be solved without
knowing the distribution of Z. As an alternative, we tradi-
tionally consider the case that we have access to N samples
of Z, labelled z1, z2, . . . , zn. Define then the functions
fi(x) = f(x, zi) for i = 1, 2, . . . , N and an associated
empirical risk function Ln := (1/n)

∑n
i=1 fi(x) as the

statistical mean over the first n ≤ N samples. We say
that function Ln(x) approximates the original expected loss
L(x) with statistical accuracy Vn if the difference between
the empirical risk function Ln(x) and the expected loss
L(x) is upper bounded by Vn for all x with high probability
(w.h.p.). The statistical accuracy Vn is typically bounded
by Vn = O(1/

√
n) [34] or the stronger Vn = O(1/n) for

a set of common problems [1, 4].

Observe that the sampled loss function Ln is of an order Vn
difference from the true loss function L and, consequently,
any additional change of the same order has negligible effect.
It is therefore common to regularize non-strongly convex
loss functions Ln by a term of order Vn. We then seek the
minimum argument of the regularized risk function Rn,

x∗n := argmin
x

Rn(x) := argmin
x

1

n

n∑
i=1

fi(x)+
cVn
2
‖x‖2,

(2)
where c is a scalar constant. The solution x∗n minimizes the
regularized risk function using the first n samples, which is
of order Vn from the expected loss function L. It follows
then that by setting n = N we find a solution x∗N in (2)
that solves the original problem in (1) up to the statistical
accuracy VN of using all N samples.

The problem in (2) is strongly convex and can be solved
using any descent method. In particular, Newton’s method
uses a curvature-corrected gradient to iteratively update a
variable x, and is known to converge to the optimal ar-
gument x∗n at a very fast quadratic rate. To implement
Newton’s method, it is necessary to compute the gradient
∇Rn(x) and Hessian ∇2Rn(x) as

∇Rn(x) =
1

n

n∑
i=1

∇fi(x) + cVnx, (3)

∇2Rn(x) =
1

n

n∑
i=1

∇2fi(x) + cVnI. (4)
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The variable x is updated in Newton’s method as

x+ = x−∇−2Rn(x)∇Rn(x). (5)

Solving (1) to the full statistical accuracy VN (i.e. solving
(2) for n = N ) using Newton’s method would then require
the computation of individual gradients and Hessians for
N functions fi for computational cost of O(Np2) at each
iteration. Furthermore, the computation of the Hessian in-
verse in (5) requires a cost of O(p3), bringing at total of
O(Np2 + p3) for an iteration of Newton’s method using
the whole dataset. In addition, the initial iterate may be far
from the optimal solution and, in this case, a line search
method is needed, which requires computation of the func-
tion value multiple times. Finally, the algorithm suffers from
a slow sublinear convergence rate outside the local quadratic
convergence region. These issues make Newton’s method
computationally infeasible when both N and p are large. In
this paper we show how this complexity can be reduced by
gradually increasing the sample size n and approximating
the inverse of the respective Hessian∇2Rn(x).

3 k-Truncated Adaptive Newton (k-TAN)
Method

We propose the k-Truncated Adaptive Newton (k-TAN) as a
low cost alternative to solving (1) to its statistical accuracy.
In the k-TAN method, at each iteration we start from a point
xm within the statistical accuracy of Rm, i.e. Rm(xm) −
Rm(x∗m) ≤ Vm. We geometrically increase the sample
size to n = αm, where α > 1, and compute xn using an
approximated Newton method on the increased sample size
risk function Rn. More specifically, we update a decision
variable xm associated with Rm to a new decision variable
xn associated with Rn with the Newton-type update

xn = xm − Ĥ−1n,k∇Rn(xm), (6)

where Ĥn,k is a matrix approximating the Hessian
∇2Rn(xm) and parametrized by k ∈ {1, 2, . . . , p}. In par-
ticular, we are interested in an approximation matrix Ĥn,k

whose inverse Ĥ−1n,k can be computed with complexity less
thanO(p3) and is a good approximation for the true Hessian
inverse ∇2Rn(xm)−1. To define such a matrix, consider
µ1 ≥ µ2 ≥ . . . ≥ µp to be the eigenvalues of the Hessian
of empirical risk ∇2Ln(xm), with associated eigenvectors
v1,v2, . . . ,vp. We perform an eigenvalue decomposition of
∇2Ln(xm) = UΣUT , where U := [v1, . . . ,vp] ∈ Rp×p

and Σ := diag(µ1, . . . , µp) ∈ Rp×p. We can then de-
fine the truncated eigenvalue decomposition with rank k as
∇̂2Ln(xm) := UkΣkUT

k , where Uk := [v1, . . . ,vk] ∈
Rp×k and Σk := diag(µ1, . . . , µk) ∈ Rk×k. The full ap-
proximated Hessian Ĥn,k is subsequently defined as the
rank k approximation of ∇2Ln(xm) regularized by cVnI,
i.e.,

Ĥn,k := UkΣkUT
k + cVnI. (7)

The inverse of the approximated Hessian Ĥn,k can then be
computed directly using Uk and Σk as

Ĥ−1n,k := Uk[(Σk + cVnI)−1−(cVnI)−1]UT
k + (cVn)

−1I.

(8)

Observe that setting k = p leads to exact Hessian inverse
computation, i.e., Ĥ−1n,k = ∇2Rn(xm)−1, and recovers the
AdaNewton method in [16]. To understand how we may
determine k, consider that the full Hessian computed in (3)
is ∇2Ln(xm) regularized by cVnI. Therefore, the eigenval-
ues of ∇2Ln(xm) less than cVn are made negligible by the
regularization, and can be left out of the approximation. We
thus select the k largest eigenvalues of the Hessian which are
larger than ρcVn for some truncation parameter 0 < ρ < 1.

To analyze the computational complexity of (8), observe that
the inverse computation in (8) requires only the inversion
of diagonal matrices, and thus the primary cost in comput-
ing the k largest eigenvalues Σk and associated eigenvec-
tors Uk. Indeed, the truncated eigenvalue decomposition
{Uk,Σk} can in general be computed with at most com-
plexity O(kp2), with recent randomized algorithms even
finding {Uk,Σk} with complexity O(p2 log k) [11]. This
results in a total cost of, at worst, O((log k + n)p2) to per-
form the update in (6), thus removing a O(p3) cost.

In this paper we aim to show that while we geometrically
increase the size of the training set, a single iteration of the
truncated Newton method in (6) is sufficient to solve the
new risk function within its statistical accuracy. To state this
result we first assume the following assumptions hold.

Assumption 1 The loss functions f(x, z) are convex with
respect to x for all values of z. Moreover, their gradients
∇f(x, z) are Lipschitz continuous with constant M .

Assumption 2 The loss functions f(x, z) are self-
concordant with respect to x for all z.

Assumption 3 Define the local region of Ln as Ln := {x |
Ln(x) − minx Ln(x) ≤ Vn} The difference between the
gradients of the empirical loss Ln and the statistical aver-
age loss L is bounded by V 1/2

n for all x ∈ Ln with high
probability,

sup
x∈Ln

‖∇L(x)−∇Ln(x)‖ ≤ V 1/2
n , w.h.p. (9)

Based on Assumption 1, the regularized empirical risk gradi-
ents∇Rn are Lipschitz continuous with constant M + cVn.
Assumption 2 states the loss functions are additionally self
concordant which is a customary assumption in the analysis
of second-order methods. It also follows that the functions
Rn are therefore self concordant. Assumption 3 bounds the
difference between gradients of the expected loss and the
empirical loss with n samples by V 1/2

n for points local to
the optimum. This bound is reasonable for the convergence
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of gradients to their statistical averages due to the law of
large numbers.

We are interested in establishing the result that, as we
increase n at each step, the k-TAN method stays in the
quadratic region of the the associated risk function Rn.
While we are after all more interested in being within the
statistical accuracy of expected risk L, indeed being within
the statistical accuracy of Rn further implies being within
the statistical accuracy of L. More explicitly, we wish to
show the sample size can be increased from m to n = αm
such that xm is in the quadratic region of Rn. Moreover, if
xm is indeed in the quadratic region of Rn, then we demon-
strate that a single step of k-TAN as in (6) produces a point
xn that is within the statistical accuracy Vn of the risk Rn.
We formalize these condition in the following theorem.

Theorem 1 Consider the k-TAN method defined in (6)-(8)
and suppose that the constant k for low rank factorization
is defined as k = min{k | µk+1 ≤ ρcVn} where ρ is a free
parameter chosen from the interval (0, 1]. Further consider
the variable xm as a Vm-optimal solution of the risk Rm,
i.e., a solution such that Rm(xm) − Rm(x∗m) ≤ Vm. Let
n = αm > m and suppose Assumptions (1)-(3) hold. If the
sample size n is chosen such that(

2(M + cVm)Vm
cVn

)1/2

+
2(n−m)

nc1/2

+

(
(2 +

√
2)c1/2 + c‖x∗‖

)
(Vm − Vn)

(cVn)1/2
≤ 1

4
(10)

and

16

(3− ρ)4
[
36K2(1 + ρ)2V 2

m+

30K3/2ρ(1 + ρ)V 3/2
m + 6Kρ2Vm

]
≤ Vn (11)

are satisfied, where K = 3 + c/2‖x∗‖2(1− 1/
√
α)., then

the variable xn computed from (6) has the suboptimality of
Vn with high probability, i.e.,

Rn(xn)−Rn(x
∗
n) ≤ Vn, w.h.p. (12)

The result in Theorem 1 establishes the required condi-
tions to guarantee that the iterates xn always stay within
the statistical accuracy of the risk Rn. The expression in
(10) provides a condition on growth rate α = n/m to en-
sures that iterate xm, which is a Vm-suboptimal solution
for Rm, is within the quadratic convergence neighborhood
of Newton’s method for Rn. The second condition in (11)
ensures that a single iteration of k-TAN is sufficient for the
updated variable xn to be within the statistical accuracy of
Rn. Note that the first term in the left hand side of (11) is
quadratic with respect to Vm and comes from the quadratic
convergence of Newton’s method, while the second and

third terms of respective orders V 3/2
m and Vm are the out-

come of Hessian approximation. Indeed, these terms depend
on ρ, which is the upper bound on ratio of the discarded
eigenvalues µk+1, . . . , µp to the regularization cVn. The
truncation must be enough such that ρ is sufficiently small
to make (11) hold. It is worth mentioning, as a sanity check,
if we set ρ = 0 then we will keep all the eigenvalues and
recover the update of Newton’s method which makes the
non-quadratic terms in (11) zero.

The conditions in Theorem 1 are cumbersome but can be
simplified if we focus on large m and assume that the in-
equality Vm ≤ αVn holds for n = αm. Then, (10) and (11)
can be simplified to(

2αM

c

)1/2
+

2(α− 1)

αc1/2
≤ 1

4
, (13)

96[3 + c/2‖x∗‖2(1− 1/
√
α)]ρ2

(3− ρ)2
≤ 1

α
, (14)

respectively. Observe that first condition is dependent of
α and the second condition depends on α and ρ. Thus,
a pair (α, ρ) must be chosen that satisfies (13) for the
result in Theorem 1 to hold. We point out if c is cho-
sen such that c > 16(2

√
M + 1)2, then one such pair

is α = 2 and ρ ≤ 9/(21
√
c‖x∗‖2 + 16 + 3). Conse-

quently, when m is large, by choosing small enough ρ,
we may double the sample size with each update in un-
til n = N , after which we will have obtained a point
xN such that RN (xN ) − RN (x∗N ) ≤ VN . After log2N
iterations (roughly 2N samples processed), we solve the
full risk function RN to within the statistical accuracy VN .
At each iteration, the truncated inverse step requires cost
O(p2 log k). Computing Hessians over 2N samples re-
quires cost O(2Np2), resulting in a total complexity of
O(p2(2N + log2N log k)).

In practice, these may be chosen in a backtracking manner,
in which the iterate xm is updated using an estimate (α, ρ)
pair. If the resulting iterate xn is not in statistical accuracy
Rn(xn)−Rn(x

∗
n) ≤ Vn, the increase factor α is decreased

by factor β < 1 and ρ is decreased by factor δ < 1. Since
Rn(x

∗
n) is not known in practice, the suboptimality can

be upper bounded using strong convexity as Rn(xn) −
Rn(x

∗
n) ≤ ‖∇Rn(xn)‖2/(2cVn).

The resulting method is presented in Algorithm 1. After pre-
liminaries and initializations in Steps 1-4, the backtracking
loop starts in Step 6 with the sample size increase by rate α.
The gradient is computed in Step 7 and the Hessian∇2Ln

and its low rank approximation ∇̂2Ln are evaluated in Step
8. Then, the Hessian inverse approximation is computed
according to (8) in Step 9 to perform the update of k-TAN
in Step 10, based on (6). The factors α and ρ are then
decreased using the backtracking parameters and the statis-
tical accuracy condition is checked. We stress that, while
∇Rn(xn) must be computed to check the exit condition
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Algorithm 1 k-TAN
1: Parameters: α0 > 1, ρ0 < 1, and 0 < β, δ < 1

2: Input: Initial sample size n = m0 and argument xn =

xm0
with ‖∇Rn(xn)‖ < (

√
2c)Vn

3: while n ≤ N do {main loop}

4: Update argument and index: xm = xn and m = n.

Reset factor α = α0, ρ = ρ0 .

5: repeat {sample size backtracking loop}

6: Increase sample size: n = min{αm,N}.
7: Compute gradient [cf. (3)]:

∇Rn(xm) = 1
n

∑n
i=1∇f(xm, zi) + cVnxm

8: Compute∇2Ln = 1
n

∑n
i=1∇2f(xm, zi) and find

the low rank decomposition ∇̂2Ln [11]:

∇̂2Ln = UkΣkUT
k , k = min{k|µk+1 ≤ ρcVn}

9: Compute regularized Hessian inverse [cf. (8)]:

Ĥ−1n,k = Uk[(Σk + cVnI)−1 − 1
cVn

I]UT
k + 1

cVn
I

10: Compute Newton update [cf. (6)]:

xn = xm − Ĥ−1n,k∇Rn(xm)

11: Backtrack sample rate α = βα, truncation ρ = δρ.

12: until ‖∇Rn(xn)‖ < (
√
2c)Vn

13: end while

in Step 12, the gradient for these samples must be com-
puted in any case in the following iteration, so no additional
computation is added by this step.

4 Convergence Analysis

In this section, we study the convergence properties of the k-
TAN method and in particular prove the result in Theorem 1.

4.1 Preliminaries

Before proceeding with the analysis of k-TAN, we first
present two propositions that relate current iterate xm to
the suboptimality and quadratic convergence region to the
increased sample size risk Rn. Define Sn(x) to be the
n-suboptimality of point x with respect to Rn, i.e.

Sn(x) := Rn(x)−Rn(x
∗
n), (15)

where x∗n is the point that minimizes Rn. In the following
proposition, we establish a bound on Sn(xm) in terms of
the statistical accuracy of Rm, i.e., Vm.

Proposition 2 Consider a point xm that minimizes the
risk function Rm to within its statistical accuracy Vm, i.e.
Sm(xm) ≤ Vm. If the sample size is increased from m
to n = αm and (1/

√
α)Vm ≤ Vn ≤ (1/α)Vm, w.h.p the

sub-optimality Sn(xm) is upper bounded by

Sn(xm) ≤
[
3 +

c

2
‖x∗‖2

(
1− 1√

α

)]
Vm. (16)

Proposition 2 demonstrates a bound on the n-suboptimality
Sn(xm) of a point xm whose m-suboptimality Sm(xm)
is within statistical accuracy Vm. We stress that the con-
dition (1/

√
α)Vm ≤ Vn ≤ (1/α)Vm holds for both the

standard cases of Vn = O(1/n) and Vn = O(1/
√
n). It

is also necessary to establish conditions on increase rate
α such the xm is also in the quadratic convergence region
of Rn. Traditional analysis of Newton’s method character-
izes quadratic convergence in terms of the Newton decre-
ment λn(x) := ‖∇2Rn(x)

−1/2∇Rn(x)‖. The iterate x
is said to be in the quadratic convergence region of Rn

when λn(x) < 1/4—see [5, Chapter 9.6.4]. The condi-
tions for current iterate xm to be within this region are
presented in the following proposition. The proof can be
found in [16, Proposition 3].

Proposition 3 Define xm as an Vm optimal solution of the
risk Rm, i.e., Rm(xm)−Rm(x∗m) ≤ Vm. In addition, de-
fine λn(x) :=

(
∇Rn(x)

T∇2Rn(x)
−1∇Rn(x)

)1/2
as the

Newton decrement of variable x associated with the risk
Rn. If Assumption 1-3 hold, then Newton’s method at point
xm is in the quadratic convergence phase for the objective
function Rn, i.e., λn(xm) < 1/4, if we have[

2(M + cVm)Vm
cVn

]1/2
+

2(n−m)

nc1/2
(17)

+
(
√
2c+ 2

√
c+ c‖x∗‖)(Vm − Vn)
(cVn)1/2

≤ 1

4
, w.h.p.

4.2 Analysis of k-TAN

To analyze the k-TAN method, it is necessary to study the
error incurred from approximating the Hessian inverse in (7)
with rank k. Since we are only interested in solving each risk
function Rn to within its statistical accuracy Vn, some ap-
proximation error can be afforded. In the following lemma,
we characterize the error between an approximate and exact
Newton steps using the chosen rank k of the approximation
and the associated eigenvalues of the Hessian.

Lemma 4 Consider the k-TAN update in (6)-(8) for some
k = {0, 1, . . . , p}. Define εn := µk+1/(cVn). Considering
the notation Hn := Ĥn,p = ∇2Rn(xm), it holds

‖Ĥ−1n,k∇Rn(xm)−H−1n ∇Rn(xm)‖
≤ εn‖H−1n ∇Rn(xm)‖. (18)

Proof: Check the supplementary material. �

The result in Lemma 4 gives us an upper bound on the error
incurred in single iteration of a rank k approximation of the
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Figure 1: Convergence of k-TAN, AdaNewton, SGD, and SAGA in terms of number of processed gradients (left) and
runtime (right) for the GISETTE handwritten digit classification problem.

Newton step versus an exact Newton step. To make εn small,
a sufficiently large k must be chosen such that µk+1 is in
the order of Vn. The size of k will therefore depend on the
distribution of the eigenvalues of particular empirical risk
function. However, in practical datasets of high dimension,
it is often the case that most eigenvalues of the Hessian will
be close to 0, in which case k can be made very small. This
trend is supported by our numerical experiments on real
world data sets in Section 5 and the Appendix of this paper.

With the results of Proposition 2 and Lemma 4 in mind, we
can characterize the n-suboptimality of the updated variable
xn from (6). This is stated formally in the following Lemma.

Lemma 5 Consider the k-TAN update in (6)-(8). If xm is
in the quadratic neighborhood of Rn, i.e. λn(xm) < 1/4,
then the n-suboptimality Sn(xn) = Rn(xn)−R(x∗n) can
be upper bounded by

Sn(xn) ≤
16

(3− εn)4
[36(1 + εn)

2Sn(xm)2 (19)

+ 30εn(1 + εn)Sn(xm)3/2 + 6ε2nSn(xm)].

With Lemma 5 we establish a bound on n-suboptimality
Sn(xn) of the xn obtained from the k-TAN update in (6).
Note that Sn(xn) is bounded by terms proportional to the
n-suboptimality of the previous point, Sn(xm). We can
then establish that Sn(xn) is indeed upper bounded by the
statistical accuracy Vn if we combine the results in (16) and
(19) to obtain Theorem 1.

To be more precise, from Proposition 3 the condition in
(10) ensures that xm will be in the quadratic region of
Rn, i.e., λn(xm) < 1/4. Now according to the result
in Lemma 5, the conditions required for (19) are satis-
fied and this result holds. From Proposition 2 we can
bound the n-suboptimality of the previous iterate Sn(xm)
by a constant multiply by KVm, where K is defined as
K := 3 + c

2‖x
∗‖2(1− 1/

√
α).

For notational simplicity, we focus on the case in which the
statistical accuracy is Vm = O(1/m), as in (16). Further-
more, based on the definition in Lemma 4, we can replace
the truncation error εn by µk+1/(cVn). Also, if ρ is chosen

such that µk+1 ≤ ρcVn, we can conclude that εn is bounded
above by ρ. Substituting these bounds into (19) yields

Sn(xn) ≤
16

(3− ρ)4
[36K2(1 + ρ)2V 2

m (20)

+ 30K3/2ρ(1 + ρ)V 3/2
m + 6Kρ2Vm].

Therefore, if the condition in (11) is satisfied, the result in
(20) leads to Sn(xn) ≤ Vn and the claim in (12) follows.

5 Experiments

We compare the performance of the k-TAN method to exist-
ing optimization methods on large scale machine learning
problems of practical interest. In particular, we consider a
regularized logistic loss function, with regularization param-
eters Vn = 1/n and c = 1. The k-TAN method is compared
against the second order method AdaNewton [16] and two
first order methods—SGD and SAGA [7]. Here, we study
the performance of these methods on the logistic regres-
sion problem for multiple datasets. First, the GISETTE
handwritten digit classification from the NIPS 2003 fea-
ture selection challenge and, second, the RCV1 dataset for
classifying news stories from the Reuters database. Further
experiments on the KDD Cup 2009 and KDD Cup 2004
competition datasets (the latter is included in the supplemen-
tary material). In all experiments, the optimal valueRN (x∗)
was found a priori using full batch gradient descent for the
purposes of evaluating suboptimality of the methods.

The GISETTE dataset includes N = 6000 samples of
dimension p = 5000. We use a constant step size of
0.08 for SAGA and a diminishing step size for SGD. In
both k-TAN and AdaNewton, the sample size is increased
by a factor of α = 2 at each iteration (the condition
‖∇Rn(xn)‖ < (

√
2c)Vn is always satisfied) starting with

an initial size of m0 = 124. For both of these methods,
we initially run gradient descent on Rm0 for 100 iterations
so that we may begin in the statistical accuracy Vm0

. For
k-TAN, the truncation k is observed to be able to afford a
cutoff of around 0.01p in all of our simulations.

In Figure 1, the convergence results of the four methods
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Figure 2: Convergence of k-TAN, AdaNewton, SGD, and SAGA, and AdaSAGA in terms of number of processed gradients
(left) and runtime (right) for the RCV1 text classification problem.
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Figure 3: Convergence of k-TAN, AdaNewton, SGD, and SAGA in terms of number of processed gradients (left) and
runtime (right) for the ORANGE text classification problem.

for GISETTE data is shown. The left plot demonstrates
the sub-optimality with respect to the number of gradients,
or samples, processed. In particular, k-TAN and AdaNew-
ton compute m gradients per iterations, while SGD and
SAGA compute 1 gradient per iteration. Observe that the
second order methods all converge with a smaller number of
total processed gradients than the first order methods, reach-
ing after 2.5× 104 samples a sub-optimality of 10−7. We
point out that, while k-TAN only approximates the Hessian
inverse, its convergence path follows that of AdaNewton ex-
actly. Indeed, both algorithms reach the statistical accuracy
of 1/N = 1.6× 10−4 after 15000 samples, or just over two
passes over the dataset. To see the gain in terms of compu-
tation time of k-TAN over AdaNewton and other methods,
we present in the right image of Figure 1 the convergence
in terms of runtime. In this case, k-TAN outperforms all
methods, reaching a sub-optimality of 4 × 10−6 after 60
seconds, while AdaNewton reaches only a sub-optimality
of 10−3 after 80 seconds. Note that first order methods have
lower cost per iteration than all second order methods. Thus,
SAGA is able to converge to 2× 10−5 after 80 seconds.

For a high dimensional problem, we consider the RCV1
dataset with N = 18242 and p = 47236. We use a constant
step size of 0.1 for SAGA and SGD and truncate sizes of
around 0.001p for k-TAN, while keeping the parameters
for the other methods the same. For this dataset we addi-
tionally include the adaptive sample size first order method,
AdaSAGA [20]. The results of these simulations are shown

in Figure 2. In the left image, observe that, in terms of
processed gradients, the second order methods again outper-
form the first order, as expected, with k-TAN again follow-
ing the path of AdaNewton. Given the high dimension p,
the cost of computing the inverse in AdaNewton provides a
large bottleneck. The gain in terms of computation time can
then be best seen in the right image of Figure 2. Observe
that AdaNewton becomes entirely ineffective in this case.
The k-TAN method, alternatively, continues to descend at a
fast rate because of the inverse truncation step. For this set
k-TAN outperforms all the other methods, reaching an error
of 10−7 after 1500 seconds. Since both n and p are large,
SAGA performs well on this dataset due to small cost per
iteration.

We perform additional numerical experiments on the OR-
ANGE dataset used for customer relationship prediction
in KDD Cup 2009. We use N = 20000 samples with di-
mension p = 14472. The convergence results are shown
in Figure 3. Observe in the right hand plot that all second
order methods, perform similarly well on this dataset. The
first order methods, including SAGA, do not converge after
2000 seconds. Also, note that, in this experiment, we were
able to reduce the truncation size k to around 0.1% of p.

5.1 Comparison of truncation lengths

While Theorem 1 provides a theoretical and principled way
of selecting the truncation parameter k, we also provide a
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Figure 4: Convergence of k-TAN in terms of runtime for
RCV1 dataset for various selections of truncation length k.

brief empirical analysis of various choices of this parameter.
Naturally, the choice of k will tradeoff the time required to
compute the Hessian inverse with the accuracy of the inver-
sion, and by extension the ability of the k-TAN update to
remain in the quadratic convergence region of the increased
sample size function. Figure 4 shows the performance of
k-TAN in terms of run time when various truncation lengths
k are selected on the RCV1 dataset. We test truncation
lengths of three different orders, 0.1p, 0.01p, and 0.001p.
Observe that the smallest truncation, k = 0.001p, descends
much faster than the other two, but is unable to achieve a
low accuracy because the truncation is too strong for the
k-TAN method to progressively achieve accurate solutions.
On the other hand, both k = 0.01p and k = 0.1p retain
enough eigenvalues to achieve a strong accuracy, but the
former does so with considerably less runtime. These re-
sults confirm that there is indeed a truncation length that
both minimizes computation time while still achieving the
desired accuracy. Note that this length can be selected via
the backtracking step presented in Algorithm 1.

6 Discussion

We demonstrated the success of the proposed k-TAN
method on solving large scale ERM problems both theoreti-
cally and empirically. The k-TAN method reduces the total
cost in solving (1) to its statistical accuracy in two ways:
(i) progressively increasing the sample size to reduce the
costs of computing gradients and Hessians, and (ii) using a
low rank approximation of the Hessian to reduce the cost of
inversion. The gain provided by k-TAN relative to existing
methods is therefore most significant in ERM problems with
large sample size N and dimension p. To see this, consider
the alternatives previously considered

• Stochastic first order methods, such as SAGA [7]
and SVRG [12] have the overall complexity of
O(N log(N)p) to achieve statistical accuracy of the
full training set if VN = O(1/N).

• Newton’s method computes gradients and Hessians
over the entire dataset and inverts a matrix of size p at
each step, requiring a total cost of O(M(Np2 + p3)),
where M is number of iterations required to converge.

• AdaNewton [16] computes gradients and Hessians for
a subset of samples and inverts a matrix of size p at
each step, while increases the size of the subset geo-
metrically. By doubling the sample size, the statistical
accuracy can be reached in log2N steps after a to-
tal of 2N passes over the dataset, for a total cost of
O(2Np2 + log2(N)p3). While Hessian computation
cost is reduced, for high dimensional problems the
inversion step leads to a costly algorithm.

The k-TAN method computes gradients and Hessians
on a increasing subset of data in the same manner as
AdaNewton, put reduces the inversion cost at each itera-
tion to O(p2 log k), resulting in a total cost of O(2Np2 +
p2 log2N log k), or an effective cost of O(Np2), if the size
of the initial training set is large enough.
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