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7 Appendix

7.1 Variational forms of convex envelopes (Proof of lemma 2 and Remark 1)

In this section, we recall the different variational forms of the homogeneous convex envelope derived in [31] and derive
similar variational forms for the non-homogeneous convex envelope, which includes the ones stated in lemma 2). These
variational forms will be needed in some of our proofs below.
Lemma 4. The homogeneous convex envelope ⌦p of Fp admits the following variational forms.

⌦1(w) = min
↵

{
X

S✓V

↵SF (S) :
X

S✓V

↵S1S � |w|,↵S � 0}. (9)

⌦p(w) = min
v

{
X

S✓V

F (S)1/qkvSkp :
X

S✓V

v
S = |w|, supp(vS) ✓ S}. (10)

= max
2Rd

+

dX

i=1


1/q
i |wi| s.t. (A)  F (A), 8A ✓ V. (11)

= inf
⌘2Rd

+

1

p

dX

j=1

|wj |p

⌘
p�1
j

+
1

q
⌦1(⌘). (12)

The non-homogeneous convex envelope of a set function F , over the unit `1-ball was derived in [10], where it was shown
that ⇥1(w) = inf⌘2[0,1]d{f(⌘) : ⌘ � |w|} where f is any proper, l.s.c. convex extension of F (c.f., Lemma 1 [10]). A
natural choice for f is the convex closure of F , which corresponds to the tightest convex extension of F on [0, 1]d. We
recall the two equivalent definitions of convex closure, which we have adjusted to allow for infinite values.
Definition 5 (Convex Closure; c.f., [9, Def. 3.1]). Given a set function F : 2V ! R, the convex closure f

� : [0, 1]d ! R
is the point-wise largest convex function from [0, 1]d to R that always lowerbounds F .
Definition 6 (Equivalent definition of Convex Closure; c.f., [35, Def. 1] and [9, Def. 3.2]). Given any set function
f : {0, 1}n ! R, the convex closure of f can equivalently be defined 8w 2 [0, 1]n as:

f
�(w) = inf{

X

S✓V

↵SF (S) : w =
X

S✓V

↵S1S ,

X

S✓V

↵S = 1,↵S � 0}

It is interesting to note that f�(w) = fL(w) where fL is Lovász extension iff F is a submodular function [35].

The following lemma derive variational forms of ⇥p for any p � 1 that parallel the ones known for the homogeneous
envelope.
Lemma 5. The non-homogeneous convex envelope ⇥p of Fp admits the following variational forms.

⇥1(w) = inf{
X

S✓V

↵SF (S) :
X

S✓V

↵S1S � |w|,
X

S✓V

↵S = 1,↵S � 0}. (13)

⇥p(w) = max
2Rd

dX

j=1

 j(j , wj) + min
S✓V

F (S)� (S), 8w 2 dom(⇥p(w)). (14)

= inf
⌘2[0,1]d

1

p

dX

j=1

|wj |p

⌘
p�1
j

+
1

q
f
�(⌘), (15)

where dom(⇥p) = {w|9⌘ 2 [0, 1]d s.t supp(w) ✓ supp(⌘), ⌘ 2 dom(f�)}, and where we define

 j(j , wj) :=

(

1/q
j |wj | if |wj |  

1/p
j ,j � 0

1
p |wj |p + 1

qj otherwise.

If F is monotone, ⇥1 = f
�, then we can replace f

� by ⇥1 in (15) and we can restrict  2 Rd
+ in (14).

To prove the variational form (13) in Lemma 5, we need to show first the following property of f�.



Convex relaxations of combinatorial penalties.

Proposition 5 (c.f., [9, Prop. 3.23] ). The minimum values of a proper set function F and its convex closure f� are equal,
i.e.,

min
w2[0,1]d

f
�(w) = min

S✓V
F (S)

If S is a minimizer of f(S), then 1S is a minimizer of f�. Moreover, if w is a minimizer of f�, then every set in the support
of ↵, where f

�(w) =
P

S✓V ↵SF (S), is a minimizer of F .

Proof. First note that, {0, 1}d ✓ [0, 1]d implies that f�(w⇤)  F (S⇤). On the other hand, f�(w⇤) =
P

S✓V ↵
⇤
SF (S) �P

S✓V ↵
⇤
SF (S⇤) = F (S⇤). The rest of the proposition follows directly.

Given the choice of the extension f = f
�, the variational form (13) of ⇥1 given in lemma 5 follows directly from

definition 6 and proposition 5, as shown in the following corollary.

Corollary 4. Given any set function F : 2V ! R+ and its corresponding convex closure f
�, the convex envelope of

F (supp(w)) over the unit `1-ball is given by

⇥1(w) = inf
↵
{
X

S✓V

↵SF (S) :
X

S✓V

↵S1S � |w|,
X

S✓V

↵S = 1,↵S � 0}.

= inf
v
{
X

S✓V

F (S)kvSk1 :
X

S✓V

v
S = |w|,

X

S✓V

kvSk1 = 1, supp(vS) ✓ S}.

Proof. f
� satisfies the first 2 assumptions required in Lemma 1 of [10], namely, f� is a lower semi-continuous convex

extension of F which satisfies

max
S✓V

m(S)� F (S) = max
w2[0,1]d

m
T
w � f

�(w), 8m 2 Rd
+

To see this note that mT
w

⇤�f
�(w⇤) =

P
S✓V ↵

⇤
S(m

T1S �F (S)) �
P

S✓V ↵
⇤
S(m

T1S⇤ �F (S⇤)) = m(S⇤)�F (S⇤).
The other inequality is trivial. The corollary then follows directly from Lemma 1 in [10] and definition 6.

Note that dom(⇥1) = {w : 9⌘ 2 [0, 1]d \ dom(f�), ⌘ � |w|}. Note also that ⇥1 is monotone even if F is not. On the
other hand, if F is monotone, then f

� is monotone on [0, 1]d and ⇥1(w) = f
�(|w|). Then the proof of remark 1 follows,

since if F is a monotone submodular function and fL is its Lovász extension, then ⇥1(w) = f
�(|w|) = fL(|w|) =

⌦1(w), 8w 2 [�1, 1]d, where the last equality was shown in [1].

Next, we derive the convex relaxation of Fp for a general p � 1.

Proposition 6. Given any set function F : 2V ! R+ and its corresponding convex closure f
�, the convex envelope of

Fµ�(w) = µF (supp(w)) + �kwkpp is given by

⇥p(w) = inf
⌘2[0,1]d

�

dX

j=1

|wj |p

⌘
p�1
j

+ µf
�(⌘).

Note that dom(⇥p) = {w|9⌘ 2 [0, 1]d s.t supp(w) ✓ supp(⌘), ⌘ 2 dom(f�)}.

Proof. Given any proper l.s.c. convex extension f of F , we have:

First for the case where p = 1:

F
⇤
µ�(s) = sup

w2Rn
w

T
s� µF (supp(w))� �kwk1

= sup
⌘2{0,1}d

sup
1supp(w)=⌘

sign(w)=sign(s)

|w|T (|s|� �1)� µF (⌘)

= ◆{|s|�1}(s)� inf
⌘2{0,1}d

µF (⌘).
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Hence F
⇤⇤
µ�(w) = �kwk1 + inf⌘2{0,1}d �F (⌘). For the case p 2 (1,1).

F
⇤
µ�(s) = sup

w2Rd

w
T
s� µF (supp(w))� �kwkpp

= sup
⌘2{0,1}d

sup
1supp(w)=⌘

sign(w)=sign(s)

|w|T |s|� �kwkpp � µF (⌘)

= sup
⌘2{0,1}d

�(p� 1)

(�p)q
⌘
T |s|q � µF (⌘) (|si| = �p|x⇤

i |p�1
, 8⌘i 6= 0)

= sup
⌘2[0,1]d

�(p� 1)

(�p)q
⌘
T |s|q � µf

�(⌘).

We denote �̂ = �(p�1)
(�p)q .

F
⇤⇤
µ�(w) = sup

s2Rd

w
T
s� F

⇤
µ�(s)

= sup
s2Rd

min
⌘2[0,1]d

s
T
w � �̂⌘

T |s|q + µf
�(⌘)

?
= inf

⌘2[0,1]d
sup
s2Rp

sign(s)=sign(w)

|s|T |w|� �̂⌘
T |s|q + µf

�(⌘)

= inf
⌘2[0,1]d

�(|w|p)T ⌘1�p + µf
�(⌘),

where the last equality holds since |wi| = �̂⌘iq|s⇤i |q�1
, 8⌘i 6= 0, otherwise s⇤i = 0 if wi = 0 and 1 otherwise. (?) holds by

Sion’s minimax theorem [34, Corollary 3.3]. Note then that the minimizer ⌘⇤ (if it exists) satisfies supp(w) ✓ supp(⌘⇤).
Finally, note that if we take the limit as p ! 1, we recover ⇥1 = inf⌘2[0,1]d{f�(⌘) : ⌘ � |x|}.

The variational form (15) given in lemma 5 follows from proposition 6 for the choice µ = 1
q ,� = 1

p .

The following proposition derives the variational form (14) for p = 1.
Proposition 7. Given any set function F : 2V ! R[{+1}, and its corresponding convex closure f�,⇥1 can be written
8w 2 dom(⇥1) as

⇥1(w) = max
2Rd

+

{T |w|+ min
S✓V

F (S)� (S)}

= max
2Rd

+

{T |w|+ min
S✓supp(w)

F (S)� (S)} (if F is monotone)

Similarly 8w 2 dom(f�) we can write

f
�(w) = max

2Rd
{T |w|+ min

S✓V
F (S)� (S)}

= ⇥1(w) = max
2Rd

+

{Tw + min
S✓supp(w)

F (S)� (S)} (if F is monotone)

Proof. 8w 2 dom(⇥1), strong duality holds by Slater’s condition, hence

⇥1(w) = min
↵

{
X

S✓V

↵SF (S) :
X

S✓V

↵S1S � |w|,
X

S✓V

↵S = 1,↵S � 0}.

= min
↵�0

max
⇢2R,2Rd

+

{
X

S✓V

↵SF (S) + 
T (|w|�

X

S✓V

↵S1S) + ⇢(1�
X

S✓V

↵S)}.

= max
⇢2R,2Rd

+

min
↵�0

{T |w|+
X

S✓V

↵S(F (S)� 
T1S � ⇢) + ⇢}.

= max
⇢2R,2Rd

+

{T |w|+ ⇢ : F (S) � 
T1S + ⇢)}.

= max
2Rd

+

{T |w|+ min
S✓V

F (S)� (S)}.
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Let J = supp(|w|) then ⇤Jc = 0. Then for monotone functions F (S)�⇤(S) � F (S\J)�⇤(S), so we can restrict the
minimum to S ✓ J . The same proof holds for f�, with the Lagrange multiplier  2 Rd not constrained to be positive.

The following Corollary derives the variational form (14) for p 2 [1,1].
Corollary 5. Given any set function F : 2V ! R [ {+1}, ⇥p can be written 8w 2 dom(⇥p) as

⇥p(w) = max
2Rd

dX

j=1

 j(j , wj) + min
S✓V

F (S)� (S).

= max
2Rd

+

dX

j=1

 j(j , wj) + min
S✓V

F (S)� (S). (if F is monotone)

where

 j(j , wj) :=

(

1/q
j |wj | if |wj |  

1/p
j ,j � 0

1
p |wj |p + 1

qj otherwise

Proof. By Propositions 6 and 7, we have 8w 2 dom(⇥p), i.e., 9⌘ 2 [0, 1]d, s.t supp(w) ✓ supp(⌘), ⌘ 2 dom(f�),

⇥p(w) = inf
⌘2[0,1]d

1

p

dX

j=1

|wj |p

⌘
p�1
j

+
1

q
f
�(⌘)

= inf
⌘2[0,1]d

1

p

dX

j=1

|wj |p

⌘
p�1
j

+
1

q
max

⇢2R,2Rd
{T ⌘ + ⇢ : F (S) � 

T1S + ⇢}.

?
= max

⇢2R,2Rd
inf

⌘2[0,1]d
{1
p

dX

j=1

|wj |p

⌘
p�1
j

+
1

q

T
⌘ + ⇢ : F (S) � 

T1S + ⇢}.

(?) holds by Sion’s minimax theorem [34, Corollary 3.3]. Note also that

inf
⌘j2[0,1]

1

p

|wj |p

⌘
p�1
j

+
1

q
j⌘j =

(

1/q
j |wj | if |wj |  

1/p
j ,j � 0

1
p |wj |p + 1

qj otherwise
:=  j(j , wj)

where the minimum is ⌘⇤j = 1 if j  0. If j � 0, the infimum is zero if wj = 0. Otherwise, the minimum is achieved at
⌘
⇤
j = min{ |wj |

1/p
j

, 1} (if j = 0, ⌘⇤j = 1). Hence,

⇥p(w) = max
2Rd

dX

j=1

 j(j , wj) + min
S✓V

F (S)� (S).

7.2 Necessary conditions for support recovery (Proof of Theorem 1)

Before proving Theorem 1, we need the following technical Lemma.
Lemma 6. Given J ⇢ V and a vector w s.t supp(w) ✓ J , if � is not decomposable at w w.r.t J , then 9i 2 J

c such that
the i-th component of all subgradients at w is zero; 0 = [@�(w)]i.

Proof. If � is not decomposable at w and 0 6= [@�(w)]i, 8i 2 J
c, then 8MJ > 0, 9� 6= 0, supp(�) ✓ J

c s.t.,
�(w + �) < �(w) + MJk�k1. In particular, we can choose MJ = infi2Jc,v2@�(wJ ),vi 6=0 |vi| > 0, if the inequality
holds for some� 6= 0, then let imax denote the index where |�imax | = k�k1. Then given any v 2 @�(w) s.t., vimax 6= 0,
we have

�(w + k�k11imax)  �(w +�) < �(w) +MJk�k1
 �(w) + hv, k�k11imaxsign(vimax)i
 �(w + k�k11imax)

which leads to a contradiction.
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Theorem 1. The minimizer ŵ of minw2Rd L(w)� z
>
w+ ��(w), where L is a strongly-convex and smooth loss function

and z 2 Rd has a continuous density w.r.t to the Lebesgue measure, has a weakly stable support w.r.t. �, with probability
one.

Proof. We will show in particular that � is decomposable at ŵ w.r.t supp(ŵ). Since L is strongly-convex, given z the
corresponding minimizer ŵ is unique, then the function h(z) := argminw2Rd L(w)� z

T
w + ��(w) is well defined. We

want to show that

P (8z, � is decomposable at h(z) w.r.t supp(h(z)) )
= 1� P (9z, s.t, � is not decomposable at h(z) w.r.t supp(h(z)) )
� 1� P (9z, s.t., 9i 2 (supp(h(z)))c , [@�(h(z))]i = 0) by lemma 6
= 1.

Given fixed i 2 V , we show that the set Si := {z : i 2 (supp(h(z)))c , [@�(h(z))]i = 0} has measure zero. Then, taking
the union of the finitely many sets Si, 8i 2 V , all of zero measure, we have P (9z, s.t., 9i 2 (supp(h(z)))c , [@�(h(z))]i =
0) = 0 .

To show that the set Si has measure zero, let z1, z2 2 Si and denote by µ > 0 the strong convexity constant of L. We have
by convexity of �:

⇣�
z1 �rL(h(z1))

�
�

�
z2 �rL(h(z2))

�⌘>⇣
h(z1)� h(z2)

⌘
� 0

(z1 � z2)
>(h(z1)� h(z2)) �

�
rL(h(z1))�rL(h(z2))

�>�
h(z1)� h(z2)

�

(z1 � z2)
>(h(z1)� h(z2)) � µkh(z1)� h(z2)k22

1

µ
kz1 � z2k2 � kh(z1)� h(z2)k2

Thus h is a deterministic Lipschitz-continuous function of z. Let J = supp(h(z)), then by optimality conditions zJ �
rL(h(zJ)) 2 @�(h(zJ)) (since h(z) = h(zJ)), then zi � rL(h(zJ))i = 0 since [@�(h(zJ))]i = 0. and thus zi is a
Lipschitz-continuous function of zJ , which can only happen with zero measure.

7.3 Sufficient conditions for support recovery (Proof of Lemma 3 and Theorem 2)

Lemma 3. Let � be a monotone convex function, �(|w|↵) admits the following majorizer, 8w0 2 Rd, �(|w|↵)  (1 �
↵)�(|w0|↵) + ↵�(|w0|↵�1 � |w|), which is tight at w0.

Proof. The function w ! w
↵ is concave on R+ \ {0}, hence

|wj |↵  |w0
j |↵ + ↵|w0

j |↵�1(|wj |� |wj |0)
|wj |↵  (1� ↵)|w0

j |↵ + ↵|w0
j |↵�1|wj |

�(|w|↵)  �((1� ↵)|w0|↵ + ↵|w0|↵�1 � |wj |) (by monotonicity)

�(|w|↵)  (1� ↵)�(|w0|↵) + ↵�(|w0|↵�1 � |w|) (by convexity)

If wj = 0 for any j, the upper bound goes to infinity and hence it still holds.

Theorem 2. [Consistency and Support Recovery] Let � : Rd ! R+ be a proper normalized absolute monotone convex
function and denote by J the true support J = supp(w⇤). If |w⇤|↵ 2 int dom �, J is strongly stable with respect to �
and �n satisfies �np

n
! 0, �n

n↵/2 ! 1, then the estimator (6) is consistent and asymptotically normal, i.e., it satisfies

p
n(ŵJ � w

⇤
J)

d�! N (0,�2
Q

�1
JJ ), (7)

and
P (supp(ŵ) = J) ! 1. (8)
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Proof. We will follow the proof in [38]. We write ŵ = w
⇤+ ûp

n
and n(u) =

1
2ky�X(w⇤+ up

n
)k22+�n�(c�|w⇤+ up

n
|),

where c = |w0|↵�1. Then û = argminu2Rd  n(u). Let Vn(u) =  n(u)� n(0), then

Vn(u) =
1

2
u
T
Qu� ✏

T Xup
n
+ �n

�
�(c � |w⇤ +

up
n
|)� �(c � |w⇤|)

�

Since w0 is a
p
n-consistent estimator to w

⇤, then
p
nw

0
Jc = Op(1) and n

1�↵
2 c

�1
Jc = Op(1). Since �n

n↵/2 ! 1, by stability
of J , we have

�n

�
�(c � |w⇤ +

up
n
|)� �(c � |w⇤|)

�
= �n

�
�(cJ � |w⇤

J +
uJp
n
|+ cJc � |uJc |p

n
)� �(cJ � |w⇤

J |)
�

� �n

�
�(cJ � |w⇤

J +
uJp
n
|) +MJkcJc � |uJc |p

n
k1 � �(cJ � |w⇤

J |)
�

= �n

�
�(cJ � |w⇤

J +
uJp
n
|)� �(cJ � |w⇤

J |)
�
+MJk�nn�↵/2

n
↵�1
2 cJc � |uJc |k1

p�! 1 if uJc 6= 0 (16)

Otherwise, if uJc = 0, we argue that

�n

�
�(c � |w⇤ +

up
n
|)� �(c � |w⇤|)

�
= �n(�(cJ � |w⇤

J +
uJp
n
|)� �(cJ � |w⇤

J |))
p�! 0. (17)

To see this note first that since w0 is a
p
n-consistent estimator to w

⇤, then cJ = |w0
J |↵�1 p�! |w⇤

J |↵�1, cJ � |w⇤
J |

p�! |w⇤
J |↵

and cJ � |w⇤
J + uJp

n
| p�! |w⇤

J |↵. Then by the assumption |w⇤|↵ 2 int dom �, we have that both cJ � |w⇤
J |, cJ � |w⇤

J + uJp
n
| 2

int dom � with probability going to one. By convexity, we then have:

�n(�(cJ � |w⇤
J +

uJp
n
|)� �(cJ � |w⇤

J |)) � hr�(cJ � |w⇤
J |),�n

uJp
n
i

�n(�(cJ � |w⇤
J +

uJp
n
|)� �(cJ � |w⇤

J |))  hr�(cJ � |w⇤
J +

uJp
n
|),�n

uJp
n
i

where r�(w) denotes a subgradient of � at w.

For all w 2 int dom � where � is convex, monotone and normalized, we have that kzk1 < 1, 8z 2 @�(w). To see
this, note that since w 2 int dom �, 9� > 0 s.t., 8w0 2 B�(w),�(w0) < +1. Let w0 = w + sign(z)1imax�, where imax

denotes the index where |zimax | = kzk1 then by convexity we have

�(w0) � �(w) + hz, w0 � wi, 8z 2 @�(w)

+1 > �(w0) � kzk1�, 8z 2 @�(w), (since �(w) � 0)

Since �np
n
! 0, we can then conclude by Slutsky’s theorem that (17) holds.

Hence by (16) and (17),

�n

�
�(c � |w⇤ +

up
n
|)� �(c � |w⇤|)

� p�!
(
0 if uJc = 0

1 Otherwise
. (18)

By CLT, XT ✏p
n

d�! W ⇠ N (0,�2
Q), it follows then that Vn(u)

d�! V (u), where

V (u) =

(
1
2u

T
JQJJuJ �W

T
J uJ if uJc = 0

1 Otherwise
.

Vn is convex and the unique minimum of V is uJ = Q
�1
JJWJ , uJc = 0, hence by epi-convergence results [c.f., [38]]

ûJ
d�! Q

�1
JJWJ ⇠ N (0,�2

Q
�1
JJ ), ûJc

d�! 0. (19)
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Since û =
p
n(ŵ � w

⇤), then it follows from (19) that

ŵJ
p�! w

⇤
J , ŵJc

p�! 0 (20)

Hence, P (supp(ŵ) ◆ J) ! 1 and it is sufficient to show that P (supp(ŵ) ✓ J) ! 1 to complete the proof.

For that denote Ĵ = supp(ŵ) and let’s consider the event Ĵ \ J 6= ;. By optimality conditions, we know that

�X
T
Ĵ\J(Xŵ � y) 2 �n[@�(c � ·)(ŵ)]Ĵ\J

Note, that �
XT

Ĵ\J (Xŵ�y)
p
n

=
XT

Ĵ\JX(ŵ�w⇤)
p
n

�
XT

Ĵ\J✏p
n

. By CLT,
XT

Ĵ\J✏p
n

d�! W ⇠ N (0,�2
QĴ\J,Ĵ\J) and by (20)

ŵ � w
⇤ p�! 0 then �

XT
Ĵ\J (Xŵ�y)

p
n

= Op(1).

On the other hand,
�ncĴ\Jp

n
= �nn

1�↵
2 n

↵�1
2 cĴ\J ! 1, hence

�ncĴ\Jp
n

c
�1
Ĵ\JvĴ\J ! 1, 8v 2 @�(c � ·)(ŵ), since

c
�1
Ĵ\JvĴ\J = Op(1)�1. To see this, let w0

J = ŵJ and 0 elsewhere. Note that by definition of the subdifferential and
the stability assumption on J , there must exists MJ > 0 s.t

�(c � w0) � �(c � ŵ) + hvĴ\J ,�ŵĴ\Ji

� �(c � w0) +MJkcĴ\J � ŵĴ\Jk1 � kc�1
Ĵ\J � vĴ\Jk1kcĴ\J � ŵĴ\Jk1

kc�1
Ĵ\J � vĴ\Jk1 � MJ

We deduce then P (supp(ŵ) ✓ J) = 1� P (Ĵ \ J 6= ;) = 1� P (optimality condition holds) ! 1.

7.4 Discrete stability (Proof of Proposition 2 and relation to weak submodularity)

Proposition 2. If F is a finite-valued monotone function, F is ⇢-submodular iff discrete weak stability is equivalent to
strong stability.

Proof. If F is ⇢-submodular and J is weakly stable, then 8A ✓ J, 8i 2 J
c
, 0 < ⇢[F (J[{i})�F (J)]  F (J[{i})�F (J),

i.e., J is strongly stable w.r.t. F . If F is such that any weakly stable set is also strongly stable, then if F is not ⇢-submodular,
then 8⇢ 2 (0, 1] there must exists a set B ✓ V , s.t., 9A ✓ B, i 2 B

c, s.t., ⇢[F (B[{i})�F (B)] > F (A[{i})�F (A) �
0. Hence, F (B [ {i}) � F (B) > 0, i.e., B is weakly stable and thus it is also strongly stable and we must have
F (A [ {i}) � F (A) > 0. Choosing then in particular, ⇢ = minB✓V minA✓B,i2Bc

F (A[{i})�F (A)
F (B[{i})�F (B) 2 (0, 1], leads to a

contradiction; minA✓B,i2Bc F (A [ {i})� F (A) � ⇢[F (B [ {i})� F (B)] > F (A [ {i})� F (A).

We show that ⇢-submodularity is a stronger condition than weak submodularity. First, we recall the definition of weak
submodular functions.
Definition 7 (Weak Submodularity (c.f., [7, 11])). A function F is weakly submodular if 8S,L, S \ L = ;, F (L [ S) �
F (L) > 0,

�S,L =

P
i2S F (L [ {i})� F (L)

F (L [ S)� F (L)
> 0

Proposition 8. If F is ⇢-submodular then F is weakly submodular. But the converse is not true.

Proof. If F is ⇢-submodular then 8S,L, S \ L = ;, F (L [ S)� F (L) > 0, let S = {i1, i2, · · · , ir}

F (L [ S)� F (L) =
rX

k=1

F (L [ {i1, · · · , ik})� F (L [ {i1, · · · , ik�1})


rX

k=1

1

⇢
(F (L [ {ik})� F (L))

) �S,T = ⇢ > 0.
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We show that the converse is not true by giving a counter-example: Consider the function defined on V = {1, 2, 3}, where
F ({i}) = 1, 8i, F ({1, 2}) = 1, F ({2, 3}) = 2, F ({1, 3}) = 2, F ({1, 2, 3}) = 3. Then note that this function is weakly
submodular. We only need to consider sets |S| � 2, since otherwise �S,T > 0 holds trivially. Accordingly, we also only
need to consider L which is the empty set or a singleton. In both cases �S,T > 0. However, this F is not ⇢-submodular,
since F (1, 2)� F (1) = 0 < ⇢(F (1, 2, 3)� F (1, 3)) = ⇢ for any ⇢ > 0.

7.5 Relation between discrete and continuous stability (Proof of Propositions 3 and 4, and Corollary 3)

First, we present a useful simple lemma, which provides an equivalent definition of decomposability for monotone function.
Lemma 7. Given w 2 Rd

, J ✓ J, supp(w) = J , if � is a monotone function, then � is decomposable at w w.r.t J iff
9MJ > 0, 8� > 0, i 2 J

c
, s.t,

�(w + �1i) � �(w) +MJ�.

Proof. By definition 2, 9MJ > 0, 8� 2 Rd
, supp(�) ✓ J

c
,

�(w +�) � �(w) +MJk�k1.

in particular this must hold for � = �1i. On the other hand, if the inequality hold for all �1i, then given any � s.t.
supp(�) ✓ J

c let imax be the index where �imax = k�k1 and let � = k�k1, then

�(w +�) � �(w + �imax) � �(w) +MJ� = �(w) +MJk�k1.

Proposition 3. Given any monotone set function F , all sets J ✓ V strongly stable w.r.t to F are also strongly stable w.r.t
⌦p and ⇥p.

Proof. We make use of the variational form (11). Given a set J stable w.r.t to F and supp(w) ✓ J , let

⇤ 2 argmax2Rd

+
{
P

i2J 
1/q
i |wi| : (A)  F (A), 8A ✓ V }, then ⌦(w) = |wJ |T (⇤J)1/q . Note

that 8A ✓ J, F (A [ i) > F (A), by definition 3. Hence, 8i 2 J
c, we can define 

0 2 Rd
+ s.t.,


0
J = 

⇤
J , 

0
(J[i)c = 0 and 

0
i = minA✓J F (A [ i) � F (A) > 0. Note that 

0 is feasible, since
8A ✓ J,

0(A) = 
⇤(A)  F (A) and 

0(A + i) = 
⇤(A) + 

0
i  F (A) + F (A [ i) � F (A) = F (A [ i).

For any other set 0(A) = 
0(A \ (J + i))  F (A \ (J + i))  F (A), by monotonicity. It follows then that

⌦(w + �1i) = max2Rd
+
{
Pd

i2J[i 
1/q
i |wi| : (A)  F (A), 8A ✓ V } � |wJ |T (⇤J)1/q + �(0i)

1/q � ⌦(w) + �M , with
M = (0i)

1/q
> 0. The proposition then follows by lemma 7.

Similarly, the proof for ⇥p follows in a similar fashion. We make use of the variational form (14). Given a set J stable
w.r.t to F and supp(w) ✓ J , first note that this implicity implies that F (J) < +1 and hence ⇥p(w) < +1. Let

⇤ 2 argmax2Rd

+

Pd
j=1  j(j , wj) + minS✓V F (S) � (S) and S

⇤ 2 argminS✓J F (S) � 
⇤(S). Note that 8S ✓

J, 8i 2 J
c
, F (S [ i) > F (S), by definition 3. Hence, 8i 2 J

c, we can define 0 2 Rd
+ s.t., 0J = 

⇤
J , 0(J[i)c = 0

and 0i = minS✓J F (S [ i) � F (S) > 0. Note that 8S ✓ J, F (S) � 
0(S) = F (S) � 

⇤(S) � F (S⇤) � 
⇤(S⇤) and

F (S+ i)�0(S+ i) = F (S+ i)�⇤(S)�0i � F (S+ i)�⇤(S)�F (S+ i)+F (S) � F (S⇤)�⇤(S⇤). Note also that
 i(0i, �) = (0i)

1/q
� if �  (0i)

1/p, and  i(0i, �) =
1
p�

p + 1
q

0
i = �( 1p�

p�1 + 1
q

0
i�

�1) � �(0i)
1/q otherwise. It follows

then that ⇥p(w + �1i) �
P

j2J  j(j , wj) + (0i)
1/q
� + minS✓J[i F (S) � 

0(S) �
P

j2J  j(j , wj) + (0i)
1/q
� +

minS✓J F (S)� 
⇤(S) = ⇥p(w) + �M with M = (0i)

1/q
> 0. The proposition then follows by lemma 7.

Proposition 4. If F = F� and J is strongly stable w.r.t ⌦1, then J is strongly stable w.r.t F . Similarly, for any monotone
F , if J is strongly stable w.r.t ⇥1, then J is strongly stable w.r.t F .

Proof. F (A+ i) = ⌦1(1A + 1i) = ⇥1(1A + 1i) > ⌦1(1A) = ⇥1(1A) = F (A), 8A ✓ J.

Corollary 3. If F is monotone submodular and J is weakly stable w.r.t ⌦1 = ⇥1 then J is weakly stable w.r.t F .

Proof. If F is a monotone submodular function, then ⌦1(w) = ⇥1(w) = fL(|w|). If J is not weakly stable w.r.t F ,
then 9i 2 J

c s.t., F (J [ {i}) = F (J). Thus, given any w, supp(w) = J , choosing 0 < � < mini2J |wi|, result in
fL(|w|+ �1i) = fL(|w|), which contradicts the weak stability of J w.r.t to ⌦1 = ⇥1.


