Marwa El Halabi, Francis Bach, Volkan Cevher

7 Appendix

7.1 Variational forms of convex envelopes (Proof of lemma 2 and Remark 1)

In this section, we recall the different variational forms of the homogeneous convex envelope derived in [31] and derive
similar variational forms for the non-homogeneous convex envelope, which includes the ones stated in lemma 2). These
variational forms will be needed in some of our proofs below.

Lemma 4. The homogeneous convex envelope Q, of F}, admits the following variational forms.
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The non-homogeneous convex envelope of a set function F, over the unit £..-ball was derived in [10], where it was shown
that © o (w) = inf,cjo1)a{f(n) : 7 > |w|} where f is any proper, Ls.c. convex extension of F' (c.f., Lemma 1 [10]). A
natural choice for f is the convex closure of F, which corresponds to the tightest convex extension of F on [0, 1]¢. We
recall the two equivalent definitions of convex closure, which we have adjusted to allow for infinite values.

Definition 5 (Convex Closure; c.f., [9, Def. 3.1]). Given a set function F : 2V — R, the convex closure f~ : [0,1]* = R
is the point-wise largest convex function from [0, 1]% to R that always lowerbounds F.

Definition 6 (Fiquivalent definition of Convex Closure; c.f., [35, Def. 1] and [9, Def. 3.2]). Given any set function
f:{0,1}™ = R, the convex closure of f can equivalently be defined Yw € [0, 1]™ as:

=inf{ ) asF(S):w= Y asls, »_ asg=1as >0}

SCV SCV SCV

It is interesting to note that f~(w) = fr(w) where f7, is Lovész extension iff F' is a submodular function [35].

The following lemma derive variational forms of ©,, for any p > 1 that parallel the ones known for the homogeneous
envelope.

Lemma 5. The non-homogeneous convex envelope ©,, of F,, admits the following variational forms.

Ouo(w) =inf{ > agF(S): Y asls >|w], Y as=1,as >0} (13)
scv scv scv
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0,(w) = ma ;¢j(n],wj) + min F(8) — k(S), Yw € dom(0,(w)). (14)
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where dom(0,) = {w|3n € [0,1]¢ s.t supp(w) C supp(n),n € dom(f~)}, and where we define

H}/q\wj\ if\wﬂﬁrs}/p,njzo

Vj(kj, wy) = { g

%|wj|” + %mj otherwise.
If F' is monotone, ©, = f~, then we can replace f~ by O, in (15) and we can restrict k € Ri in (14).

To prove the variational form (13) in Lemma 5, we need to show first the following property of f~.
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Proposition 5 (c.f., [9, Prop. 3.23] ). The minimum values of a proper set function F and its convex closure f~ are equal,
ie.,
. — — min F(S
L 7 (w) = min F(S)
If S is a minimizer of f(.S), then 1g is a minimizer of f~. Moreover, if w is a minimizer of f~, then every set in the support
of o, where f~(w) = > gy asF(S), is a minimizer of F.

Proof. First note that, {0, 1}% C [0, 1] implies that f~(w*) < F(S*). On the other hand, f~(w*) = > gy a5 F(S) >
> _scy agF'(S7) = F(S*). The rest of the proposition follows directly. - O

Given the choice of the extension f = f~, the variational form (13) of O, given in lemma 5 follows directly from
definition 6 and proposition 5, as shown in the following corollary.

Corollary 4. Given any set function F : 2V — R, and its corresponding convex closure f~, the convex envelope of
F(supp(w)) over the unit {o-ball is given by

Oc(w) =if{ Y asF(S): Y asls >|w], Y as=1as >0}

SCV SCV SCV

= hgf{z F(S)[[0%]oe : D v% = Jw], Y [[¥]loe = 1,supp(v®) C S}.

SCV SCv SCV

Proof. f~ satisfies the first 2 assumptions required in Lemma 1 of [10], namely, f~ is a lower semi-continuous convex
extension of F' which satisfies

_ _ T, - d
gléi‘)/(m(S) F(S) wg&)ﬁ(lmw [~ (w),Ym € Ry

To see this note that m” w* — f~ (w*) = Y g at(mTLs — F(9)) > Y gcy ab(mT1g. — F(S%)) = m(S*) — F(S*).
The other inequality is trivial. The corollary then follows directly from Lemma 1 in [10] and definition 6. O

Note that dom(©..) = {w : In € [0,1]? Ndom(f~),n > |w|}. Note also that O, is monotone even if F' is not. On the
other hand, if F' is monotone, then f~ is monotone on [0, 1]¢ and O, (w) = f~(|w]). Then the proof of remark 1 follows,
since if F' is a monotone submodular function and f, is its Lovdsz extension, then O, (w) = f~(Jw|) = fr(jw|) =
Qoo (w), Vw € [—1,1]%, where the last equality was shown in [1].

Next, we derive the convex relaxation of F}, for a general p > 1.

Proposition 6. Given any set function F : 2V — R_. and its corresponding convex closure f~, the convex envelope of
Fya(w) = uF (supp(w)) + A|wl[?, is given by

. S fuy|? -
Op(w) = inf A — +unf(n).
et = nf

Note that dom(©,,) = {w|3n € [0, 1]¢ s.t supp(w) C supp(n),n € dom(f)}.

Proof. Given any proper l.s.c. convex extension f of I, we have:

First for the case where p = 1:

ia(s) = sup w's — uF(supp(w)) — Al|w])y
weR™
= sup sup  |w|(|s| = AL) — pF(n)
nef{0,1}4  Tsupp(w)="

sign(w)=sign(s)

= js|<an}(s) — nei{gfl}d 1F(n).
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Hence F;}(w) = A||wl|1 + inf, c 0,134 AF'(n). For the case p € (1,00).

Fry(s) = sup w”'s — pF(supp(w)) — Al|wl[?

weRd
= sup swp wlTls) = AwlE — uF(n)
AL e GO
Ap—1
= swp XD e e (Isi] = Aplaf =1, ¥y £ 0)
ne{0,1}4 (/\p)
AMp—1 _
= sup 22D e ).

nefo,1)e (Ap)?

— AMp=1)
We denote A = P

T
(W) = Sup w s = Fiin(s)
sERe

=sup min sTw—AT|s|7+ puf(n)
seRd n€[0,1]7

< inf sup  |s|T|w| = AnT|s|? 4+ pwf~(n)
nelo,1]4 ot s)eRI_’ -

= inf A(lwP)"n" P+ puf~(n),
nelo,1]¢

where the last equality holds since |w;| = Anig|si|91,Vn; # 0, otherwise s* = 0 if w; = 0 and oo otherwise. (%) holds by
Sion’s minimax theorem [34, Corollary 3.3]. Note then that the minimizer n* (if it exists) satisfies supp(w) C supp(n*).
Finally, note that if we take the limit as p — oo, we recover O, = inf, c(o 14 {f ™ (1) : n > |z} O

The variational form (15) given in lemma 5 follows from proposition 6 for the choice u = =, A =

S =

1
q
The following proposition derives the variational form (14) for p = co.

Proposition 7. Given any set function F : 2V — RU{+4o00}, and its corresponding convex closure f~, O, can be written
Vw € dom(O) as

_ T H _
Ocs(w) = né%{n fwl + min F(S) — £(3)}
= max{xkT|w|+ min F(S) - k(S)} (if F' is monotone)
wERY S Csupp(w)

Similarly Vw € dom(f~) we can write
_ . T . .
f(w) = Kme?R)g{n lw| + Smglg[* (S) — &(9)}

=0 (w) = max{kTw+ min F(S)—k(S)} (if F is monotone)
KERL S Csupp(w)

Proof. Yw € dom(0O,), strong duality holds by Slater’s condition, hence

O (w) = min{z asF(S) : Z agls > |w, Z as =1,as > 0}.

scv scv scv
=min max asF(S)+ w asls) + .
iy e (3 @sF(S) 44" (ul = 3 asts) +4(1 = 3 as)
= max mm{ﬁ |w] + Z as(F(S) — kT1s — p) + p}.
PER, nGRd a> scv
= max {/iT|w\+p F(S) > rkT15+p)}.
peER,KER

irelﬂaé{m |w| + Sr/nglgF(S) —k(9)}.
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Let J = supp(|w|) then x*. = 0. Then for monotone functions F'(S) —£*(S) > F(SN.J)—x*(S), so we can restrict the
minimum to S C J. The same proof holds for f~, with the Lagrange multiplier ~ € R? not constrained to be positive. []

The following Corollary derives the variational form (14) for p € [1, o0].
Corollary 5. Given any set function F : 2V — R U {+oc}, ©,, can be written Yw € dom(0,) as

Op(w) = HlaXZI/}J Kj, Wj) mln F(S) — k(9).

/{E]Rd
= max Z Y;(kj,w;) + Sr’nclg F(S) — &(9). (if F' is monotone)
where

/fl./q\wj\ if\wj|§/~i;/p,ﬁj20

YKy, w;) = { I

sl + L i
Slw;[P + K otherwise

Proof. By Propositions 6 and 7, we have Vw € dom(©,), i.e., 3n € [0,1]%, s.t supp(w) C supp(n),n € dom(f~),

|w; [P

1
O,(w) = inf - ff
p(w) = it Zn ()
|w]| T
= inf - T+ p:F(S) > kT1g + p}.
B2 G BT P24

|w,[? T
max  inf + = f@ +p:F(S) > kT1s + p}.
pER,kERY ne[0,1]¢ Z e n+p:F(S) = s+p}

(%) holds by Sion’s minimax theorem [34, Corollary 3.3]. Note also that

Llw;P 1 Iijl-/q|wj| 1f|w]|</€1/p kj 20
n;€[0.1] P 0¥~ q

= 1y (K5, w;)

1w P+ L.
slwi|P + 4k otherwise

where the minimum is n}-‘ = 1lifk; <0.If k; > 0, the infimum is zero if w; = 0. Otherwise, the minimum is achieved at

77 = min{ “;;,[ 1} (if kj = 0,77 = 1). Hence,

7.2 Necessary conditions for support recovery (Proof of Theorem 1)

Before proving Theorem 1, we need the following technical Lemma.

Lemma 6. Given J C V and a vector w s.t supp(w) C J, if ® is not decomposable at w w.r.t J, then 3i € J¢ such that
the i-th component of all subgradients at w is zero; 0 = [0®(w)];.

Proof. If ® is not decomposable at w and 0 # [0®(w)];,Vi € J¢, then VM; > 0,3A # 0,supp(A) C J° s,
®(w + A) < ®(w) + M;||Allso. In particular, we can choose M; = inf;c je yead(w,),viz0 |Vi] > 0, if the inequality
holds for some A # 0, then let 4y, denote the index where |A;__ | = ||A|loo- Then given any v € 9®(w) s.t., v;_, # 0,
we have

O(w + [[AllooLiya) < P(w + A)

< O(w) + My||Alloo
< O(w) + (0, | Afloo LipyaS1EN (Vi)
< O(w + [|Alloo L)

which leads to a contradiction. O
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Theorem 1. The minimizer W of min,,cga L(w) — 27w + A®(w), where L is a strongly-convex and smooth loss function
and z € R? has a continuous density w.r.t to the Lebesgue measure, has a weakly stable support w.r.t. ®, with probability
one.

Proof. We will show in particular that ® is decomposable at 1 w.r.t supp(w). Since L is strongly-convex, given z the
corresponding minimizer 1 is unique, then the function h(z) := argmin,,cpa L(w) — 27w + A®(w) is well defined. We
want to show that

P(Vz, ® is decomposable at h(z) w.r.t supp(h(2)) )

=1— P(3z,s.t, @ is not decomposable at h(z) w.r.t supp(h(z)) )

>1— P(3z, s.t, Ji € (supp(h(2)))°, [0®(h(z))]; = 0) by lemma 6
=1

Given fixed i € V, we show that the set S; := {z : i € (supp(h(2)))°, [0®(h(z))]; = 0} has measure zero. Then, taking
the union of the finitely many sets S;, Vi € V, all of zero measure, we have P(3z, s.t., 3i € (supp(h(2)))?, [0@(h(2))]; =
0)=0.

To show that the set S; has measure zero, let 21, zo € .S; and denote by i > 0 the strong convexity constant of L. We have
by convexity of ®:

(@17VLUqu)f(@A—VLMQQD)TOdm)fh@g)

0
(21— 22) T (h(z1) — h(z2)) = (VL(h(21)) = VL(h(22))) ' (h(z1) — h(z2))
(21— 22) T (h(21) = h(22)) > pllh(z1) — h(z2)]13

1
;qu — 222 > [|h(21) — h(22) |2

Y,

Y,

Thus h is a deterministic Lipschitz-continuous function of z. Let J = supp(h(z)), then by optimality conditions z; —
VL(h(zy)) € 0®(h(zy)) (since h(z) = h(zy)), then z; — VL(h(zs)); = 0 since [0®(h(zy))]; = 0. and thus z; is a
Lipschitz-continuous function of z 7, which can only happen with zero measure. O

7.3 Sufficient conditions for support recovery (Proof of Lemma 3 and Theorem 2)

Lemma 3. Let ® be a monotone convex function, ®(|w|®) admits the following majorizer, Vw® € R%, ®(|w|®) < (1 —
a)®(|wl|®) + a®(|wl|*~t o |w|), which is tight at w°.

Proof. The function w — w® is concave on R \ {0}, hence

Jw;|* < Jwj|® + afwy | (lws] = |w;|°)

w;|* < (1 = a)|w§|* + afw§]* 7 fwy|

O(jw|*) < O((1 - a)w’|* + afw’|*! o uwy)) (by monotonicity)
O(jw|*) < (1 = a)d(|w’|*) + a®(|w’|*~" o |w]) (by convexity)
If w; = 0 for any j, the upper bound goes to infinity and hence it still holds. ]

Theorem 2. [Consistency and Support Recovery] Let ® : R — R, be a proper normalized absolute monotone convex

function and denote by J the true support J = supp(w*). If |w*|* € int dom ®, J is strongly stable with respect to ®

and )\, satisfies )‘—\/ﬁ — 0, n)(;";Q — 00, then the estimator (6) is consistent and asymptotically normal, i.e., it satisfies

V(g —wy) B N(0,0°Q71), %)

and
P(supp(w) = J) — 1. )
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Proof. We will follow the proof in [38]. We write @ = w*—l—% and W, (u) = §[ly— X (w*+ 2= )HQ—I—/\ & (co|w*
where ¢ = |w®|*~!. Then @ = argmin, cga ¥, (u). Let V,, (u) = ¥, (u) — \Iln(O), then

+ =0

Vi(u) = §uTQu % + A (®(co Jw* + \/4) P(co|w*|))

Since w? is a /n-consistent estimator to w*, then v/nwY. = O,(1) andn' 2" ¢;} = O,(1). Since 25 — 00, by stability
of J, we have

An (®(co Jw* + %D = ®(cow|)) = A (P(cs o Jwh + %| +cjeo |7\L/J1%|) — ®(cy o lwhl))

Uy ‘UJC

— M c

yal ¥ Milles e T
* U, * _ a—1

= Ma(®B(e o + 1) = Ble o [w3)) + My dun~2n T e o el o

2o ifuge #£0 (16)

> )\,,L(<I>(CJ o|lwh +

lloe = @(c 0 [w]]))

Otherwise, if uj. = 0, we argue that

A (®(c o Jw* + %I) — ®(co |w*])) = An(®(cy 0w + f'

To see this note first that since w? is a y/n-consistent estimator to w*, then ¢; = |w
and ¢y o|wh + “\/—JE| 2y |w*|. Then by the assumption |w*|* € int dom ®, we have that both ¢; o [w’|, ¢ o [w* + ”—\/E\ €

int dom @ with probability going to one. By convexity, we then have:

) = @(cs o [wj)) 0. (17)

Glo 2 |t ey o wh| = |wh]®

An(@(eg 0wy + L) = Bleg o wi) 2 (Vo(es o w)), )
u u u
A(@(cy o |wy + —=]) = B(cs o [wh])) < (VB(cy o [w) + —=]), An—)

Vi N

where V®(w) denotes a subgradient of ® at w.

For all w € int dom ® where ® is convex, monotone and normalized, we have that ||z||.c < 00,Vz € 0®(w). To see
this, note that since w € int dom ®, 3§ > 0 s.t., V' € Bs(w), P(w’) < +oo. Let w’ = w + sign(z)1;,_ . d, where ipax

Imax

denotes the index where |z; . | = ||z||o then by convexity we have
O(w') > ®(w) + (2,w — w), Vz € 0P (w)
+00 > ®(w') > ||2]|0bs Vz € 0P(w), (since ®(w) > 0)

Since 2 N 0, we can then conclude by Slutsky’s theorem that (17) holds.
Hence by (16) and (17),

An(¢(co\w*+\/>\) (cow*|))£>{0 if“JC:,O. (18)

oo Otherwise

LW ~ N(0,02Q), it follows then that V, (1) % V (1), where

f

v _ %U;Q‘]‘]U]_W}wu‘] ifch:O
(u) = L.
o0 Otherwise

V,, is convex and the unique minimum of V' is uy = Q;} Wy, uze = 0, hence by epi-convergence results [c.f., [38]]

iy S QW ~ N(0,6°Q7Y), e S0, (19)
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Since @ = /n(w — w*), then it follows from (19) that
Wy L wh, e B0 (20)

Hence, P(supp(w) 2 J) — 1 and it is sufficient to show that P(supp(w) C J) — 1 to complete the proof.

For that denote .J = supp() and let’s consider the event J \ J # 0. By optimality conditions, we know that

—X7, (X —y) € \a[0(c o) ()] 5 5

AT
X—1 xT X (o—w* xT e
Note, that — '\J(ﬁ v Dnatee)  Sout gy o, }J 4 W o~ N(0,0%Qj 5 51,) and by (20)
X
W — w* 2 0 then — # =0,(1).

AnCiy l1-a a—1 AnCivy 1 N .
On the other hand, =22 = Ayn2 n 2 cj ; — o0, hence —= i lig = 0 Yo € 9P(c o -)(w), since

J\ Jv Vi = 0,(1)7!. To see this, let w’;, = 1, and 0 elsewhere. Note that by definition of the subdifferential and
the stability assumption on .J, there must exists M ; > 0 s.t

P(cow) = ®(cow) + (v 5, —Wj ;)
> ®(cow') + MJHCj\J ° wj\JHOO - ||C;\1J ° Uj\tiulucj\‘] ° wj\JHOO

ez o vl = My

We deduce then P(supp(i) C J) =1 — P(J\ J # () = 1 — P(optimality condition holds) — 1. O

7.4 Discrete stability (Proof of Proposition 2 and relation to weak submodularity)

Proposition 2. If F' is a finite-valued monotone function, F' is p-submodular iff discrete weak stability is equivalent to
strong stability.

Proof. If Fis p-submodular and .J is weakly stable, then VA C J,Vi € J¢, 0 < p[F(JU{i})—F(J)] < F(JU{i})—F(J),
i.e., J is strongly stable w.r.t. F'. If F'is such that any weakly stable set is also strongly stable, then if Fis not p-submodular,
then Vp € (0, 1] there must existsaset B C V,s.t., 3A C B,i € B, s.t., p[F(BU{i}) — F(B)] > F(AU{i}) - F(A) >
0. Hence, F(B U {i}) — F(B) > 0, i.e., B is weakly stable and thus it is also strongly stable and we must have
F(AU{i}) — F(A) > 0. Choosing then in particular, p = mingcy minacp ;epe % € (0,1], leads to a

contradiction; minac g jepe F(AU {i}) — F(A) > p[F(BU{i}) — F(B)] > F(AU {i}) — F(A). O

We show that p-submodularity is a stronger condition than weak submodularity. First, we recall the definition of weak
submodular functions.

Definition 7 (Weak Submodularity (c.f., [7, 111)). A function F is weakly submodular if VS, L,SNL =0, F(LU S) —

F(L)>0,
_ 2ies F(LU{i}) - F(L)
TSLT TUR(LUS) — F(L)

Proposition 8. If F' is p-submodular then F is weakly submodular. But the converse is not true.

>0

Proof. If F is p-submodular then VS, L,SNL =0, F(LUS) — F(L) > 0,let S = {i1,i2, " ,ir}

F(LUS) — ZF (LU {iy, - yig}) = F(LU {i1, - ,ik_1})

<y (P U L)~ F(D)
k=1

=yso =p>0.
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We show that the converse is not true by giving a counter-example: Consider the function defined on V' = {1, 2, 3}, where
F{i}) = 1,vi, F({1,2}) = 1, F({2,3}) = 2, F({1,3}) = 2, F({1,2,3}) = 3. Then note that this function is weakly
submodular. We only need to consider sets |S| > 2, since otherwise g7 > 0 holds trivially. Accordingly, we also only
need to consider L which is the empty set or a singleton. In both cases vs+ > 0. However, this I’ is not p-submodular,
since F(1,2) — F(1) =0 < p(F(1,2,3) — F(1,3)) = p for any p > 0. O

7.5 Relation between discrete and continuous stability (Proof of Propositions 3 and 4, and Corollary 3)

First, we present a useful simple lemma, which provides an equivalent definition of decomposability for monotone function.
Lemma 7. Given w € R? J C J supp(w) = J, if ® is a monotone function, then ® is decomposable at w w.r.t J iff

dMy > 0,V6 > 0,7 € J¢, s.t,
O(w + 61;) > ®(w) + M 0.
Proof. By definition 2, IM; > 0,YA € R, supp(A) C J¢,
P(w+A) > o(w) + M| Al

in particular this must hold for A = §1;. On the other hand, if the inequality hold for all 61;, then given any A s.t.
supp(A) C J¢ let imax be the index where A = ||Aljco and let § = ||A]| o, then

) > ®(w)+ M6 = P(w) + My||Alloo-

Tmax

P(w+A) > O(w+46

max

O
Proposition 3. Given any monotone set function F, all sets J C 'V strongly stable w.r.t to F' are also strongly stable w.r.t
Q, and O,
Proof. We make use of the variational form (11). Given a set J stable w.rt to F and supp(w) C J, let
K€ argmax,epe {Sie, ki wil  K(A) < F(A)L,YA C V3, then Q(w) = [wy|T(s})Y9.  Note
that VA C J F(A U i) > F(A), by definition 3. Hence, Vi € J¢ we can define v/ € R? s,
Ky = K%, “,(Jui)c = 0 and x; = minacyF(A U i) — F(A) > 0. Note that ' is feasible, since

For any other set k'(4) = K'(AN (J +1i) < F(AN(J + 1) < F(A), by monotonicity. It follows then that

Qw +91;) = maxmeRi{Z?eJui ni/q|wi\ ck(A) < F(A),YAC VY > |lws|T (k%)Y 4 6(kl)9 > Q(w) + 6 M, with
M = (k})*/% > 0. The proposition then follows by lemma 7.

VA C JK/(A) = r*(A) < F(A) and /(A + i) = v*(A) + 1, < F(A) + F(AU i) — F(A) = F(AU ).

Similarly, the proof for ©,, follows in a similar fashion. We make use of the variational form (14). Given a set .J stable
w.rt to F' and supp(w) C J, first note that this implicity implies that F'(J) < o0 and hence ©,(w) < +oo. Let
K" € argmax, cgd ijl Yi(kj, wy) + mingcy F(S) — k(S) and S* € argmingc ; F(S) — £*(S). Note that VS C
J, Vi € J¢,F(SUi) > F(S), by definition 3. Hence, Vi € J¢, we can define k' € R‘i s.t., k) = K%, f@’(JUi>C =0
and k] = mingcy FI(SU14) — F(S) > 0. Note that V.S C J, F(S) — /(S) = F(S) — k*(S) > F(S*) — k*(S*) and
F(S+i)—rK'(S+1) = F(S+i)—6*(S) =k, > F(S+1i)—s*(S) = F(S+1%)+ F(S) > F(5*)— k*(5*). Note also that
bi(k},8) = (k)96 if & < (k])'/P, and Pi(r}, 8) = L7 + £k} = 8(367~ 1 + Lrjd~1) > 8(x})!/4 otherwise. It follows

“p

then that ®p(w + 5]11) > ZjEJ ’(/Jj(lij,wj’) + (K;)l/qé + minsgjui F(S) — K’(S) > ZjEJ ’(ﬁj(lﬁj,ﬂ]j) + (K;)l/qé +
mingcy F(S) — £*(S) = ©,(w) + 6 M with M = (k.)}/7 > 0. The proposition then follows by lemma 7. O

Proposition 4. [f ' = F_ and J is strongly stable w.r.t Q o, then J is strongly stable w.r.t F. Similarly, for any monotone
F, if J is strongly stable w.r.t © o, then J is strongly stable w.r.t F.

Proof: F(A+1) = Quo(la+1;) =0 (la+1;) > Qoo(La) = O (14) = F(A),YAC J. O
Corollary 3. If F' is monotone submodular and J is weakly stable w.r.t Qoo = O then J is weakly stable w.r.t F.
Proof. If F is a monotone submodular function, then Q. (w) = Oy (w) = fr(Jw|). If J is not weakly stable w.r.t F,

then 3i € J¢s.t, F(JU {i}) = F(J). Thus, given any w,supp(w) = J, choosing 0 < § < min;e |w;|, result in
fr(Jw| +61;) = fr(|w]), which contradicts the weak stability of J w.r.t to Qo = O . O



