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A Justification on the accumulated cut cost

Let Dg = sup,, ,,e0il71 — 22|} denotes the diameter of
the polygon [J. V@, it is obviously that the length of the
newly generated cut line L (6, ) is smaller or equal to D,
i.e., |[L(0,u)| < Dg. Thus, we have the result for the sum
of perimeters in the [-th partitioning result as:
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B Mathematical formulation of the
three-restrictions on the measure
invariance

1. translation t: Ag(CY) = Ao o t(CE), where
ty(z) =z +v, Y € R%

2. rotation r: Ag = A.,g o re, Where ror(z) =
cosf —sind’
sind’  cosf’

in an angle of 6’;

- x refers to rotate the point &
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Figure 1: The design of a set of divisions in Lemma 1.
Red dashed lines denote the “rough” divisions, while green
dashed lines denote the “grained” divisions based on each
consecutive rough divisions.

3. restriction ¥: Ag(C%) = Ay, © ¥a(CR), where
A C Orefers to a sub-domain of O; o0 = {z|x €
A C O}, and C’(’A refers to the set of cut lines for all
the potential cuts crossing through A.

C Proof of Proposition 1

Lemma 1. Assume two convex polygons [11 and Uy have
the same length on the line segment (). There exists a set
of countable divisions passing through 1(0) in the direction
of 0 + 5. Each line sub-segment of 1(0) cut by consecutive
divisions is covered by the intersection of the U1, o, while
U1, 03 can move in the direction of 6 + /2.

Proof. The set of divisions (all in the direction of 6 + 7)
can be designed into two stages.

Stage 1, a set of “rough” divisions that pass through each
vertices of the two polygons.

Stage 2, sets of “grained” divisions based on the each con-
secutive rough divisions. Let D denotes the distance be-
tween two selected consecutive divisions, w; (ws) denotes



Running heading title breaks the line

the maximum width of polygon [J; (2) between these two
rough divisions and #; () is the smallest angle between
the edge of polygon []; ([3) and division.

We proceed the grained division in the following way.
In the case of min{w, tanfy,wytanfy} > D, there
is no need to do further grained division; otherwise, let
(0*,d*) = argy min{d; - tan6;,dy - tanfy}, the first
grained division is placed in the position of d* tan 6* (see
hy in Figure 1). The second grained division would design
based on the first one and proceed in a similar way.

Given the condition of d-tan # < D, we can do the partition
at the positions of:

l o0
{d-tan9~ (1_ ‘“g“e) }l_o 3)

d-tan§\! _
— ¢ =D.

where >°° d - tan 8 - (1
O

Proposition 1. The family of partition probability measure
AO (C%) keeps invariant under the operations of transla-
tion, rotation and restriction if and only if we have a con-
stant C such that \q(C%) = C - [1(9)|,VC € R™.

Proof. The reverse case is fully discussed as in the main
part of the paper.

On the other hand, assume we have two sets of cut lines
‘] .
lel,C,%Z with |ig, (61)] = 1o, (9)]-

Given that the measure Apj(CY) is invariant under the op-
erations of translation, rotation and restriction, we need to
prove the following equity:

Ao, (CF) = Ao, (C,) )

To complete this, we first do rotation and translation oper-
ations on [y, which is (I} := 7y o ¢, o [y, in a way that
0} and Oy project into the same image 1(9).

Based on Lemma 1, we divide [J} and Oy into countable
parts, where the intersection of these pair parts projects to
the same images. That is:

0) = U0, %, 0, = U O 5)
Yy® =g;® ol 10 @) e y® vke N (6)

Céfy(k) = {L(0,u) crossing IZI/l’(’€> |0 is fixed, u lies on 1) (6)}
1

Cg(k) = {L(0,u) crossing D;k) |0 is fixed, , u lies on 1¥) (0)}
2
(N

The additivity of measures indicates that:
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Eq. (4) is correct if we can prove the following

)\D;,(k)(c’ ’ ) ==

o)™ Apg (O,j(k)) Vke N (8)

From the measure invariance under rotation and translation,
0 0
we get \g, (CF,) = At (ry (00)) (to (e (C3,)))-

We also get
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D Proof of Proposition 2

Our partition would result in convex polygon. We have the
integration results for the convex polygon.

Lemma 2. The integration of the intersection line in a tri-
angle I\ over [0, ] equals to the triangle’s perimeter.

Proof. We first consider the acute triangle (Top row of Fig-
ure 2) case.

Let {l1,12,3} being the lengths of the triangle A’s edges
and {/BAC,ZABC,/ZACB} being the corresponding
angles. According to the law of sines, we have

=t kb (12)
Y7 sin/BAC ~ sinZABC  sin ZACB

where we use [ to denote the ratio between the length and
its corresponding angle.

W.l.o.g., we are cutting the block in the direction within
ZABC. The projection scalar of [ is calculated as | BD| =
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Figure 2: Top: Acute Triangle; Middle: Right Triangle;
Bottom: Obtuse Triangle.

lacosO(0 = ZABD). While 6 is ranging from 0 to
/ABE, the integration of BD is

ZABE ZABE
/ |BD|df :/ I3 cos 6df
0 0

=lysin |5 APE = [, cos(LBAC)
(13)
By using the similar routines, we can get the integration of
all the projection lines I as:
I =lycos ZBAC + Iy cos ZABC + 1y cos ZACB
+ 1y cos ZABC + 13 cos ZBAC + I3 cos LZACB
=lysin LZACB cos ZBAC + lysin ZACB cos LZABC

+ lgsin ZBAC cos ZACB + lgsin ZBAC cos ZABC
+ lpsin ZABC cos ZBAC + lgsin ZABC cos ZBAC

=lgsin(LACB + ZABC) + lgsin(£BAC + ZACB)
+ losin(£LABC + ZBAC)
=lgsin ZBAC + lpsin ZABC + lpsin ZACB
=li+la+13=PE(D)
(14)

Here the 20d equation holds due to the law of Sines.

The case of right triangle (Middle row of Figure 2) is
straight forward.

We can get
I =lycos ZBAC + Iy cos ZABC

+ 11 cos LZABC + I3 cos ZBAC
=l + s+ 13 = PE(A)

15)

On the case of obtuse triangle (Bottom row of Figure 2)

I =lycos ZBAD —l3cos ZCAD + 1y cos ZABE
—licos ZCBE +l3cos ZBAC + 11 cos LZABC
=l +1ls+1l3=PE(A)
(16)

O

Lemma 3. The integration of the length of the block’s pro-
Jjected image in the direction of 0 over (0, | equals to the
perimeter of the block, which is [ [1(0)|d6 = PE(D).

B

Figure 3: From convex polygon with n — 1 vertices to con-
vex polygon with n vertices.

Proof. Convex polygon with n vertices can be divided into
n — 2 triangles. Since we have the result for the case of
triangles, mathematical induction is used to get the conclu-
sion for any convex polygons.

Assume we have the result for convex polygon with n — 1
vertices, the additional part for its transformation to con-
vex polygon with n vertices is the triangle AABD. Cor-
respondingly, the increase in the scalar projection is com-
posed of two parts:

£ZDAB
= / |AD| sin 0d6
0

—|AD| — |AD|cos ZDAB = |AD| — |AE]
(17)

Li

ncrease
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where 0 = /ZDAF and L}

mcrease

|DF|in the angle of ZDAB.

refers to the integration of

ncrease

ZABD
L2 = / | BD| sin 0d6
0

=|BD| — |BD|cos ZABD = |BD| — |BE)|
(18)

Thus, the total add amount is Liycrease = |BD| + |AD] —
(|JAE|+|BE|) = |BD|+|AD|—|AB|. This is exactly the
increase of perimeter from the convex polygon with n — 1
vertices to convex polygon with n vertices. Thus, we can
get the result for all the convex polygons. O

Proposition 2 is a direct result of Lemma 3.

E Consistency

Some notations are firstly defined for convenient reference.
We use [J and A to denote a domain and its subdomain,
which is A C 0. M, and N, are individually defined
as the BSP-Tree processes on [J and A respectively. The
restriction is denoted as II, in which we have IIA M, =
N.. Also, we let ¢(0J) denote the measure over the block
0, which is ¢(0) = [, w(0)|i5(0)|dd and let OF denote
the partition after n-th cut on the convex polygon (.

Extending partition from A to[J For the BSP-Tree pro-
cess N, we let Z and {o; };en denotes the related Markov
chain and the corresponding time stops. For ¢ > 0, define
my to be the index such that t € [0y, , O, ), Nt = Zp, .

To extend N, from A to [J, let 7o = 0 and Yy = . For

n € N, we define 7,41 and Y,,;; inductively as:

&
C(Yn) - C(me)

where &, is generated from the exponential distribution
with mean 1.

o9

Tp1 = min{opm, 41,7, +

_ ittty a(Zm,)s o = Ome, 1
Ynir = { gencuta(Yy), otherwise. (20)

where lifty, A(Zm, ) denotes extending the existing cut
to the larger domain O and gencuta (Y;,) refers to the case
that there will be a new cut generated in [J that does not

cross into A.
According to the results of Proposition V.16 of chapter VI
in [1], the defined process {Y},, 7., } are well-defined.

Prove the correctness
next cut in X is:

Vt > 0, the waiting time for the

Gt = Tny1 — 1 21

According to 7,41’s definition (Eq. (19)), (; follows the
exponential distribution with the rate being ¢(Y;,,). What
is more, the probability of the event 7,1 = Om., +1 OCCUTS
with probability ¢(O2)/c(OH).

For the newly extended case {Y,},, while Y;, crosses
through A, the probability measure on C"”A is in propor-
tion to w(0)|la ()| and u locates only on I (6). Thus, we
get

b 0D wOla®) 1
c(0F)  Jyw@)a(0)ld [La(0)]
w(6)

=T (22)

while Y, does not cross through A\, , the probability mea-
sure on C’[%\A is in proportion to w(8)([Ig(0)] — [IA(0)])
and u locates only on Im\ A (€) (with the length [I5(6)| —
[LA(6)]). Thus, we get

0,) = c(0)

p_d _w@)Wa(0)] - [La(0)])

c(09) Jyw®(ta(0)] — [1a(9)])dd
1
(@) — [1A(0)]

Eq. (22) and Eq. (23) show that the probability measure of
Y,, equals to the one that directly generated in the domain
of [J. Therefore, the partition constructed by Eq. (19) and
Eq. (20) is a realization of BSP-Tree process in [].

According the transfer theorem (Theorem V.13 of chapter
VIin [1]), the partition distribution is consistent from [ to

A.

F MCMC for the BSP-RM

Algorithm 2 displays an MCMC solution for the BSP-RM.

Algorithm 2 MCMC for BSP-RM
Input: Training data X, Budget 7, Number of particles C
Output: A realization of the BSP-Tree process; coordi-
nates {(&;, ;) }j—y of X
1: Initialize the partition and nodes’ coordinates
2: fort=1:Tdo
3:  Use C-SMC algorithm to update the partition struc-
ture, according to Algorithm 1;
4:  Update nodes’ coordinates {;,; }_; according to
Eq. (24).
5: end for

F.1 Updating nodes’ coordinates (§;, ;)" ;

(&, m;)’s updating is implemented through the Metropolis-
Hastings algorithm. We propose the new values of &;, n;
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Figure 4: Toy Data Partition Visualization (Case 1).

with the uniform distribution in [0, 1] and the acceptance
ratio min(1, «) is as follows:

[T} =, Pleijl&is&virnyr 0)
[T, Pleil&?, &ismjrs 0)
o) = Di=a sl g, 60,0

’ Hi’:l P(ellj|n;)7n\]7élla0)

b

a(é-iaf?) =

(24)

G Visualization of Case 1

Figure 4 shows the visualization of Case 1.
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