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A Justification on the accumulated cut cost

Let D� = supx1,x2∈�{|x1 − x2|} denotes the diameter of
the polygon �. ∀θ, it is obviously that the length of the
newly generated cut line L(θ,uuu) is smaller or equal to D�,
i.e., |L(θ,uuu)| ≤ D�. Thus, we have the result for the sum
of perimeters in the l-th partitioning result as:

l∑
k=1

PE(�(k)
τl

) ≤ PE(�) + 2(l − 1)D� (1)

According to the Fatou’s lemma, we get
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which leads to lim inf l→∞
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l < ∞ almost
surely. Since
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τl ) is increasing for l almost

surely, we get
∑∞
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[∑l
k=1 PE(�(k)
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= ∞ almost
surely.

B Mathematical formulation of the
three-restrictions on the measure
invariance

1. translation t: λ�(Cθ�) = λtvvv� ◦ tvvv(Cθ�), where
tvvv(xxx) = xxx+ vvv,∀vvv ∈ R2;

2. rotation r: λ� = λrθ′� ◦ rθ′ , where rθ′(xxx) =[
cos θ′ − sin θ′

sin θ′ cos θ′

]
· xxx refers to rotate the point xxx

in an angle of θ′;
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Figure 1: The design of a set of divisions in Lemma 1.
Red dashed lines denote the “rough” divisions, while green
dashed lines denote the “grained” divisions based on each
consecutive rough divisions.

3. restriction ψ: λ�(Cθ4) = λψ4� ◦ ψ4(Cθ4), where
4 ⊆ � refers to a sub-domain of �; ψ4� = {xxx|xxx ∈
4 ⊂ �}, and Cθ4 refers to the set of cut lines for all
the potential cuts crossing through4.

C Proof of Proposition 1

Lemma 1. Assume two convex polygons �1 and �2 have
the same length on the line segment lll(θ). There exists a set
of countable divisions passing through lll(θ) in the direction
of θ + π

2 . Each line sub-segment of lll(θ) cut by consecutive
divisions is covered by the intersection of the�1,�2, while
�1,�2 can move in the direction of θ + π/2.

Proof. The set of divisions (all in the direction of θ + π
2 )

can be designed into two stages.

Stage 1, a set of “rough” divisions that pass through each
vertices of the two polygons.

Stage 2, sets of “grained” divisions based on the each con-
secutive rough divisions. Let D denotes the distance be-
tween two selected consecutive divisions, w1 (w2) denotes
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the maximum width of polygon�1 (�2) between these two
rough divisions and θ1 (θ2) is the smallest angle between
the edge of polygon �1 (�2) and division.

We proceed the grained division in the following way.
In the case of min{w1 tan θ1, w2 tan θ2} ≥ D, there
is no need to do further grained division; otherwise, let
(θ∗, d∗) = argθ,d min{d1 · tan θ1, d2 · tan θ2}, the first
grained division is placed in the position of d∗ tan θ∗ (see
h1 in Figure 1). The second grained division would design
based on the first one and proceed in a similar way.

Given the condition of d·tan θ < D, we can do the partition
at the positions of:{

d · tan θ ·
(

1− d · tan θ

D

)l}∞
l=0

(3)

where
∑∞
l=0 d · tan θ ·

(
1− d·tan θ

D

)l
= D.

Proposition 1. The family of partition probability measure
λ�(Cθ�) keeps invariant under the operations of transla-
tion, rotation and restriction if and only if we have a con-
stant C such that λ�(Cθ�) = C · |lll(θ)|,∀C ∈ R+.

Proof. The reverse case is fully discussed as in the main
part of the paper.

On the other hand, assume we have two sets of cut lines
Cθ1�1

, Cθ�2
with |lll�1

(θ1)| = |lll�2
(θ)|.

Given that the measure λ�(Cθ�) is invariant under the op-
erations of translation, rotation and restriction, we need to
prove the following equity:

λ�1
(Cθ1�1

) = λ�2
(Cθ�2

) (4)

To complete this, we first do rotation and translation oper-
ations on �1, which is �′1 := rθ′ ◦ tvvv′ ◦ �1, in a way that
�′1 and �2 project into the same image lll(θ).

Based on Lemma 1, we divide �′1 and �2 into countable
parts, where the intersection of these pair parts projects to
the same images. That is:

�′1 = ∪k�
′,(k)
1 ,�2 = ∪k�(k)

2 (5)
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2 , lll(k)(θ) ∈ Y (k),∀k ∈ N (6)
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The additivity of measures indicates that:
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Eq. (4) is correct if we can prove the following
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From the measure invariance under rotation and translation,
we get λ�1

(Cθ�1
) = λtvvv(rθ′ (�1))(tvvv(rθ′(C

θ
�1

))).

We also get

ΠY (k)π = {Y (k)} = ΠY (k)t(k)(ρπ) (9)
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Thus, we get
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D Proof of Proposition 2

Our partition would result in convex polygon. We have the
integration results for the convex polygon.

Lemma 2. The integration of the intersection line in a tri-
angle4 over [0, π] equals to the triangle’s perimeter.

Proof. We first consider the acute triangle (Top row of Fig-
ure 2) case.

Let {l1, l2, l3} being the lengths of the triangle 4’s edges
and {∠BAC,∠ABC,∠ACB} being the corresponding
angles. According to the law of sines, we have

l0 =
l1

sin∠BAC
=

l2
sin∠ABC

=
l3

sin∠ACB
(12)

where we use l0 to denote the ratio between the length and
its corresponding angle.

W.l.o.g., we are cutting the block in the direction within
∠ABC. The projection scalar of l2 is calculated as |BD| =
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Figure 2: Top: Acute Triangle; Middle: Right Triangle;
Bottom: Obtuse Triangle.

l2 cos θ(θ = ∠ABD). While θ is ranging from 0 to
∠ABE, the integration of BD is∫ ∠ABE

0

|BD|dθ =

∫ ∠ABE
0

l2 cos θdθ

=l2 sin θ|∠ABE0 = l2 cos(∠BAC)

(13)

By using the similar routines, we can get the integration of
all the projection lines I as:

I =l2 cos∠BAC + l2 cos∠ABC + l1 cos∠ACB

+ l1 cos∠ABC + l3 cos∠BAC + l3 cos∠ACB

=l0 sin∠ACB cos∠BAC + l0 sin∠ACB cos∠ABC

+ l0 sin∠BAC cos∠ACB + l0 sin∠BAC cos∠ABC

+ l0 sin∠ABC cos∠BAC + l0 sin∠ABC cos∠BAC

=l0 sin(∠ACB + ∠ABC) + l0 sin(∠BAC + ∠ACB)

+ l0 sin(∠ABC + ∠BAC)

=l0 sin∠BAC + l0 sin∠ABC + l0 sin∠ACB

=l1 + l2 + l3 = PE(4)

(14)

Here the 2nd equation holds due to the law of Sines.

The case of right triangle (Middle row of Figure 2) is
straight forward.

We can get

I =l2 cos∠BAC + l2 cos∠ABC

+ l1 cos∠ABC + l3 cos∠BAC

=l1 + l2 + l3 = PE(4)

(15)

On the case of obtuse triangle (Bottom row of Figure 2)

I =l2 cos∠BAD − l3 cos∠CAD + l2 cos∠ABE

− l1 cos∠CBE + l3 cos∠BAC + l1 cos∠ABC

=l1 + l2 + l3 = PE(4)

(16)

Lemma 3. The integration of the length of the block’s pro-
jected image in the direction of θ over (0, π] equals to the
perimeter of the block, which is

∫ π
0
|lll(θ)|dθ = PE(�).
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Figure 3: From convex polygon with n− 1 vertices to con-
vex polygon with n vertices.

Proof. Convex polygon with n vertices can be divided into
n − 2 triangles. Since we have the result for the case of
triangles, mathematical induction is used to get the conclu-
sion for any convex polygons.

Assume we have the result for convex polygon with n − 1
vertices, the additional part for its transformation to con-
vex polygon with n vertices is the triangle 4ABD. Cor-
respondingly, the increase in the scalar projection is com-
posed of two parts:

L1
increase =

∫ ∠DAB
0

|AD| sin θdθ

=|AD| − |AD| cos∠DAB = |AD| − |AE|
(17)
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where θ = ∠DAF and L1
increase refers to the integration of

|DF | in the angle of ∠DAB.

L2
increase =

∫ ∠ABD
0

|BD| sin θdθ

=|BD| − |BD| cos∠ABD = |BD| − |BE|
(18)

Thus, the total add amount is Lincrease = |BD| + |AD| −
(|AE|+ |BE|) = |BD|+ |AD|−|AB|. This is exactly the
increase of perimeter from the convex polygon with n − 1
vertices to convex polygon with n vertices. Thus, we can
get the result for all the convex polygons.

Proposition 2 is a direct result of Lemma 3.

E Consistency

Some notations are firstly defined for convenient reference.
We use � and 4 to denote a domain and its subdomain,
which is 4 ⊆ �. Mτ and Nτ are individually defined
as the BSP-Tree processes on � and 4 respectively. The
restriction is denoted as Π, in which we have Π4Mτ =
Nτ . Also, we let c(�) denote the measure over the block
�, which is c(�) =

∫
θ
ω(θ)|lll�(θ)|dθ and let O�n denote

the partition after n-th cut on the convex polygon �.

Extending partition from4 to� For the BSP-Tree pro-
cess Nτ , we let Z and {σl}l∈N denotes the related Markov
chain and the corresponding time stops. For t ≥ 0, define
mt to be the index such that t ∈ [σmt , σmt+1

], Nt = Zmt .

To extend Nτ from 4 to �, let τ0 = 0 and Y0 = �. For
n ∈ N, we define τn+1 and Yn+1 inductively as:

τn+1 := min{σmτn+1, τn +
ξn

c(Yn)− c(Zmτn )
} (19)

where ξn is generated from the exponential distribution
with mean 1.

Yn+1 =

{
liftYn,4(Zmτn ), τn+1 = σmτn+1;
gencut4(Yn), otherwise. (20)

where liftYn,4(Zmτn ) denotes extending the existing cut
to the larger domain � and gencut4(Yn) refers to the case
that there will be a new cut generated in � that does not
cross into4.

According to the results of Proposition V.16 of chapter VI
in [1], the defined process {Yn, τn} are well-defined.

Prove the correctness ∀t > 0, the waiting time for the
next cut in X is:

ζt = τn+1 − t (21)

According to τn+1’s definition (Eq. (19)), ζt follows the
exponential distribution with the rate being c(Ynt). What
is more, the probability of the event τn+1 = σmτn+1 occurs
with probability c(O4n )/c(O�n ).

For the newly extended case {Yn}n, while Yn crosses
through 4, the probability measure on Cθ4 is in propor-
tion to ω(θ)|lll4(θ)| and uuu locates only on lll4(θ). Thus, we
get

P =
c(O4n )

c(O�n )
· ω(θ)|lll4(θ)|∫

θ
ω(θ)|lll4(θ)|dθ

· 1

|lll4(θ)|

=
ω(θ)

c(O�n )
(22)

while Yn does not cross through 4, , the probability mea-
sure on Cθ�\4 is in proportion to ω(θ)(|lll�(θ)| − |lll4(θ)|)
and uuu locates only on lll�\4(θ) (with the length |lll�(θ)| −
|lll4(θ)|). Thus, we get

P =
c(O�n )− c(O4n )

c(O�n )
· ω(θ)(|lll�(θ)| − |lll4(θ)|)∫

θ
ω(θ)(|lll�(θ)| − |lll4(θ)|)dθ

· 1

|lll�(θ)| − |lll4(θ)|

=
ω(θ)

c(O�n )
(23)

Eq. (22) and Eq. (23) show that the probability measure of
Yn equals to the one that directly generated in the domain
of �. Therefore, the partition constructed by Eq. (19) and
Eq. (20) is a realization of BSP-Tree process in �.

According the transfer theorem (Theorem V.13 of chapter
VI in [1]), the partition distribution is consistent from � to
4.

F MCMC for the BSP-RM

Algorithm 2 displays an MCMC solution for the BSP-RM.

Algorithm 2 MCMC for BSP-RM
Input: Training data X , Budget τ , Number of particles C
Output: A realization of the BSP-Tree process; coordi-

nates {(ξi, ηi)}ni=1 of X
1: Initialize the partition and nodes’ coordinates
2: for t = 1 : T do
3: Use C-SMC algorithm to update the partition struc-

ture, according to Algorithm 1;
4: Update nodes’ coordinates {ξi, ηi}ni=1 according to

Eq. (24).
5: end for

F.1 Updating nodes’ coordinates (ξi, ηi)
n
i=1

(ξi, ηi)’s updating is implemented through the Metropolis-
Hastings algorithm. We propose the new values of ξi, ηi
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Figure 4: Toy Data Partition Visualization (Case 1).

with the uniform distribution in [0, 1] and the acceptance
ratio min(1, α) is as follows:

α(ξi, ξ
0
i ) =

∏n
j′=1 P (eij′ |ξi, ξ\i, ηj′ , θ)∏n
j′=1 P (eij′ |ξ0

i , ξ\i, ηj′ , θ)
;

α(ηj , η
0
j ) =

∏n
i′=1 P (ei′j |ηj , η\j , ξi′ , θ)∏n
i′=1 P (ei′j |η0

j , η\j , ξi′ , θ)

(24)

G Visualization of Case 1

Figure 4 shows the visualization of Case 1.
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