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Abstract

Existing techniques for improving scalability
of weight learning in Markov Logic Networks
(MLNs) are typically effective when the pa-
rameters of the MLN are tied, i.e., several
ground formulas in the MLN share the same
weight. However, to improve accuracy in real-
world problems, we typically need to learn sep-
arate weights for different groundings of the
MLN. In this paper, we present an approach
to perform efficient weight learning in MLNs
containing high-dimensional, untied formulas.
The fundamental idea in our approach is to
help the learning algorithm navigate the pa-
rameter search-space more efficiently by a)
tying together groundings of untied formulas
that are likely to have similar weights, and b)
setting good initial values for the parameters.
To do this, we follow a hierarchical approach,
where we first learn the parameters that are
to be tied using a non-relational learner. We
then use a relational learner to learn the tied-
parameter MLN with initial values derived
from parameters learned by the non-relational
learner. We illustrate the promise of our ap-
proach on three different real-world problems
and show that our approach yields much more
scalable and accurate results compared to ex-
isting state-of-the-art relational learning sys-
tems.

1 Introduction
Markov Logic Networks (MLNs) [6] repesent uncertain
knowledge using weighted first-order logic formulas,
where weights (that encode uncertainty) are shared
between all groundings of a formula. However, learning
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MLN weights is quite challenging since the probabilistic
graphical model underlying the MLN is extremely large
even though the number of weights to be learned is
quite small. A popular approach is to use lifted infer-
ence [17] methods that exploit symmetries, to scale up
weight learning. However, doing so presents two signifi-
cant difficulties. First, discriminative learning methods
break symmetries due to conditioning over non-query
variables, and second, when encoding features in real-
world applications, having too many symmetries does
not yield an accurate or expressive-enough model. For
example, suppose we are developing a classifier for top-
ics in a page, a feature commonly used is the words
in the page. Encoding this into a formula Word(w, p)
⇒ Topic(p, t), i.e., having all instantiations of this
formula share the same weight is not useful. There-
fore, typically such formulas are modeled using “+”
variables, i.e., Word(+w, p) ⇒ Topic(p, +t), which sig-
nifies that each grounding of the “+” variables, namely
each word and topic-class, has a different weight. We
call such formulas as untied formulas. Naturally, for
MLNs that encode high-dimensional features, the in-
creased number of weights, and a loss of symmetry due
to untied formulas makes learning even more difficult.

Our main contribution in this paper is an approach
to perform efficient learning in MLNs containing high-
dimensional, untied formulas. Specifically, as shown
in prior applications [22], encoding high-dimensional
features as MLN formulas makes learning infeasible
using relational learning, since we need to learn a large
number of parameters from essentially a single instance
(the training data is a single relational database). To
address this, we a) reduce the parameter search-space
by tying together groundings of untied formulas that
are likely to have similar weights, and b) perform weight
initialization for untied formulas for faster convergence.
Naturally, to begin with, we do not know which ground-
ings of untied formulas will turn out to have the same
weights. To predict similarity in learned weights w.r.t
to a given problem-of-interest, we encode groundings
of the untied formula as features in a non-relational
model that learns a classifier for this problem. We then
tie together groundings with similar parameter values
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in the non-relational learner and initialize a tied-weight
with the average parameter value. Our underlying as-
sumption being that groundings that exhibit similarity
in the non-relational learner will also exhibit similarity
in the relational learner. Further, tying the parame-
ters also in a sense regularizes the model, leading to
better generalization. On the tied-parameter MLN, we
use a relational learner to learn far fewer parameters,
and with stronger initial values, thus making it more
efficient.

We perform experiments on three different real-world
problems, namely collective classification of web-page
topics, entity resolution, and information extraction
using datasets available in Alchemy [12]. For our exper-
iments, we integrate SVMs with relational learning, and
show that our approach yields much more scalable and
accurate results, as compared to using state-of-the-art
relational learning systems such as Tuffy [16].

2 Background
2.1 Markov Logic Networks

Markov logic networks (MLNs) are template models
that define uncertain, relational knowledge as first-
order formulas with weights. The larger the weight of
a formula, the more likely is that formula to be true.
∞ weight formulas are hard constraints which should
always be true. Similarly formulas with −∞ weights
are always false. Thus, MLNs offer a flexible framework
to mix hard and soft rules. Given a set of constants
that represent the domains of variables in the MLN, an
MLN represents a factored probability distribution over
the possible worlds, in the form of a Markov network.
A world in an MLN is an assignment of 0/1 to all
ground atoms of the MLN (first order predicates in
the MLN whose variables have been substituted with
a constant). Specifically, the distribution is given by,

Pr(ω) = 1
Z

exp
(∑

i

wiNi(ω)
)

(1)

where wi is the weight of formula fi, Ni(ω) is the num-
ber of groundings of formula fi that evaluate to True
given a world ω, and Z is the normalization constant.

As a simple example of an MLN, suppose we want to
encode the fact that smokers and asthmatics are not
friends. We would design an MLN with a formula such
as Smokes(x) ∧ Friends(x, y) ⇒ ¬Asthma(y). Given
constants corresponding to the variables, x and y, the
MLN represents a joint distribution over all ground
atoms of Smokes, Friends, and Asthma. The two key
tasks in MLNs are weight learning, which is the task of
learning the weights attached to the formulas from a
relational database, and inference (prediction), which

is the task of answering queries posed over the learned
model given observations (evidence database). The
two main inference problems over MLNs are (1) poste-
rior or marginal estimation which involves finding the
marginal probability distribution of a random variable
(ground atom) in the ground Markov network given an
evidence database. For example computing the proba-
bility that Smokes(Ana) is true given Smokes(Bob) is
true and Friends(Ana,Bob) is true. (2) Maximum-a-
posteriori (MAP) estimation which involves finding an
assignment of values to all non-evidence variables such
that the assignment has the maximum probability. For
example, given that Smokes(Ana), Smokes(Bob) and
Friends(Ana,Bob) is true, what is the assignment to
all other ground atoms in the MLN such that their
joint probability is maximum.

Weights attached to first-order formulas can be learned
either generatively, in which the goal is to find weights
that maximize the log-likelihood of the data, or dis-
criminatively, in which the goal is to maximize the
conditional log-likelihood of the data given evidence.
In principle, both tasks can be solved using a standard
gradient ascent procedure with appropriate regulariza-
tion constraints. However, it turns out that computing
the gradient is computationally intractable, since the
problem of computing the gradient can be reduced
to the posterior marginal estimation task. Therefore,
practitioners often use alternate objective criteria such
as contrastive divergence [9], voted perceptron [4], and
pseudo log-likelihood [2] since the gradient of these
functions is easier to compute.

2.2 Related Work

In many practical applications of MLNs, researchers
have used various strategies to reduce the complexity
of learning and inference. Especially when the MLN
contains formulas that are hard to learn, alternate
techinques have been used to set the weights of such
formulas. For example, Venugopal et al. [22] learn
high-dimensional linguistic features using SVMs, Khot
et al. [11] set some weights manually for hard-to-learn
formulas in question answering, etc. Previously, Craven
and Slattery [5] proposed an approach to utilize Naive
Bayes within propositional rule-based learning through
FOIL. Our approach can be seen as an analogous ap-
proach but for learning first-order relational models.

On the other hand, there have been a few approaches
to perform weight learning in a more efficient manner.
Haaren et al. [8] used lifted inference in generative learn-
ing where symmetries are better preserved. Recently,
Mittal et al. [15] proposed a new approach to learn
more fine-grained weights. This approach is similar to
ours, but they learn the grouping through hidden vari-
ables, and therefore, they need to sum it out using the
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EM algorithm which is expensive. Particularly, in the
presence of high-dimensional, untied formulas, which is
our main focus here, their approach is computationally
much more expensive, and less scalable as compared
to our method. Chou et al [3]proposed a similar idea,
where they quantized Bayesian network parameters
based on similar values in the CPT. However, in the
case of MLNs, learning the original parameters is in-
feasible, which makes the quantization hard. Sarkhel
et al. [19] proposed an efficient discriminative learning
approach to learn more efficiently by using approximate
counting oracles. But in this case, they assume that
the weights of all groundings of a formula are shared.
Ahmadi et al. [1] proposed an approach to perform
learning in an online manner by using mini-batches of
data. Specifically, they partially ground the MLN using
a part of the dataset each time, and update the weights
incrementally. However, even with these advancements,
applying MLNs to practical applications remains chal-
lenging, where we need to encode features that may
possibly result in hundreds and thousands of ground
formulas, and we would need to perform relational
weight learning in an extremely large parameter space.
The approach that we propose in this paper is an ap-
proach to make relational learning applicable to large
problems, by integrating it with scalable non-relational
learners.

3 Weight Learning for Untied MLNs
Given a relational, closed-world training database D,
MLN structureM that encodes high-dimensional un-
tied formulas, and query predicates Q, our task is to
learn weights w forM that maximizes the conditional
log-likelihood (CLL) PM(D|Q). Instead of learning a
separate weight for each grounding of the untied for-
mulas, we learn weights for a smaller set of formulas
by tying together groups of untied formulas. To tie the
untied formulas together optimally, we learn which of
the untied formulas are likely to have similar weights,
using a supervised non-relational learner. We then
use weights derived from the non-relational learner as
initialization weights when we re-learn the model using
a relational learner.

3.1 Encoding Untied Formulas

We make the following assumptions about the structure
of the untied formulas. All the assumptions are reason-
able assumptions, and are typically satisfied when we
consider the design of MLNs with untied formulas.

• Each formula is a universally quantified clause.

• + variables are a part of the predicate definition.
That is, if an argument of a predicate is defined

with the + symbol, then all atoms that occur in the
MLN corresponding to that predicate are assumed
to have + variables in that argument position.

• Each untied formula contains at least one query
atom, and each atom in an untied formula contains
at least one + variable. The + variables in query
predicates define classes that the MLN is designed
to predict. Note that for a binary classification
problem + variables are strictly not needed, how-
ever for ease of explanation, we add a + variable
with domains-size of 2. For the query predicates,
there is a mutual exclusion constraint imposed on
the arguments defined with the + symbol. Specif-
ically, for every grounding to the remaining vari-
ables, one and only one ground atom is true among
all the ground atoms obtained by grounding the +
variables.

• If an untied formula contains multiple query atoms,
one of query atoms is designated as the target atom
that we are trying to predict. Each query atom
must be the target of exactly one untied formula.

Note that with the last two assumptions mean that, we
assume untied formulas ti typically model “features” for
a classification task. Note that, if none of the variables
in the untied formula are query variables, then, learning
separate weights will not make sense, since we assume
that the training database contains an assignment to
all non-query variables (closed world assumption).

Let f be an untied formula. Let X− denote the lifted
variables in f , i.e., variables that are not associated
will have a + symbol. We divide f into two parts, the
target atom of f whose class value we are trying to
predict, and the rest of the formula in f denoted by
f Q̄. Let X+ be the + variables in f Q̄.

Case 1. f Q̄ has no query atoms. In this case, all
atoms in f Q̄ are observable, therefore we can use them
directly to learn to classify the target atom. To do this,
we consider each grounding to X− as an i.i.d instance
for our non-relational learner. The features are defined
by projecting D on f Q̄ independently for every instance.
Specifically, let x̄j− be the j-th grounding to X−, x̄k+
be the k-th grounding to X+, and f̄ Q̄jk be the formula
obtained by grounding f Q̄ with x̄j− and x̄k+, we derive
the feature vector for the j-th instance, Xj as,

Xjk =
{

1 if f̄ Q̄jk is true in D
0 Otherwise

(2)

Case 2. f Q̄ has one or more query atoms. In this
case, since query atoms are considered unknown, we
cannot use the query atoms in D directly to learn to
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classify the target of f . Therefore, we define a pipeline
processing order for query atoms. That is, we will have
predictions for all query atoms in f Q̄ before we can
classify the target atom of f . Thus, we compute an
ordering over the untied formulas f1 . . . fn such that,
the predictions for all query atoms in fk (other than
the target of fk) are available from f1 . . . fk−1. In the
event that such an ordering is impossible for a formula
fi, we drop the query atoms that cannot be predicted
from formulas f1 . . . fi−1, when computing the features
for fi. The feature matrix is computed as in case 1,
except that, we do not use the query atoms in D but
instead use the predicted values for the query atoms
when computing the feature vector from Eq. (2).

Given the feature vector for all instances of f note that
we can use any classifier to learn to classify the target
of f . The only requirement from the classifier is that
it needs to assign a weight for each dimension of the
feature vector which can be used to interpret the con-
tribution of a dimension w.r.t the classification of the
target. In our experiments, we used multiclass SVMs
as our non-relational classifier. However, our approach
can plug-in several other classifiers, and is thus a gen-
eral method to integrate relational and non-relational
classifiers. We utilize the scalability of non-relational
classifiers for handling high-dimensional formulas, and
relational learning for learning dependencies across in-
stances, thus yielding the best of both worlds.

In the case of SVMs, we use the (normalized) coeffi-
cients of the learned hyper-planes of the SVM as the
initialization weights for our formulas. Specifically, if
the target of f has m classes, for i-th feature dimen-
sion, we have a vector of weights Θi, where the j-th
component of the vector, θij , is the j-th coefficient of
the hyper-plane that distinguishes class i from the rest
of the classes of the target. Thus, the i-th grounding to
X+, and the grounding corresponding to the k-th class
of the target atom will get the initialization weight θij .

3.2 Clustering

Once we obtain the initialization weights for each
grounding of the untied formulas, we reduce the num-
ber of formulas by clustering those with similar weights
together. Specifically, for every cluster, we replace all
the formulas in that cluster with a single formula, with
initialization weight equal to the average weight of all
formulas in that cluster. However, the clustering must
be chosen carefully such that the grouping of formulas
is consistent.

For example, consider the formula Feature1(x,+y1)
∧ Feature2(x,+y2) ⇒ Class(x,+c). Let us assume
that the domain of y1 denoted as ∆y1 is equal to
{F11, F12, F13, F14} and ∆y2 = {F21, F22, F23, F24}.

Figure 1: Clustering a + variable formula. The first
clustering is inconsistent since the atoms of a specific
predicate will be clustered with distinct atoms of that
predicate for two different clusters. The second cluster-
ing is consistent. The θ values specify the initialization
weights for the formulas. in the clustered formula, the
weight is the average over all weights in that cluster.
e.g. θ1 = θ11+θ12+θ21+θ22

4 .

Thus, we have 16 × |∆C| formulas. Two dif-
ferent clusterings for this formula are shown in
Fig. 1. The first clustering is inconsistent, since
atoms in two different clustered formulas will over-
lap. For example, Feature1(x, F21) will be clus-
tered along with Feature1(x, F22), Feature1(x, F23)
and Feature1(x, F24) in one cluster, and with only
Feature1(x, F22) in a separate cluster. In contrast, the
second clustering is consistent. Specifically, along every
dimension, the clustered atoms can mapped to a unique
cluster.

To achieve a consistent clustering, we model the prob-
lem of learning a consistent clustering as a joint clus-
tering problem over all the + variables in the untied
formula. Note that we do not consider clustering the
+ variables corresponding to query predicates. This is
because, the + variables in query predicates correspond
to classes, and we want our final model to be able to
discriminate between all classes, which is not possible
if we cluster the classes.

The joint clustering problem is modeled as follows.
Given formula f , let X+ be the + variables to be
jointly clustered. Let x̄+ be a specific assignment to
X+, and let θx̄+ be the average initialization weight of
groundings of f consistent with x̄+. We arrange θx̄+

as a tensor, where each of the + variables represent a
single order or dimension of the tensor. Our task is
to now find a quantizer that reduces the order of this
tensor across all dimensions. Specifically, the quantizer
partitions or clusters each dimension of the tensor, to
obtain a lower-order tensor. Thus, given the desired
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number of clusters for each domain corresponding to
the + variables, k1, . . . km, the quantizer will jointly
partition the domains in X+.

Formally, let A be a m-order tensor Rn1×n2×...×nm

that represents the weights to each possible grounding
of X+. We want to find a quantizer Q that maps A to
a reduced tensor B, Rk1×k2×...×km , that minimizes the
Euclidean distance between the cluster-centers in B,
and the weights of their corresponding cluster elements.
Specifically,

min
Q

∑
a∈A

||a−MQ(a)||22 (3)

where MQ(a) is the cluster center of a under the map-
ping Q. Note that directly optimizing Eq. (3) is a hard
problem. Therefore, we use approximate methods that
use a co-ordinate descent like procedure and perform
dimension-wise clustering as described in [20, 10].

From the reduced tensor for an untied formula f , we
reduce the number of possible groundings of f , by uti-
lizing the clusters along each dimension of the tensor.
Specifically, given the original tensor Rn1×n2×...×nm

and the reduced tensor Rk1×k2×...×km induced by the
quantizer Q, note that we have two choices. We can
generate ki variables for each dimension, such that
the domain of each variable is equal to the objects in
the partition specified by Q, and the weight is given
by the cluster center. However, though this reduces
the number of weights from n1 × n2 × . . . × nm to
k1×k2× . . .×km, the total number of possible ground-
ings of f on the + variables remains n1×n2× . . .×nm.
This is problematic especially, since we are considering
high-dimensional formulas, the large number of possible
groundings makes relational learning infeasible. There-
fore, we reduce the number of weights and number of
ground formulas at the same time. Specifically, we re-
place each partition along a dimension with a constant
instead of a variable. It then follows that the total
number of weights and the number of possible ground-
ings of the + variables, reduces from n1×n2× . . .×nm
to k1 × k2 × . . .× km.

Once we obtain the modified MLN, we perform discrim-
inative relational learning using existing approaches
such as voted perceptron and contrastive divergence
on the modified MLN to re-learn the weights of all the
formulas in the MLN. We can think of this re-learning
process as jointly optimizing the weights learned for
i.i.d instances. For example, assume that for a given
dataset, our non-relational learner gives us ideal weights
for p% of the instances, and imperfect weights for the
remaining (n− p)% instances. Joint learning will now
relate the i.i.d instances through the MLN formulas,
and jointly optimize their weights to maximize to CLL.

Naturally, as p increases, the non-relational learner will
influence the relational learner to correct the n − p
remaining weights, and as p reduces, the relational
learner will use dependencies to correct the weights
given by the non-relational learner. Note that in our
final learned model, clusters of objects in the domain
of + variables will be replaced by constants. Therefore,
at testing time, i.e., when we perform inference on this
MLN using a test database as evidence, we replace +
domain objects in the evidence atoms with symbols
that represent their clusters.

3.3 Tying Related Formulas

So far, we considered untied formulas independently.
However, when atoms are shared across untied formu-
las, the clustering over one formula affects the other.
Specifically, let f and f ′ be two untied formulas with
shared atoms. Clustering the groundings of f affects
the formulas in f ′. This is similar to the shattering
process seen frequently in lifted inference [17, 7]. In
shattering, grounding the domain of a variable in one
formula needs to be propagated to other formulas with
a shared domain. In our case, the tying of formulas
needs to be propagated to other formulas with one or
more shared atoms. Thus, once we cluster a formula,
we propagate the clustering throughout the MLN be-
fore clustering the next formula. Propagating the tied
formulas means that we replace partitions of the +
variable domains with constants. Note that in doing
so we remove + variables from an untied formula and
replace it with constant symbols.

Algorithm 1 summarizes our approach. The first step
is to train a classifier for each untied formula using a
non-relational model, using features corresponding to
groundings of the +-variables in the untied formula.
For this, we create independent instances corresponding
to each grounding of the non-+ variables to create the
training data, and learn the parameters of the non-
relational model. We then initialize the weights for
an untied formula from the learned parameters, and
perform clustering to obtain clusters of ground formulas
corresponding to the untied formula that have similar
weights in the non-relational model. We replace each of
these clusters by a single ground formula with weight
initialized to be the mean weight of the cluster. We
also change the dataset to reflect by replacing objects
with their corresponding cluster symbols. We then
propagate the changes (from objects to cluster symbols)
to other formulas in the MLN that have shared atoms.

3.4 Semi-Formal Analysis

Let w be the weight vector that we would learn if
we used the original MLN with untied weights, i.e.,
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we learn a separate weight for every untied formula.
Let w′ be the weight vector that we will learn, if we
tie the weights of untied formulas with a quantizer Q.
We assume that for all the untied formulas grouped
together by Q, the difference between the weights that
would be learned before formula tying and after formula
tying are bounded by ε. Specifically, |w −Q(w)| ≤ ε,
where w ∈ w and Q(w) ∈ w′ represents the weight
of the group to which w belongs as given by Q. Let
`(w,D) represent the likelihood when we learn w and
`(w′,D), the likelihood when we learn w′ from D. We
can show the following result, similar to the result
shown in Chou et al. [3].

Theorem 1. `(w : D) − ˆ̀(w′ : D) ≤ 2εM , where M
is the number of groundings in the MLN.

Proof.

`(w : D) =
∑
i

wiNi(D)− log(
∑
D′

exp(
∑
i

wiNi(D′)))

≤
∑
i

(Q(wi) + ε)(Ni(D))

− log(
∑
D′

exp(
∑
i

(Q(wi)− ε)

(Ni(D′))))

=
∑
i

Q(wi)Ni(D) +
∑
i

εNi(D)

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

exp(−
∑
i

εNi(D′))))

≤
∑
i

Q(wi)Ni(D) + εM

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

exp(−εM)))

= 2εM +
∑
i

Q(wi)Ni(D)

− log(
∑
D′

exp(
∑
i

Q(wi)Ni(D′)

= ˆ̀(w′ : D) + 2εM

Thus, from Theorem 1’s result, reducing ε will reduce
the likelihood difference between the two models. In-
tuitively, to reduce ε, we need to predict which of the
united formulas will end up with the same weights.
Our approach of using a non-relational classifier per-
forms exactly this prediction by considering instances

Algorithm 1: Formula Tying
Input: MLN structureM, Training data D, Query

Q, Non-relational learner R
Output: M′, D′

1 Let f1 . . . fn be the untied formulas inM
2 for each fi do

// Construct a classifier for fi
3 Encode each grounding of non-query +-variables

in fi as a feature for R
4 for each grounding of non-+ variables in fi do
5 Xi = i-th grounding of non-+ variables in fi
6 yi = Class of query corresponding to Xi

7 X = X ∪ Xi

8 y = y ∪ Xi

// Perform non-relational learning
9 Θ = Parameters of R learned from (X, y)

// Weight initialization for relational
learner

10 Initialize fi with Θ
11 X+ = + variables in fi
12 P(1) . . .P(m) = Partitions of domains of X+
13 for e ∈ P(1) × . . .× P(m) do
14 θ = Cluster center for e
15 C = Map each partition in e to a constant

// Replace clustered formulas with a
single formula

16 (f ′,θ) = Replace + variables in fi with C
17 Add (f ′,θ) toM′

// Propagate changes to training data
and the other formulas

18 D′ = Replace objects in e with C in D
19 M′ = Propagate C to fi+1 . . . fn

20 Copy remaining formulas fromM toM′
21 return (M′,D′)

independently. Essentially, we are decomposing the re-
lational database D into a set of i.i.d instances D, and
our non-relational model learns similarity of weights
using D. Our assumption is that these similarities
in weights will continue to hold when we relate the
i.i.d instances in D through D, thus reducing ε. Sim-
ilarly, having smaller number of formulas will reduce
the difference in likelihood, but at the same time, it
can increase the error ε.

Weight Initialization. Due to convexity of the CLL
function, irrespective of the starting states, in theory,
max-likelihood learning will converge to a globally op-
timal solution given enough iterations. However, the
main problem is that performing exact max-likelihood
learning is a hard problem. Specifically, the gradient is
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given by,

∂

∂wi
`(w : D) = Ni(D)− Ew[Ni(D)]

Computing Ew[Ni(D)], is typically infeasible since it
requires exact inference on the MLN. Therefore, re-
lational weight learners approximate the gradient by
computing Ew[Ni(D)] approximately. This approxi-
mation means that we cannot guarantee convergence
to the globally optimal w, and depending on the ini-
tialization, the weights may converge to different local
minima. Good weight initialization is well-known to be
effective in avoiding local minima [23], especially when
dealing with a large number of parameters, therefore,
our weight initialization will typically be effective in
high-dimensional untied formulas.

4 Experiments
4.1 Setup

We evaluated our approach on three real-world appli-
cations modeled using MLNs, namely, collective classi-
fication of web-page topics [13] (WebKb), entity reso-
lution [21] (ER), and information extraction [18] (IE).
For ER and IE, we used the Cora dataset, that consists
of 1295 citations of 132 different papers. For WebKb,
the dataset consists of 4165 web-pages from 4 differ-
ent universities. The MLN structure and the data
for each of these applications are publicly available in
Alchemy [12]. Note that, we chose these MLNs since
they are some of the most popular benchmarks for
evaluating MLN inference and learning algorithms.

We conducted our experiments on 8GB quad-core ma-
chines. We evaluated the performance of our approach
regarding accuracy and running time. As our non-
relational learner, we used the multiclass SVM imple-
mentation in scikit-sklearn. For the relational learner,
we used the contrastive divergence implementation
in Tuffy [16]. Tuffy is arguably the leading general-
purpose learning and inference system for MLNs. We
compared our approach (SVMTied) with three other
approaches, SVM classifier (SVM), Tuffy with the orig-
inal MLN with untied weights as is (OrigTuffy), us-
ing tied weights with random initial weights (Ran-
domizedTuffy), and evaluated accuracy using cross-
validated F1-score.

4.2 Results

Our first application predicts topics in web-pages us-
ing the WebKB MLN. The untied formula relates
words in the document to topics. There is only one
query predicate in this MLN, which encodes the seven
classes/topics of web-pages. We tried to use Tuffy to

SVM OrigTuffy RandomizedTuffy SVMTied
0.42 X 0.31 0.84

Table 1: F1-Score comparison for WebKB.

Query SVM OrigTuffy RandomizedTuffy SVMTied
SameAuthor 0.71 X 0.33 0.92
SameTitle 0.63 X 0.54 0.85
SameVenue 0.68 X 0.32 0.79
SameBib 0.51 X 0.29 0.78

Table 2: F1-Score comparison for ER.

learn the MLN with untied formulas, but Tuffy did
not work on the original MLN that contains + variable
formulas, and timed out after 24 hours. The results
for the remaining systems are shown in Table 1. As
shown here, the weight initialization plays an essential
role in improving performance. When we cluster the
untied formulas based on random weights, we obtain
performance that is worse than using SVMs, which of
course ignores relational dependencies. We used the
same number of clusters (80 clusters) in both Random-
izedTuffy and our approach. Our approach significantly
outperforms the other approaches on this application.
Lowd and Domingos [13] obtained an AUC score of
around 0.8 for this dataset learning a separate weight
for each formula. This illustrates that tying could help
improve generalization in some cases, where learning
too many weights could overfit the model.

The second application performs entity resolution (ER)
using the CORA dataset. Specifically, the idea is to
predict if fields belong to the same author, venue, title,
and finally if two citations match. Thus, there are
multiple query predicates in the MLN for this case.
The untied formulas use word-based features to predict
the queries. Once again, OrigTuffy failed to run on
this problem, and we timed out after 24 hours. For
both RandomizedTuffy and SVMTied, we used 40 clus-
ters. Our proposed approach once again significantly
outperformed the other methods on all queries for this
application as shown in Table 2. SVMs outperformed
using random weight tying, with random weight ini-
tialization. Singla and Domingos [21] obtained an
AUC score of around 0.91 for SameAuthor, 0.90 for
same venue and 0.99 for SameBib. However, Singla
and Domingos use domain-specific methods to make
the approach more scalable. For example, they apply
McCallum et al.’s [14] canopy approach with TF-IDF
to reduce the number of plausible pairs. It is sometime
hard to generalize these methods to other problems,
and therefore, in our approach, we did not apply these
methods. In future, we will explore systematic ways to
incorporate such domain-specific knowledge into MLN
weight learning in order to improve accuracy.
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Query SVM OrigTuffy RandomizedTuffy SVMTied
InfieldAuthor 0.65 X 0.36 0.79
InfieldTitle 0.45 X 0.4 0.68
InfieldVenue 0.52 X 0.42 0.71
SameCitation 0.48 X 0.28 0.72

Table 3: F1-Score comparison for IE.

Our final application performs joint segmentation and
citation matching. We use the Information Extraction
(IE) MLN and the citeseer dataset for this application.
The untied formulas relate word based features with
predicting segments of text, and the segmented text is
used in predicting if two citations are the same. The
segmented fields can be of type author, tile or venue.
As shown in Table 3, on all the query variables, our
proposed method using 35 clusters significantly outper-
forms the other approaches. The best published result
on this dataset is by Poon and Domingos [18]. Specif-
ically, using the joint segmentation (without incorpo-
rating entity resolution feedback), Poon and Domingos
obtained an F1-score of nearly 94%. However, the
MLN we used is a simpler version (also specified in
the Alchemy website), since existential quantification
that is needed by the Poon and Domingos MLN is not
well-supported in current relational learners. Note that,
Poon and Domingos mention in their work that they
have modified the Alchemy system to run their MLN,
which was not publicly available to us.

Varying Number of Clusters. Increasing the num-
ber of clusters reduces the quantization error. We verify
whether reducing the quantization error results in im-
proved performance in terms of classification accuracy.
Specifically, we learn our models with a varying number
of clusters. Fig. 2 shows our results where the average
F1 score over all queries is plotted against the number
of clusters for each of our applications. As can be seen
by our results, increasing the number of clusters typi-
cally improves performance over all datasets. However,
it should also be noted that learning becomes harder
as we increase the number of clusters, and the weights
learned may not be optimal. Thus, in some cases, we
see the performance not improving with an increase in
clusters, or in some cases, even degrading by a little.
Choosing the optimal number of clusters is something
we will consider in future work.

Running Time. We compare the running times of
the various learning methods in Table 4. As expected,
SVMs take very little time to train as compared to
relational learners. Note that SVMTied is significantly
faster than RandomizedTuffy in terms of training times.
This illustrates that proper weight initialization can
significantly help speed up convergence of the relational
learner.
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Figure 2: Performance of our approach as we vary
number of clusters

Application SVM OrigTuffy RandomizedTuffy SVMTied
WebKB 26 X 200 127

ER 18 X 324 199
IE 20 X 303 145

Table 4: Running time (in minutes) comparison.

5 Conclusion
In this paper, we proposed an efficient weight learning
approach for MLNs that have untied formulas with
a large number of groundings. Specifically, we tied
together those groundings that are likely to have simi-
lar weights by learning a non-relational classifier that
uses the groundings of untied formulas as features.
We assumed that similarity of parameters in the non-
relational model for groundings of the untied formulas
will translate to similarity of weights in the relational
model. Further, using the parameters learned from
the non-relational model, we initialized weights for
relational learning, which as we showed empirically
yields much more accurate results. Our experiments
on multiple applications showed that our approach sig-
nificantly improves accuracy and scalability of learning,
as compared to learning the untied formulas as is.

Future work includes automatically inferring the opti-
mal number of parameters required to learn a dataset,
learning the relational model jointly with the non-
relational model, etc.
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