
A variational EM acceleration of GMMs and k-means

Supplementary Appendix

A Proof of Proposition 1

Here we provide for completeness the proof of Prop. 1
following Lücke and Forster [2017]. First, note that the
free energy Eq.(6) is maximized w.r.t. Θ̂ by setting Θ̂ =
Θ. This can be shown [Lücke, 2016] by generalizing a
similar result for full posteriors [Neal and Hinton, 1998].
After setting Θ̂ = Θ the free energy F(K, Θ, Θ) =:
F(K, Θ) can be simplified to take on the following form
[Lücke, 2016]:

F(K, Θ) =
∑
n

log
(∑
c∈K(n)

p(c,~y (n)|Θ)
)

. (10)

Let us now repeat Prop. 1 in more detail before we
reiterate the proof:

Proposition 1
Consider the GMM of Eq. (2) and the free energy
Eq. (10) for n = 1 : N data points ~y(n) ∈ RD. Fur-
thermore, consider for a fixed n the replacement of a
cluster c ∈ K(n) by a cluster c̃ 6∈ K(n). Then the free
energy F(K, Θ) increases if and only if

‖~y (n)− ~µc̃‖ < ‖~y (n)− ~µc‖ . (11)

Proof
By considering the specific functional form of Eq. (10)
we can observe that the free energy is increased by
replacing c ∈ K(n) with c̃ 6∈ K(n) if p(c̃,~y (n)|Θ) >

p(c,~y (n)|Θ). This applies because of the summation
over c in Eq. (10) and because of the concavity of the
logarithm. Analogously, the free energy stays constant
or decreases for p(c̃,~y (n)|Θ) ≤ p(c,~y (n)|Θ). If we
insert for the joint probability p(c̃,~y |Θ) the GMM (2),
we obtain:

p(c̃,~y |Θ) = 1
C (2πσ2)−

D
2 exp

(
− 1

2σ2 ‖~y − ~µc̃‖2
)
. (12)

The first two factors are independent of the data point
and cluster. The criterion for an increase of the free
energy can therefore be reformulated as follows:

p(c̃,~y |Θ) > p(c,~y |Θ)

⇔ exp
(
− 1

2σ2
‖~y − ~µc̃‖2

)
> exp

(
− 1

2σ2
‖~y − ~µc‖2

)
⇔ − 1

2σ2
‖~y − ~µc̃‖2 > −

1

2σ2
‖~y − ~µc‖2

⇔ ‖~y − ~µc̃‖ < ‖~y − ~µc‖ . (13)

�

B Illustration of Algorithms 1 and 2

The four sub-figures of Fig. B.1 illustrate how the vari-
ational E-steps of Alg. 1 find clusters increasingly close
to ~y (n). We use C ′ = 3 and G = 5 for this example (the

same as for Fig. 1). For illustration purposes, we as-
sume that good cluster centers have already been found
and that they remain fixed across iterations. A The
subfigure replicates Fig. 1, i.e., it shows for one data
point ~y (n) its set K(n) and the sets Gc for all c ∈ K(n).
The Gc of all clusters are computed in the first block
of Alg. 1. The G(n) are (in the second block of Alg. 1)
defined as the union over all c ∈ K(n). Then the dis-
tances between ~y (n) and all clusters in G(n) (green and
turquoise rings as cluster centers) are computed. From
the clusters in G(n), the C ′ = 3 clusters with the small-
est distances to ~y (n) are selected to define the new K(n)

(which concludes the computations in the second block
of Alg. 1). B Next iteration starting with the three pre-
viously selected clusters, and again showing K(n) and
the search space G(n) for the new closest clusters. Due
to cluster neighborhood overlaps, |G(n)| is here (and for
the following iterations) smaller than the maximum of
C ′G. C Third iteration. D Fourth and final iteration,
any further update does not improve K(n).

Gc\{c}

~y (n)

G(n)

A

K(n)

new K(n) dcc̃

d
(n)
c

B

~y (n)

C

~y (n)

~y (n)

D

Figure B.1: Visualization of four E-step iterations of
Alg. 1. In the fourth iteration the nearest clusters for
K(n) are found.

Note, Alg.2 finds improved clusters for K(n) similarly to
Alg. 1. The only difference is that the sets Gc will look
less ordered. For Alg.1 the Gc in the example of Fig.B.1
form crosses (turquoise lines) because the algorithm
always uses the four nearest clusters to construct sets
Gc. Instead, Alg. 2 estimates the Gc which do hence
not necessarily contain the nearest neighbors. The Gc
do therefore not look like crosses for this example but
also Alg. 2 always decreases the distances (and thus
improves the free energy).

Dennis Forster, Jörg Lücke

d
(n)
c̃

G(n)

~y (n)
Ic

µc

d
(n)
c̃

µc̃

µc′

Figure B.2: Visualization of the estimation of cluster-
to-cluster distances dcc̃ with already computed cluster-

to-point distances d
(n)
c̃ as used by Alg.2 in Eq.(8). The

mean of the read lines (distances d
(n)
c̃ of data points

closest to cluster c that have cluster c̃ in their own
neighborhood search space) gives an estimate of the
true distance between cluster c and c̃.

Finally, Fig.B.2 shows an illustration of how the cluster-
to-cluster distances dcc̃ are estimated by Alg. 2. For
the example, let us consider cluster centers and search
spaces per data point G(n) as in the last iteration of
Fig. B.1. In the first computational block, Alg. 2 com-

putes for each data point ~y (n) the distances d
(n)
c to all

clusters in the search space G(n). From these distances,
the algorithm first estimates the set of data points Ic
closest to each cluster. The illustration now shows how
the distance dcc̃ between clusters c and c̃ is estimated
using Eq. (8). For cluster c first the set of data points
Ic is considered. For most of the points n ∈ Ic the

distances d
(n)
c̃ to cluster c̃ have been computed in the

first computational block. For instance, data point ~y (n)

of Ic (which was used for the illustration in Fig. B.1)
has a search space G(n) which includes cluster c̃ (we
illustrate the same G(n) as for Fig. B.1D). However,
data points in the upper-right corner of Ic have search
spaces which do not contain c̃ and are therefore not
considered for the summation in Eq. (8). Those data
points that are considered for the summation are, how-
ever, sufficient to provide a reasonable estimate for the
distance dcc̃.

For the example, we have chosen clusters c and c̃ for
which the condition in Eq. (8) results in neither trivial
nor perfect estimation of dcc̃. If we instead consider

clusters c and c′ (see Fig. B.2), then distances d
(n)
c′ for

all data points of Ic would be available, and the esti-
mation of dcc′ would be very accurate. In general, the
closer the clusters or the larger the G(n) the better are
the estimates of cluster-to-cluster distances by Eq. (8).

For clusters very distant to each other, there may be no
data points available from which the cluster-to-cluster
distance could be estimated. Alg. 2 never estimates
these distances, which essentially means that they are
considered as infinite. However, in k-means these clus-
ters would likewise never contribute to their respective
updates, and for the GMM their contribution would
exponentially approach zero with higher distance.

C Further Numerical Results

For Algs. 1 and 2, we monitor the free energy, log-
likelihood and standard quantization error during train-
ing [see Lücke and Forster, 2017, for the k-means free
energy] on a 5×5 BIRCH data set and on KDD. Means
and standard errors of the means (SEM), as well as
best runs in terms of lowest final quantization error
are reported in Fig. C.1 over 100 independent training
runs for BIRCH and over 10 runs for KDD (except
for standard GMM, where we only show results over a
single training run because of its high computational
demand).

As already noted, initially (in the first steps) var-GMM
and var-k-means require more EM iterations than stan-
dard GMM or k-means to obtain comparable quantiza-
tion errors due to the random K(n)/G(n) initialization,
which we see here also reflected in the likelihoods. The
number of additional EM iterations is however rela-
tively small, and only more significant for very low
values of G.

Most importantly for our study, low values of G, which
result in strongly decreased run-time complexity, still
optimize the clustering objective to values approxi-
mately equal to standard GMM and k-means within
about the same number of EM iterations (in Fig. C.1
the standard algorithms are G = 25 for BIRCH and
G = 200 for KDD, black lines). For BIRCH, the vari-
ational versions were even more effective in avoiding
local optima. The best final values of the objective
function for var-GMM and var-k-means almost per-
fectly match those of the best standard k-means and
standard GMM runs (black lines), which provides ev-
idence for tight variational likelihood bounds. Our
primary goal is comparison to standard GMM and k-
means but see, e.g., Lucic et al. [2017] for results on
KDD2004 of other recent approaches. As k-means is
itself a variational approximation of GMMs [Lücke and
Forster, 2017], our partial E-step procedure makes the
truncated free energy provably tight. For var-GMM
we have finite KL-divergence, but already for relatively
small G the free energy becomes almost tight (as the
experiments confirm). Also for the large-scale and less
regular KDD2004 clustering benchmark, var-GMM and
var-k-means match the performance of standard GMM
and k-means already for low G (G = 5 for var-GMM-S

A variational EM acceleration of GMMs and k-means

0 20 40 60 80 100
−7.0

−6.8

−6.6

−6.4

−6.2

−6.0
L
o
g
-L
ik
el
ih
o
o
d
/
F
re
e
E
n
er
g
y

G = 2 G = 5 G = C = 25

0 20 40 60 80 100
−7.0

−6.8

−6.6

−6.4

−6.2

−6.0

0 10 20 30 40 50
−7.0

−6.8

−6.6

−6.4

−6.2

−6.0

0 10 20 30 40 50
−7.0

−6.8

−6.6

−6.4

−6.2

−6.0

0 20 40 60 80 100
0.4

0.6

0.8

1.0

1.2
·104

Q
u
a
n
ti
za
ti
o
n
E
rr
or

B
IR

C
H

5
×

5

0 20 40 60 80 100
0.4

0.6

0.8

1.0

1.2
·104

0 10 20 30 40 50
0.4

0.6

0.8

1.0

1.2
·104

0 10 20 30 40 50
0.4

0.6

0.8

1.0

1.2
·104

0 10 20 30 40 50
−500

−480

−460

L
o
g
-L
ik
el
ih
o
o
d
/
F
re
e
E
n
er
g
y

G = 2 G = 5 G = 20 G = C = 200

0 10 20 30 40 50
−500

−480

−460

0 10 20 30 40 50
−500

−480

−460

0 10 20 30 40 50
−500

−480

−460

(a) var-GMM-X

0 10 20 30 40 50

1.4

1.6

1.8

2.0
·1011

Iteration

Q
u
a
n
ti
za
ti
o
n
E
rr
orK

D
D

20
04

(b) var-GMM-S

0 10 20 30 40 50

1.4

1.6

1.8

2.0
·1011

Iteration

(c) var-k-means-X

0 10 20 30 40 50

1.4

1.6

1.8

2.0
·1011

Iteration

(d) var-k-means-S

0 10 20 30 40 50

1.4

1.6

1.8

2.0
·1011

Iteration

Figure C.1: Results of Algs. 1 and 2 on the BIRCH 5× 5 and KDD2004 data sets. Each column (a) - (d) shows
results for one specific algorithm for different G-values, depending on the data set. For each data set, the first
row shows the mean log-likelihood (solid) and mean free energy (dashed), shaded with their respective SEM.
The second row for each data set shows the mean quantization error (solid), shaded with its SEM, as well as the
single run with lowest final quantization error (dotted). For var-GMM on KDD the green (G = 20) and black
(G = 200) plots are nearly indistinguishable from another.

and G = 20 for var-k-means-S). Lower values of G are
still possible, but improved run-times trade off with a
decrease in final objective function values.

Var-GMM-S on BIRCH with G = 2 needs around ten
more iterations to reach similar values than standard
GMM with C = 25, but each standard GMM iter-
ation requires at least more than six times as many
distance computations, making the few additional iter-
ations negligible. For the much larger KDD data set
and C = 200 clusters, the run-time difference further
increase: var-GMM-S requires with G = 5 roughly
an additional three iterations (i.e., plus three) than
standard GMM, but each GMM iteration requires at
least eight times the number of data-to-cluster distance
evaluations. Still larger are the differences for var-k-
means. On BIRCH 5× 5, var-k-means-S with G = 5

converges basically as fast as k-means and standard
GMM (maybe it needs one or two additional iterations),
and it optimizes the objective to better final values on
average. The speedup per iteration is here at least a
factor (C/G = 5). On KDD-Cup 2004, var-k-means-S
with G = 20 optimizes the objective to the same values
as k-means and GMM (requiring maybe two to four
additional EM iterations). But each var-k-means-S
iteration is at least ten times more efficient than stan-
dard GMM or k-means. With lower values of G we
can obtain even more significant speedups but then
the final average objectives are more likely to be worse
than for standard GMM and k-means. In general, the
more clusters we seek to find in the data, the more
significant is the speedup of the variational algorithms
(compare Tab. 2).

Dennis Forster, Jörg Lücke

D Line-by-line Complexity, Algs. 1 & 2

The clustering algorithms for arbitrary size C ′ of K(n)

and arbitrary size G of Gc are given by Algs. 1 and 2.
In Algs. 3 and 4 we rewrite the same algorithms such
that the analysis of the complexity becomes particularly
straight-forward. For instance, we duplicate some loops
that compute averages to show that such averaging does
not increase the complexity. The memory demand for
storing all model parameters ~µc and σ, and the new
variational parameters K(n) and nearest neighbors Gcis
of O(CD +NC ′ + CG). In Alg. 4, also the computed

distances d
(n)
c have to be stored for all N within each

EM iteration (but do not have to be memorized across
EM steps), leading to a memory demand of O(CD +
NC ′G+CG). For Alg.3, memorizing all the distances is
not necessary, as the loop over N of the two last blocks
can be combined and the updates can be computed
without having to store all distances simultaneously.
Similar combinations may be possible for Alg.4 at least
approximately but will require further investigations.

Algorithm 3: Explicit reformulation of Alg. 1.

init ~µ1:C , σ and K(n) for all n;

repeat
for c = 1 : C do O(C2D)

for c̃ = 1 : C do O(CD)

dcc̃ = ‖~µc̃ − ~µc‖; O(D)

Gc = {c̃ | dcc̃ is among the G O(C)
smallest distances dc:};

for n = 1 : N do O(NC′GD)

G(n) =
⋃
c∈K(n) Gc; O(C ′G)

for c ∈ G(n) do O(C ′GD)

d
(n)
c = ‖~y (n) − ~µc‖; O(D)

K(n) = {c | d(n)c is among the O(C ′G)
C ′ smallest distances};

for n = 1 : N do O(NC′)

s = 0; O(1)

for c ∈ K(n) do O(C ′)

s
(n)
c = exp

(
− 1

2 (d
(n)
c /σ)2

)
; O(1)

s = s+ s
(n)
c ; O(1)

for c ∈ K(n) do O(C ′)

s
(n)
c = s

(n)
c / s; O(1)

update ~µ1:C and σ2 using O(NC′D)

Eqs. (4) with Eq. (5);

until ~µ1:C and σ2 have converged ∗;

∗Except for K(n) and Gc, all sets and variables are reset after each EM iteration. First iteration of Alg. 4 uses initial G(n).

In principle we could drop the last term O(CG) in the
memory demand of var-GMM-S as NC ′G > CG. For
our purposes, we maintained the last term in order to
make the linear C dependence of the memory explicit.

Algorithm 4: Explicit reformulation of Alg. 2.

init ~µ1:C and σ2; init G(n) for all n;

repeat
for n = 1 : N do O(NC′GD)

G(n) =
⋃
c∈K(n) Gc; O(C ′G)

for c ∈ G(n) do O(C ′GD)

d
(n)
c = ‖~y (n) − ~µc‖; O(D)

K(n) = {c | d(n)c is among the O(C ′G)
C ′ smallest distances};

for n = 1 : N do O(NC′G)

c
(n)
o = argmin

c∈G(n)

{
d
(n)
c

}
; O(C ′G)

I
c
(n)
o

= I
c
(n)
o
∪ {n}; O(1)

for c = 1 : C do O(NC′G)

for n ∈ Ic do O((N/C)C ′G)

for c̃ ∈ G(n) do O(C ′G)

dcc̃ = dcc̃ + d
(n)
c̃ ; O(1)

bcc̃ = bcc̃ + 1; O(1)

for c = 1 : C do O(NC′G)

for n ∈ Ic do O((N/C)C ′G)

for c̃ ∈ G(n) do O(C ′G)

if normalizedcc̃ 6= 1 then
dcc̃ = dcc̃/bcc̃; O(1)

normalizedcc̃ = 1; O(1)

dcc = 0; O(1)

Gc = {c̃ | dcc̃ is among the G O((N/C)C ′G)
smallest distances dc:};

for n = 1 : N do O(NC′)

s = 0; O(1)

for c ∈ K(n) do O(C ′)

s
(n)
c = exp

(
− 1

2 (d
(n)
c /σ)2

)
; O(1)

s = s+ s
(n)
c O(1)

for c ∈ K(n) do O(C ′)

s
(n)
c = s

(n)
c / s; O(1)

update ~µ1:C and σ2 using O(NC′D)

Eqs. (4) with Eq. (5);

until ~µ1:C and σ2 have converged ∗;

