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Abstract

We consider the statistical problem of recov-
ering a hidden “ground truth” binary labeling
for the vertices of a graph up to low Ham-
ming error from noisy edge and vertex mea-
surements. We present new algorithms and a
sharp finite-sample analysis for this problem
on trees and sparse graphs with poor expan-
sion properties such as hypergrids and ring lat-
tices. Our method generalizes and improves
over that of Globerson et al. (2015), who intro-
duced the problem for two-dimensional grid
lattices.

For trees we provide a simple, efficient, al-
gorithm that infers the ground truth with
optimal Hamming error has optimal sample
complexity and implies recovery results for all
connected graphs. Here, the presence of side
information is critical to obtain a non-trivial
recovery rate. We then show how to adapt
this algorithm to tree decompositions of edge-
subgraphs of certain graph families such as
lattices, resulting in optimal recovery error
rates that can be obtained efficiently

The thrust of our analysis is to 1) use the tree
decomposition along with edge measurements
to produce a small class of viable vertex la-
belings and 2) apply an analysis influenced
by statistical learning theory to show that we
can infer the ground truth from this class us-
ing vertex measurements. We show the power
of our method in several examples including
hypergrids, ring lattices, and the Newman-
Watts model for small world graphs. For two-
dimensional grids, our results improve over
Globerson et al. (2015) by obtaining optimal
recovery in the constant-height regime.
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1 Introduction

Statistical inference over graphs and networks is a fun-
damental problem that has received extensive attention
in recent years (Fortunato, 2010; Krzakala et al., 2013;
Abbe et al., 2014; Hajek et al., 2014). Typical infer-
ence problems involve noisy observations of discrete
labels assigned to edges of a given network, and the
goal is to infer a “ground truth” labeling of the ver-
tices (perhaps up to the right sign) that best explains
these observations. Such problems occur in a wide
range of disciplines including statistical physics, so-
ciology, community detection, average case analysis,
and graph partitioning. This inference problem is also
related to machine learning tasks involving structured
prediction that arise in computer vision, speech recog-
nition and other applications such as natural language
processing. Despite the intractability of maximum like-
lihood estimation, maximum a-posteriori estimation,
and marginal inference for most network models in
the worst case, it has been observed that approximate
inference algorithms work surprisingly well in practice
(Sontag et al., 2012), and recent work has focused on
improving our theoretical understanding of this phe-
nomenon (Globerson et al., 2015).

Globerson et al. (2015) introduced a new inference
model with the key feature that, in addition to observ-
ing noisy edge labels, one also observes noisy vertex
labels. The main focus of the present paper is to fur-
ther examine the extent to which the addition of noisy
vertex observations improves the statistical aspects of
approximate recovery. Specifically, we analyze statisti-
cal recovery rates in Model 1.

As a concrete example, consider the problem of trying
to recover opinions of individuals in social networks.
Suppose that every individual in a social network can
hold one of two opinions labeled by —1 or +1. We
receive a measurement of whether neighbors in the
network have the same opinion, but the value of each
measurement is flipped with probability p. We further
receive estimates of the opinion of each individual,
perhaps using a classification model on their profile,
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but these estimates are corrupted with probability q.

Model 1. We receive an undirected
graph G = (V, E) with |V| = n, whose
vertices are labeled according to an un-
known ground truth ¥ e {£1}". We
receive noisy edge measurements X €
{:I:l}E7 where X, = Y,Y, with prob-
ability 1 — p and X,, = —Y,Y, other-
wise. We receive “side information” ver-
tex measurements Z € {£1}", where
Z, =Y, with probability 1 — ¢ and
Z, = —Y, otherwise. We assume p <
g < 1/2 Our goal is to produce a label-
ing ¥ € {#1}" such that with proba-
bility at least 1 — 0,(1) the Hamming
error ) i 1{Y, # Y,} is bounded by
O(f(p)n) where lim,_,¢ f(p) = 0.

The reader may imagine the pairwise measurements
as fairly accurate and the side information vertex esti-
mates as fairly noisy (since the flip probability ¢ close
to 1/2). Model 1 then translates to the problem of
producing an estimate of the opinions of users in the
social network which predicts the opinion of few users
incorrectly.

A first step in studying recovery problems on graphs
with noisy vertex observations was taken by Globerson
et al. (2014, 2015) who studied Model 1 on square grid
lattices. They proved that the statistical complexity of
the problem is essentially determined by the number of
cuts with cutset of size k, where k ranges over nonneg-
ative integers. This observation, together with a clever
use of planar duality, enabled them to determine the
optimal Hamming error for the square grid.

As in Globerson et al. (2014, 2015) we focus on finding
a labeling of low Hamming error (as opposed to ezact
recovery, where one seeks to find the error probability
that with which we recover all labels correctly). Chen
et al. (2016) have recently considered exact recovery
for edges in this setting for sparse graphs such as grid
and rings. They consider the case where there are
multiple i.i.d observations of edge labels. In contrast,
we focus on the case where there is a single (noisy)
observation for each edge, on side information, and on
partial recovery!.

The availability of vertex observations changes the
statistical nature of the problem and — as we will show
— enables nontrivial partial recovery rates in all sparsity
regimes. For example, for the n-vertex path, it is not
difficult (Globerson et al., 2014) to show that when

We refer the reader to Appendix A for further discussion
of related models.

there are only noisy edge observations any algorithm
will fail to find the correct labeling (up to sign) of Q(n)
edges. In contrast, we show that when noisy vertex
observations are available, one can obtain a labeling
whose expected Hamming error is at most O(pn) for

any p.

Related community detection models such as the well
known Stochastic Block Model (SBM) and Censored
Block Model (CBM) consider the case where one wishes
to detect two communities based on noisy edge obser-
vations. Namely, in these models only noisy edges
observations are provided and one wishes to recover
the correct labeling of vertices up to sign. Block model
literature has focused on graphs which have good ex-
pansion properties such as complete graphs, random
graphs, and spectral expanders. By including side in-
formation, our model allows for nontrivial recovery
rates and efficient algorithms for graphs with “small”
separators such as trees, thin grids, and ring lattices.
Studying recovery problems in such “non-expanding”
graphs is of interest as many graphs arising in appli-
cations such as social networks (Flaxman, 2007) have
poor expansion.

Challenges and Results The key challenge in de-
signing algorithms for Model 1 is understanding sta-
tistical performance: Even for graphs such as trees
in which the optimal estimator (the marginalized esti-
mator) can be computed efficiently, it is unclear what
Hamming error rate this estimator obtains. Our ap-
proach is to tackle this statistical challenge directly;
we obtain efficient algorithms as a corollary.

Our first observation is that the optimal Hamming
error for trees is ©(pn) provided ¢ is bounded away
from 1/22. This is obtained by an efficient message
passing algorithm. We then (efficiently) extend our
algorithm for trees to more general graphs using a
tree decompositions of (edge)-subgraphs. Our main
observation is that if we are given an algorithm that
obtains a non-trivial error rate for inference in each
constant-sized component of a tree decomposition, we
can lift this algorithm to obtain a non-trivial error rate
for the entire graph by leveraging side information.

This approach has the advantage that it applies to
non-planar graphs such as high dimensional grids; it
is not clear how to apply the machinery of Globerson
et al. (2015) to such graphs because planar duality
no longer applies. Our decomposition-based approach
also enables us to obtain optimal error bounds for
ring lattices and thin grids which do not have the so-
called weak expansion property that is necessary for

2The assumption on ¢ is necessary, as when g approaches
1/2 it is proven in Globerson et al. (2015) that an error of
Q(n) is unavoidable for certain trees.
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the analysis in Globerson et al. (2015). See Section 4
for an extensive discussion of concrete graph families
we consider and the error rates we achieve.

1.1 Preliminaries

We work with an undirected graph G = (V, E), with
|[V| =n and |E| = m. For W C V, we let G(W) be
the induced subgraph and E(W) be the edge set of
the induced subgraph. Let N(v) be the neighborhood
of a vertex v. When it is not clear from context we
will use Ng(v) to denote neighborhood with respect
to a specific graph G. Likewise, for S C V we use
dc(S) to denote its cut-set (edges with one endpoint
in S) with respect to G. For a directed graph, we let
d+(v) denote the outgoing neighbors and d_(v) denote
the incoming neighbors of v. For a subset W C V we
let Na(W) = U,ew Na(v). We let deg(G) denote the
maximum degree and A,,, the average degree.

Parameter range We treat ¢ = 1/2 — € as constant
unless otherwise specified. Furthermore, we shall as-
sume throughout that p > w(1/n), so the expected
number of edge errors is super-constant. We use O to
suppress log(n), log(1/p), and 1/e factors. We use the
phrase “with high probability” to refer to events that
occur with probability at most 1 — o, (1).

In the appendix (Theorem 6) we show that if the mini-
mum degree of the graph is Q(logn) there is a trivial
strategy that achieves arbitrarily small Hamming error.
We therefore restrict to deg(G) constant, as this is rep-
resentative of the most interesting parameter regime.

2 Inference for Trees

In this section we show how to efficiently and optimally
perform inference in Model 1 when the graph G is a tree.
As a starting point, note that the expected number of
edges (u,v) of the tree with X, flipped is p(n — 1).
In fact, using a simple Chernoff bound, one can see
that with high probability at most 2pn + O(1) edges
are flipped. This implies that for the ground truth
Y, Z(u,v)eE 1{Y, # Xu,Yo} <2pn+ O(1) with high
probability over sampling of the edge labels. Hence to
estimate ground truth, it is sufficient to search over

labelings Y that satisfy the inequality

ST 1{Vu # XuoYa} < 2pn 4+ 0(1). (1)

(u,v)EE

We choose the estimator that is most correlated with
the vertex observations Z subject to the aformentioned

inequality. That is, we take Y to be the solution to®

minimize Z ]l{i;v #Zv}
veV
| _ _ )
subject to Z I{Yu # XuoYo} < 2pn+ O(1).
(u,v)EE

This optimization problem can be solved efficiently —
O([pn]°ndeg(G)) time for general trees and O([pn]n)
time for stars and path graphs — with message passing.
The full algorithm is stated in Appendix D.

On the statistical side we use results from statistical
learning theory to show that the Hamming error of

Y obtained above is with high probability bounded

by O(pn). To move to the statistical learning setting
(see Appendix C for an overview) we first define a “hy-

pothesis class” F 2 {Y" € {£1}" | Yuwyer Yy #
XuoYy} < 2pn+ O(1)}; note that this is precisely the
set of Y’ satisfying (1). The critical observation here

is that for any Y the Hamming error (with respect to
the ground truth) is proportional to the excess risk in
the statistical learning setting over Z with class F:

S LY, £V} 3)
veV
= 1_12q ZPZ{?U#ZU}_;I}éI}:ZPZ{YU/#ZU} .

veV veV

Combining (3) with a so-called fast rate from statistical
learning theory (Corollary 2) implies that if we take
Y to be the empirical risk minimizer over F given
Z, which is in fact the solution to (2), then we have
Yooy LY, # Y} < O(log(|F|/8)/€%) with probabil-
ity at least 1 —¢. Connectivity of G then implies
|F| =~ (5)21’”‘*‘0(1)7 giving the final O(pn) rate. Theo-
rem 1 makes this result precise:

Theorem 1 (Inference in Trees). Let Y be the solution
to (2). Then with probability at least 1 — 0,

Z ]1{)/}1, # YU} < é(an + 2log(2/6) + 1) log(2e/pd)
veV

= O(pn). (4)

We emphasize that side information is critical in this
result. For trees — in particular, the path graph —
no estimator can achieve below Q(n) hamming error

unless p = O(1/n) (Globerson et al., 2014).

3 Inference for General Graphs

3.1 Upper Bound: Inference with Tree
Decompositions

Our main algorithm, TREEDECOMPOSITIONDECODER
(Algorithm 1) produces estimators for Model 1 for

3See appendix for constants.
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graphs G that admit a tree decomposition in the sense
of Robertson and Seymour (Robertson and Seymour
(1986)). Recall that a tree decomposition for a graph
G = (V,E) is new graph T = (W, F) in which each
node in W corresponds to a subset of nodes in the
original graph G. The edge set F' forms a tree over
W and must satisfy a property known as coherence,
which guarantees that the connectivity structure of T’
captures that of G. The approach of TREEDECOMPO-
SITIONDECODER is to use the edge observations X to
produce a local estimator for each component of the
tree decomposition 7', then use the vertex observations
Z to combine the many local estimators into a single
global estimator.

Tree decompositions have found extensive use in al-
gorithm design and machine learning primarily for
computational reasons: These objects allow one to
lift algorithmic techniques that are only feasible com-
putationally on constant-sized graphs, such as brute
force enumeration, into algorithms that run efficiently
on graphs of all sizes. It is interesting to note that
our algorithm obeys this principle, but for statistical
performance in addition to computational performance:
We are able to lift an analysis technique that is only
tight for constant-sized graphs, the union bound, into
an analysis that is tight for arbitrarily large graphs
from families such as grids. However, as our analysis
for trees shows, this approach is only made possible by
the side information Z.

The width wid(T) of a tree decomposition T is the
size of the largest component in 7', minus one (by
convention). To place a guarantee on the performance
of TREEDECOMPOSITIONDECODER, both statistically
and computationally, it is critical that the width be at
most logarithmic in n. At first glance this condition
may seem restrictive there are graphs of interests such
as grids for which the treewidth tw(G) — the smallest
treewidth of any tree decomposition — is of order /n.
For such graphs, our approach is to choose a subset
E’ C F of edges to probe so that the graph G’ = (V, E')
has small treewidth. For all of the graphs we consider
this approach obtains optimal sample complexity in
spite of discarding information.

Having found a decomposition of small treewidth for G’
we apply the following algorithm. For each component
of this decomposition, we compute the maximum likeli-
hood estimator for the labels in this component given
the edge measurements X. This is done by brute-force
enumeration over vertex labels, which can be done effi-
ciently because we require small treewidth. For a given
component, there will be two estimators that match
the edges in that component equally well due to sign
ambiguity. The remaining problem is to select a set of
signs — one for each component — so that the local

estimators agree globally. For this task we leverage the
side information Z. Our approach will mirror that of
Section 2: To produce a global prediction Y we solve
a global optimization problem over the tree decompo-
sition using dynamic programming, then analyze the
statistical performance of Y using statistical learning
theory.

Informally, if there is some A such that we can show
a p® failure probability for estimating up to sign the
vertex labels within each component of the tree decom-
position, the prediction produces by Algorithm 1 will
attain a high probability p»n Hamming error bound
for the entire graph. For example, in Section 4 we show
a p? failure probability for estimating vertex labels in
a grid of size 3 x 2, which through Algorithm 1 trans-
lates to a O(p?n) rate with high probability on both

Vn x y/n and 3 x n/3 grids.

Definition 1 (Cowell et al. (2006)). A tree T = WV, F)
is a tree decomposition for G = (V, E) if it satisfies

1. Vertex Inclusion: Fach node in v € V' belongs
to at least one component W € W.

2. Edge Inclusion: For each edge (u,v) € E, there
is some W € W containing both u and v.

3. Coherence: Let W1, Wy, W3 € W with Wy on
the path between W1 and W3 in T. Then if v eV
belongs to W1 and Ws, it also belongs to Ws.

We assume without loss of generality that T is not
redundant, i.e. there is no (W, W') € F with W' C W.

The next definition concerns the subsets of the graph
G used in the local inference procedure within Algo-
rithm 1. We allow the local maximum likelihood estima-
tor for a component W to consider a superset of nodes,
EXTEND(W), whose definition will be specialized to
different classes of graphs.

Definition 2 (Component Extension Function). For
a giwven W € W, the extended component W* O W
denotes the result of EXTEND(W).

Choices we will use for the extension function include
the identity EXTEND(W) = W and the neighborhood
of W with respect to the probed graph:

EXTEND(W) = ( U Ng(@)) Uw. (5)

veW

Concrete instantiations of EXTEND are given in Sec-
tion 4.

We define quantitative properties of the tree decomposi-
tion in Table 1. For a given property, the corresponding
(%) version will denote the analogue the arises in ana-
lyzing performance when using extended components.
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For simplicity, the reader may wish to imagine each
(%) property as the corresponding non-() property on
their first read-through.

Definition 3 (Admissible Tree Decomposition). Call a
tree decomposition T = (W, F') admissible if it satisfies
the following properties:

e deg(T), degi(T), maxwew|E(W™)|, and wid*(T')
are constant.

o G'(W™) is connected for all W € W*.

In the rest of this section, the O notation will hide all
of the constant quantities from Definition 3.

Theorem 2 (Main Theorem). Let Y be the labeling
produced using Algorithm 1 with an admissible tree

decomposition. Then, with high probability over the
draw of X and Z,

St v < 5( > pf"“"c“‘*<W>/21>. (6)

veV wew

In particular, let A be such that A < mincut*(W) for
all W e W. Then, with high probability,

E ]l{?v # Yv} < 5(]7(&/2}11). (7)

veV

Algorithm 1 runs in time O([p/2n]*n) for general
tree decompositions and time O([p®/?n]n) when T is
a path graph.

3.2 Main theorem: Proof sketch

Let us sketch the analysis of Theorem 2 in the sim-
plest case, where EXTEND(W) = W for all W € W
and consequently all (x) properties are replaced with
their non-(x) counterparts. We give a bound begin
by bounding that probability that a single component-
wise estimator Y computed on line 5 of Algorithm 1
fails to exactly recover the ground truth within its
component.

Definition 4 (Component Estimator). The (edge)
mazximum likelihood estimator for W is given by

YW a arg min Z
Ye{+1}W uwveE (W)

1YY, # X} (8)

YW can be computed by enumeration over all labelings
in time 2. There are always two solutions to (8) due
to sign ambiguity; we take one arbitrarily.

4Together with our other assumptions, this implies the
connected treewidth of G’ (Diestel and Miiller, 2016) is
constant.

Algorithm 1 TREEDECOMPOSITIONDECODER
Graph G = (V,E). Probed edges
E' C E. Extension function EXTEND.

Tree decomposition T' = (W, F) for (V,E’). Failure
probability § > 0.

Input: Edge measurements X € {j:I}E. Vertex mea-
surements Z € {£1}".

1: procedure TREEDECOMPOSITIONDECODER

Parameters:

Stage 1
/* Compute estimator for each tree
decomposition component. */
for W € W do
3: W* < EXTEND(W).
// See Definition 2.

4: YW« argmin D wve B (W) 1{Y.Y, # Xuo}-
Ye{+1}W*

5. Let YW be the restriction of YW to W.
6: end for

Stage 2

/* Use component estimators to assign

B

edge costs to tree decomposition. */

7. for W e W do

8  Costw[+1] « X, YV # 2.}
9:  Costw[—1] & X =YV #2,}.

10:  end for
11:  for (Wy,Ws) € F do
12: Let v € Wy N Wh.
13 S(Wh, Wa) « YV . 972
14:  end for
/* Run tree inference algorithm from
Section 2 over tree decomposition. */
15:  § < TREEDECODER(T, Cost, S, L,,).
// See eq. (18) for constant L,.
16: for v € V do
17: Choose arbitrary W s.t. v € W
and set }71, — §W?UW*.
18: end for
19: return Y.

20: end procedure

Proposition 1 (Error Probability for Component Es-
timator).

P ( I{IiIll} ]].{S)/;W # YW} > O) S 6(p|'mincut(W)/2'\)

Proof. Assume that both YV and =YW disagree with
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Table 1: Tree decomposition properties.

deg(T') = maxwew|{(W,W’) € F}]
wid(T) = maxwew|W| —1
W(e)={WeW|ec E(W)}
degp(T) = max.cg|W(e)|
mincut(W) = mingcw,s2g/0cw) (S)]

wid*(T') = maxy ey |W*| — 1

WH(e)={W eW |ec E(W*)}

degi(T) = maxecp|[W*(e)|

mincut™ (W) = mingcw+ snw20.50w 20/9cw) (5)]

the ground truth or else we are done. Let S be a
maximal connected component of the set of vertices

v for which YV # Y,. It must be the case that at
least H(S(S)\/ﬁ edges (u,v) in §(S) have X, flipped
from the ground truth, or else we could flip all the
vertices in S to get a new estimator that agrees with

X better than )A/; this would be a contradiction since
Y minimizes ZuUEE’(W) 1{Y.Y, # Xy} Applying a
union bound, the failure probability is bounded by

pﬁé(S)/zn < 2\W\p|’mincut(W)/2'\.

SCW:S#£0,S£W

O

Proposition 1 bounds the probability of failure for in-
dividual components, but does not immediately imply
a bound on the total number of components that may
fail for a given realization of X. If the components W
did not overlap one could apply a Chernoff bound to
establish such a result, as their predictions would be in-
dependent. Since components can in fact overlap their
predictions are dependent, but using a sharper concen-
tration inequality (from the entropy method (Boucheron
et al., 2003)) we can show that — so long as no edge
appears in too many components — an analogous con-
centration result holds and total number of components
failures is close to the expected number with high prob-
ability.

Lemma 1 (Informal). With high probability over the
draw of X,

se{£1}W

wew wew

(9)

In light of (9), consider the signing of the component-

wise predictions (?W) that best matches the ground
truth.

s* = argmin Z {sw¥" vV

se{x1}"W ywew

If we knew the value of s* we could use it to produce a
vertex prediction with a Hamming error bound match-
ing (6). Computing s* is not possible because we do
not have access to Y. We get the stated result by
proceeding in a manner similar to the algorithm (2)

min Z I{SW}’}W #YW} < 6( Z p(mincut(W)/ﬂ).

for the tree. We first define a class F C {£1}"" which
has the property that 1) s* € F with high probability
and 2) |F| 90(Ewew 2P ) S ppon we take
the component labeling § is simply the element of F
that is most correlated with the vertex observations
Z: 5§ = argmingz > wew Dvew IL{SWYUW + Z,
(this is line 15 of Algorithm 1). Finally, to produce
the final prediction }Afv for a given vertex v, we find
W € W with v € W and take Y, = §y - YV. A
generalization bound from statistical learning theory
then implies that this predictor enjoys error at most
O(log|F|) = 6(Ewew 2IWlplmincut(W)/21) " which es-
tablishes the main theorem.

Efficient implementation Both the tree algorithm
and Algorithm 1 rely on solving a constrained opti-
mization problem of the form (2). In Appendix D we
show how to perform this procedure efficiently using a
message passing scheme.

3.3 Lower Bounds: General Tools

In this section we state simple lower bound techniques
for Model 1. Recall that we consider ¢ as a constant,
and thus we are satisfied with lower bounds that coin-
cide with our upper bounds up to polynomial depen-
dence on g.

Theorem 3. Assume p < q. Then any algo-
rithm for Model 1 incurs expected hamming error

Q(Zvevp(deg(v)/ﬂ),

Corollary 1. Any algorithm for Model 1 incurs ex-
pected hamming error Q(pave/2+1p).

Theorem 4. Let W be a collection of disjoint constant-
sized subsets of V.. Then for all p below some constant,

any algorithm for Model 1 incurs expected Hamming
error Q(ZWEWPHSG(W)‘/Q-‘ )

4 Concrete Results for Specific
Graphs

We now specialize the tools developed in the previous
section to provide tight upper and lower bounds on
recovery for concrete classes of graphs.
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4.1 Connected Graphs

Example 1 (Arbitrary graphs). For any connected
graph G, the following procedure attains an error rate
of O(pn) with high probability: 1. Find a spanning tree
T for G. 2. Run the algorithm from Section 2 on T.

This rate is sharp, in the sense that there are connected
graphs — in particular, all trees — for which Q(pn)
Hamming error is optimal. Furthermore, for all graphs
one can attain an estimator whose Hamming error is
bounded as O(pn + #connected components) by taking
a spanning tree for each component. This bound is also
sharp.

The next example shows that there are connected
graphs beyond trees for which Q(pn) Hamming error
is unavoidable. More generally, Q2(pn) Hamming error
is unavoidable for any graph with a linear number of
degree-2 vertices.

Looking at Theorem 3, one might be tempted to guess
that the correct rate for inference is determined entirely
by the degree profile of a graph. This would imply, for
instance, that for any d-regular graph the correct rate
is ©(p/?/?n). The next example — via Theorem 4 —
shows that this is not the case.

Example 2. For any constant d, there exists a family
of d-reqular graphs on n vertices for which no algorithm
in Model 1 attains lower than Q(pn) Hamming error.

This construction for d = 3 is illustrated in Figure 1.
We note that this lower bound hides a term of order
¢*¥ | but for constant ¢ and d it is indeed order Q(pn).

Figure 1: 3-regular graph for which O(pn) error rate is
optimal.

4.2 Grid Lattices

(b) E’ for \/n x \/n grid.

(a) Tree decomposition for 3 x
n/3 grid.

Figure 2
In this section we illustrate how to use the tree-

decomposition based algorithm, Algorithm 1, to obtain
optimal rates for grid lattices.

Example 3 (2-dimensional grid). Let G be a 2-
dimensional grid lattice of size ¢ X n/c where ¢ < \/n.
For grid of height ¢ = 3 (or above) using Algorithm 1,
we obtain an estimator Y such that with high proba-
bility, the Hamming error is bounded as O(p*n). This
estimator runs in time O([p*n]n), By the degree profile
argument (also given in Globerson et al. (2015)), there
is a matching lower bound of Q(p?n). For a grid of
height ¢ = 1 there is an obvious lower bound of Q(pn)
since this graph is a tree.

The estimator of Globerson et al. (2015) can be shown
to have expected Hamming error of O(p?n) for the
2-dimensional grid with ¢ = Q(logn). Our method
works for constant height grids (¢ = O(1)) and with
high probability.

Algorithm 1 of course requires a tree decomposition as
input. The tree decomposition used to obtain Exam-
ple 3 for constant-height grids is illustrated in Figure 2a
for ¢ = 3: The grid is covered in overlapping 3 x 2 com-
ponents, and these are connected as a path graph to
form the tree decomposition.

The reader will observe that this tree decomposition
has mincut(W) = 2, and so only implies a O(pn) Ham-
ming error bound through Theorem 2. This rate falls
short of the O(p?n) rate promised in the example;
it is no better than the rate if G were a tree. The
problem is that within each 3 x 2 block, there are
four “corner” nodes each with degree 2. Indeed if ei-
ther edge connected to a corner is flipped from the
ground truth, which happens with probability p, this
corner is effectively disconnected from the rest of W in
terms of information. To sidestep this issue, we define
EXTEND(W) = U,cw N(v). With this extension, we
have mincut*(W) = 3 for all components except the
endpoints, which implies the O(p?n) rate.

Probing Edges We now illustrate how to extend
the tree decomposition construction for constant-height
grids to a construction for grids of arbitrary height. Re-
call that Algorithm 1 takes as input a subset £’ C E
and a tree decomposition T for G' = (V, E’). To see
where using only a subset of edges can be helpful con-
sider Figure 2a and Figure 2b. The 3 x n/3 grid is ideal
for our decoding approach because it can be covered
in 3 X 2 blocks as in Figure 2a and thus has treewidth
at most 5. The y/n X y/n grid is more troublesome be-
cause it has treewidth y/n, but we can arrive at G’ with
constant treewidth by removing ©(n) edges through
the “zig-zagging” cut shown in Figure 2b. Observe
that once the marked edges in Figure 2b are removed
we can ‘“unroll” the graph and apply a decomposition
similar to Figure 2a.

The tree decomposition construction we have outlined
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for two-dimensional grids readily lifts to higher dimen-
sion. This gives rise to the next example.

Example 4 (Hypergrids and Hypertubes). Consider
a three-dimensional grid lattice of of length n/c?, height
¢, and width c¢. If ¢ = n'/3 — that is, we have a cube —
then Algorithm 1 obtains Hamming error O(p3n) with
high probability, which is optimal by Theorem 3.

When c is constant, however, the optimal rate is Q(p*n);
this is also obtained by Algorithm 1. This contrasts
the two-dimensional grid, where the optimal rate is the
same for all 3 < c < y/n.

Algorithm 1 can be applied to any d-dimensional hyper-
grid of the form ¢ x ¢ x ...n/c? ! to achieve O(p®n)
Hamming error when ¢ =~ nt/d. For constant c, the op-
timal rate is @(p[dziwn). More generally, the optimal
rate interpolates between these extremes.

The next two examples briefly sketch how to apply tree
decompositions to more lattices. Recall that the trian-
gular lattice and hexagonal lattice are graphs whose
drawings can be embedded in R? to form regular trian-
gular and hexagonal tilings, respectively.

Example 5 (Triangular Lattice). Consider a triangu-
lar lattice of height and width \/n. Let each component
to be a vertex and its 6 neighbors (except for the edges
of the mesh), and choose these components such that
the graph is covered completely. For a given component,
let W™* to be the neighborhood of W. For this decompo-
sition mincut*(W) is 6 and consequently Algorithm 1
achieves Hamming error 5(p3n). This rate is optimal
because all vertices in the graph have degree 6 besides
those at the boundary, but the number of vertices on
the boundary is sub-linear.

The triangular lattice example in particular shows that
there exist graphs of average degree 3 for which an
error rate of O(p®n) is achievable.

Example 6 (Hexagonal Lattice). Consider a v/nx+/n
hexagonal lattice. Take each component W to be a node
v and its neighbors, and choose the nodes v so that the
graph is covered. Choose W* to be the neighborhood of
the component W. The value of mincut™ (W) for each
component is 3, leading to a Hamming error rate of

O(p®n). This rate is optimal because all vertices on the
lattice except those at the boundary have degree 3.

4.3 Newman-Watts Model

To define the Newman-Watts small world model (New-
man and Watts, 1999), we first define the regular ring
lattice, which serves as the base graph for this model.
The regular ring lattice R, ) is a 2k-regular graph
on n vertices defined as follows: 1) V = {1,...,n}.
2) E={(i,4)|je{i+1,...,i+k (mod n)}}. Theo-

rem 3 immediately implies that the best rate possible
in this model is Q(p*n). Using Algorithm 1 with an ap-
propriate decomposition it is indeed possible to achieve
this rate.

Example 7. The optimal Hamming rate for R, i in

Model 1 is é(pkn). Moreover, this rate is achieved by
an efficiently by Algorithm 1 in time O([p*n]n).

Note that for constant &k, R, ; does not have the weak
expansion property, and so the algorithm of Globerson
et al. (2015) does not apply. We can now move on to
the Newman-Watts model:

Definition 5 (Newman-Watts Model). To produce a
sample from the Newman-Watts model H,, j o, begin
with R, i, then independently replace every non-edge
with an edge with probability a/n.

For any constant a@ < 1, a constant fraction of the
vertices in R, ; will be untouched in H,, . Thus, the
inference lower bound for Example 7 still applies, mean-
ing that the optimal rate is O(p*n). Algorithmically,
this result can be obtained by discarding the new edges
and using the same decomposition as in Example 7.

Example 8. For any a < 1, the optimal Hamming
rate for H, 1 o tn Model 1 is @(pkn). Moreover, this
rate is achieved in time O([pFn]n) by Algorithm 1 .

5 Discussion

We considered Model 1, introduced in Globerson et al.
(2015), for approximately inferring the ground truth
labels for nodes of a graph based on noisy edge and ver-
tex labels. We provide a general method to deal with
arbitrary graphs that admit small width tree decom-
positions of (edge)-subgraphs. As a result, we recover
the results in Globerson et al. (2015) for grids, and are
able to provide rates for graphs that do not satisfy the
weak expansion property which is needed for the proof
techniques in Globerson et al. (2015). Furthermore, in
contrast to most existing work, we demonstrate that
recovery tasks can be solved even on sparse “nonex-
panding” graphs such as trees and rings.

There are several future directions suggested by this
work. Currently, it is a nontrivial task to characterize
the optimal error rate achievable for a given graph, and
it is unclear how to extend our methods to families
beyond lattices and graphs of small treewidth. Explor-
ing connections between further graph parameters and
achievable error rates is a compelling direction, as our
understanding of optimal sample complexity remains
quite limited. The challenge here entails both finding
what can be done information-theoretically, as well as
understanding what recovery rates can be obtained
efficiently.
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