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1 Related Work

In this supplementary document, we discuss related
work in the literature and its relation to our proposed
methods, provide a case study on NIPS articles, and de-
rive the collapsed Gibbs sampling update for the MMS-
GTM, which we leverage when training the MMSG.

1.1 Topic Modeling and Word Embeddings

The Gaussian LDA model of Das et al.| (2015]) im-
proves the performance of topic modeling by leveraging
the semantic information encoded in word embeddings.
Gaussian LDA modifies the generative process of LDA
such that each topic is assumed to generate the vectors
via its own Gaussian distribution. Similarly to our
MMSG model, in Gaussian LDA each topic is encoded
with a vector, in this case the mean of the Gaussian.
It takes pre-trained word embeddings as input, rather
than learning the embeddings from data within the
same model, and does not aim to perform word embed-
ding.

The topical word embedding (TWE) models of [Liu et al.
(2015) reverse this, as they take LDA topic assignments
of words as input, and aim to use them to improve the
resultant word embeddings. The authors propose three
variants, each of which modifies the skip-gram training
objective to use LDA topic assignments together with
words. In the best performing variant, called TWE-1,
a standard skip-gram word embedding model is trained
independently with another skip-gram variant, which
tries to predict context words given the input word’s
topic assignment. The skip-gram embedding and the
topic embeddings are concatenated to form the final
embedding.

At test time, a distribution over topics for the word
given the context, p(z;|context(z)) is estimated accord-
ing to the topic counts over the other context words.
Using this as a prior, a posterior over topics given both
the input word and the context is calculated, and simi-
larities between pairs of words (with their contexts) are

averaged over this posterior, in a procedure inspired
by those used by |[Reisinger and Mooney| (2010); [Huang
et al.| (2012)). The primary similarity to our MMSG
approach is the use of a training algorithm involving
the prediction of context words, given a topic. Our
method does this as part of an overall model-based
inference procedure, and we learn mixed membership
proportions 6(*) rather than using empirical counts as
the prior over topics for a word token. In accordance
with the skip-gram’s prediction model, we are thus able
to model the context words in the data likelihood term
when computing the posterior probability of the topic
assignment. TWE-1 requires that topic assignments
are available at test time. It provides a mechanism to
predict contextual similarity, but not to predict held-
out context words, so we are unable to compare to it
in our experiments.

Other neurally-inspired topic models include replicated
softmax (Hinton and Salakhutdinov, |2009), and its
successor, DocNADE (Larochelle and Lauly, 2012).
Replicated softmax extends the restricted Boltzmann
machine to handle multinomial counts for document
modeling. DocNADE builds on the ideas of replicated
softmax, but uses the NADE architecture, where ob-
servations (i.e. words) are modeled sequentially given
the previous observations.

1.2 Multi-Prototype Embedding Models

Multi-prototype embeddings models are another rele-
vant line of work. These models address lexical ambi-
guity by assigning multiple vectors to each word type,
each corresponding to a different meaning of that word.
Reisinger and Mooney| (2010) propose to cluster the
occurrences of each word type, based on features ex-
tracted from its context. Embeddings are then learned
for each cluster. Huang et al.| (2012) apply a similar
approach, but they use initial single-prototype word
embeddings to provide the features used for cluster-
ing. These clustering methods have some resemblance
to our topic model pre-clustering step, although their
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Figure 2: NIPS authors and topics, t-SNE, zoomed in. Blue = authors, gray = topics.

clustering is applied within instances of a given word
type, rather than globally across all word types, as
in our methods. This results in models with more
vectors than words, while we aim to find fewer vec-
tors than words, to reduce the model’s complexity for
small datasets. Rather than employing an off-the-shelf
clustering algorithm and then applying an unrelated
embedding model to its output, our approach aims to
perform model-based clustering within an overall joint
model of topic/cluster assignments and word vectors.

Perhaps the most similar model to ours in the literature
is the probabilistic multi-prototype embedding model of
Tian et al. (2014), who treat the prototype assignment
of a word as a latent variable, assumed drawn from a
mixture over prototypes for each word. The embed-
dings are then trained using EM. Our MMSG model
can be understood as the mixed membership version of
this model, in which the prototypes (vectors) are shared

across all word types, and each word type has its own
mixed membership proportions across the shared proto-
types. While a similar EM algorithm can be applied to
the MMSG, the E-step is much more expensive, as we
typically desire many more shared vectors (often in the
thousands) than we would prototypes per a single word
type (Tian et al. use ten in their experiments). We
use the Metropolis-Hastings-Walker algorithm with the
topic model reparameterization of our model in order
to address this by efficiently pre-solving the E-step.

1.3 Mixed Membership Modeling

Mixed membership modeling is a flexible alternative
to traditional clustering, in which each data point is
assigned to a single cluster. Instead, mixed membership
models posit that individual entities are associated with
multiple underlying clusters, to differing degrees, as
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encoded by a mixed membership vector that sums to
one across the clusters (Erosheva et al., 2004 |Airoldi
et all [2014). These mixed membership proportions
are generally used to model lower-level grouped data,
such as the words inside a document. Each lower-level
data point inside a group is assumed to be assigned
to one of the shared, global clusters according to the
group-level membership proportions. Thus, a mixed
membership model consists of a mixture model for
each group, which share common mixture component
parameters, but with differing mixture proportions.

This formalism has lead to probabilistic models for
a variety of applications, including medical diagnosis
(Manton et al., [1994)), population genetics (Pritchard
et al.l [2000]), survey analysis (Eroshevaj, 2003), com-
puter vision (Barnard et al., |2003} [Fei-Fei and Peronal,
2005), text documents (Hofmann) |1999; Blei et al.,
2003), and social network analysis (Airoldi et al., [2008)).
Nonparametric Bayesian extensions, in which the num-
ber of underlying clusters is learned from data via
Bayesian inference, have also been proposed (Teh et al.,
2006). In this work, dictionary words are assigned a
mixed membership distribution over a set of shared
latent vector space embeddings. FEach instantiation
of a dictionary word (an “input” word) is assigned to
one of the shared embeddings based on its dictionary
word’s membership vector. The words in its context
(“output” words) are assumed to be drawn based on
the chosen embedding.

2 Case Study on NIPS

In Figure [1} we show a zoomed in ¢-SNE visualization
of NIPS document embeddings. We can see regions of
the space corresponding to learning algorithms (bot-
tom), data space and latent space (center), training
neural networks (top), and nearest neighbors (bottom-
left). We also visualized the authors’ embeddings via
t-SNE (Figure . We find regions of latent space for
reinforcement learning authors (left: “state, action,...,”
Singh, Barto,Sutton), probabilistic methods (right:
“mixture, model,” “monte, carlo,” Bishop, Williams,
Barber, Opper, Jordan, Ghahramani, Tresp, Smyth),
and evaluation (top-right: “results, performance, ex-
periments,...”).

3 Derivation of the Collapsed Gibbs
Update

Let C; = |context(i)| be the number of output words

in the i¢th context, let wg ... w(c) be those output

words, and let w_; be the input words other that w;
(similarly, topic assignments z_; and output words
W(_‘Z)). Then the collapsed Gibbs update samples from

the conditional distribution
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We recognize the first integral as the mean of a Dirichlet
distribution which we obtain via conjugacy:
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The above can also be understood as the probability
of the next ball drawn from a multivariate Polya urn
model, also known as the Dirichlet-compound multino-
mial distribution, arising from the posterior predictive
distribution of a discrete likelihood with a Dirichlet
prior. We will need the full form of such a distribution
to analyze the second integral. Once again leveraging
conjugacy, we have:
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where n( " is the number of times that output word v
occurs in the ith context, since the final integral is over
the full support of a Dirichlet distribution, which inte-
grates to one. Eliminating terms that aren’t affected
by the z; assignment, the above is
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where we have used the fact that T'(x + n) = (x +
n—1)(x+n—2)...(x + 1)al'(x) for any z > 0, and
integer n > 1. We can interpret this as the probability
of drawing the context words under the multivariate
Polya urn model, in which the number of “colored balls”
(word counts plus prior counts) is increased by one each
time a certain color (word) is selected. In other words,
in each step, corresponding to the selection of each
context word, we draw a ball from the urn, then put it
back, along with another ball of the same color. The
T, Gioe) and ¢ — 1 terms reflect that the counts have
been changed by adding these extra balls into the urn
in each step. The second to last equation shows that
this process is exchangeable: it does not matter which
order the balls were drawn in when determining the
probability of the sequence. Multiplying this with the
term from the first integral, calculated earlier, gives us
the final form of the update equation,
(k)ﬂ

Ci +ﬂwc+n(ac)
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