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Abstract

Word embeddings improve the performance
of NLP systems by revealing the hidden struc-
tural relationships between words. Despite
their success in many applications, word em-
beddings have seen very little use in computa-
tional social science NLP tasks, presumably
due to their reliance on big data, and to a
lack of interpretability. I propose a proba-
bilistic model-based word embedding method
which can recover interpretable embeddings,
without big data. The key insight is to lever-
age mixed membership modeling, in which
global representations are shared, but individ-
ual entities (i.e. dictionary words) are free to
use these representations to uniquely differ-
ing degrees. I show how to train the model
using a combination of state-of-the-art train-
ing techniques for word embeddings and topic
models. The experimental results show an
improvement in predictive language modeling
of up to 63% in MRR over the skip-gram,
and demonstrate that the representations are
beneficial for supervised learning. I illustrate
the interpretability of the models with com-
putational social science case studies on State
of the Union addresses and NIPS articles.

1 Introduction

Word embedding models, which learn to encode dic-
tionary words with vector space representations, have
been shown to be valuable for a variety of natural
language processing (NLP) tasks such as statistical ma-
chine translation (Vaswani et al., 2013), part-of-speech
tagging, chunking, and named entity recogition (Col-
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lobert et al., 2011), as they provide a more nuanced
representation of words than a simple indicator vec-
tor into a dictionary. These models follow a long line
of research in data-driven semantic representations of
text, including latent semantic analysis (Deerwester
et al., 1990) and its probabilistic extensions (Hofmann,
1999; Griffiths et al., 2007). In particular, topic models
(Blei et al., 2003) have found broad applications in
computational social science (Wallach, 2016; Roberts
et al., 2014) and the digital humanities (Mimno, 2012),
where interpretable representations reveal meaningful
insights. Despite widespread success at NLP tasks,
word embeddings have not yet supplanted topic models
as the method of choice in computational social science
applications. I speculate that this is due to two primary
factors: 1) a perceived reliance on big data, and 2) a
lack of interpretability. In this work, I develop new
models to address both of these limitations.

Word embeddings have risen in popularity for NLP
applications due to the success of models designed
specifically for the big data setting. In particular,
Mikolov et al. (2013a,b) showed that very simple word
embedding models with high-dimensional representa-
tions can scale up to massive datasets, allowing them
to outperform more sophisticated neural network lan-
guage models which can process fewer documents. In
this work, I offer a somewhat contrarian perspective to
the currently prevailing trend of big data optimism, as
exemplified by the work of Mikolov et al. (2013a,b); Col-
lobert et al. (2011), and others, who argue that massive
datasets are sufficient to allow language models to au-
tomatically resolve many challenging NLP tasks. Note
that “big” datasets are not always available, particu-
larly in computational social science NLP applications,
where the data of interest are often not obtained from
large scale sources such as the internet and social me-
dia, but from sources such as press releases (Grimmer,
2010), academic journals (Mimno, 2012), books (Zhu
et al., 2015), and transcripts of recorded speech (Brent,
1999; Nguyen et al., 2014; Guo et al., 2015).

A standard practice in the literature is to train word
embedding models on a generic large corpus such as
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NIPS reinforcement belief learning policy algorithms Singh robot machine MDP planning

Google News teaching learn learning reteaching learner centered emergent literacy kinesthetic learning

Table 1: Most similar words to “learning,” based on word embeddings trained on NIPS articles, and on the large
generic Google News corpus (Mikolov et al., 2013a,b).

Wikipedia, and use the embeddings for NLP tasks on
the target dataset, cf. (Collobert et al., 2011; Mikolov
et al., 2013a; Pennington et al., 2014; Kiros et al., 2015).
However, as we shall see here, this standard practice
might not always be effective, as the size of a dataset
does not correspond to its degree of relevance for a
particular analysis. Even very large corpora have id-
iosyncrasies that can make their embeddings invalid
for other domains. For instance, suppose we would like
to use word embeddings to analyze scientific articles
on machine learning. In Table 1, I report the most
similar words to the word “learning” based on word
embedding models trained on two corpora. For em-
beddings trained on articles from the NIPS conference,
the most similar words are related to machine learn-
ing, as desired, while for embeddings trained on the
massive, generic Google News corpus, the most similar
words relate to learning and teaching in the classroom.
Evidently, domain-specific data can be important.

Even more concerningly, Bolukbasi et al. (2016) show
that word embeddings can encode implicit sexist as-
sumptions. This suggests that when trained on large
generic corpora they could also encode the hegemonic
worldview, which is inappropriate for studying, e.g.,
black female hip-hop artists’ lyrics, or poetry by Syrian
refugees, and could potentially lead to systematic bias
against minorities, women, and people of color in NLP
applications with real-world consequences, such as au-
tomatic essay grading and college admissions. In order
to proactively combat these kinds of biases in large
generic datasets, and to address computational social
science tasks, there is a need for effective word em-
beddings for small datasets, so that the most relevant
datasets can be used for training, even when they are
small. To make word embeddings a viable alternative
to topic models for applications in the social sciences,
we further desire that the embeddings are semantically
meaningful to human analysts.

In this paper, I introduce an interpretable word em-
bedding model, and an associated topic model, which
are designed to work well when trained on a small to
medium-sized corpus of interest. The primary insight
is to use a data-efficient parameter sharing scheme
via mixed membership modeling, with inspiration from
topic models. Mixed membership models provide a
flexible yet efficient latent representation, in which enti-
ties are associated with shared, global representations,

but to uniquely varying degrees. I identify the skip-
gram word2vec model of Mikolov et al. (2013a,b) as
corresponding to a certain naive Bayes topic model,
which leads to mixed membership extensions, allow-
ing the use of fewer vectors than words. I show that
this leads to better modeling performance without big
data, as measured by predictive performance (when the
context is leveraged for prediction), as well as to inter-
pretable latent representations that are highly valuable
for computational social science applications. The in-
terpretability of the representations arises from defining
embeddings for words (and hence, documents) in terms
of embeddings for topics. My experiments also shed
light on the relative merits of training embeddings on
generic big data corpora versus domain-specific data.

2 Background

In this section, I provide the necessary background on
word embeddings, as well as on topic models and mixed
membership models. Traditional language models aim
to predict words given the contexts that they are found
in, thereby forming a joint probabilistic model for se-
quences of words in a language. Bengio et al. (2003) de-
veloped improved language models by using distributed
representations (Hinton et al., 1986), in which words
are represented by neural network synapse weights, or
equivalently, vector space embeddings.

Later authors have noted that these word embeddings
are useful for semantic representations of words, inde-
pendently of whether a full joint probabilistic language
model is learned, and that alternative training schemes
can be beneficial for learning the embeddings. In par-
ticular, Mikolov et al. (2013a,b) proposed the skip-gram
model, which inverts the language model prediction
task and aims to predict the context given an input
word. The skip-gram model is a log-bilinear discrimi-
native probabilistic classifier parameterized by “input”
word embedding vectors vwi

for the input words wi,
and “output” word embedding vectors v′wc

for context
words wc ∈ context(i), as shown in Table 2, top-left.

Topic models such as latent Dirichlet allocation (LDA)
(Blei et al., 2003) are another class of probabilistic
language models that have been used for semantic rep-
resentation (Griffiths et al., 2007). A straightforward
way to model text corpora is via unsupervised multino-
mial naive Bayes, in which a latent cluster assignment
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Skip-gram Skip-gram topic model

Naive
Bayes

For each word in the corpus wi

For each word wc ∈ context(i)
Draw wc via p(wc|wi) ∝ exp(v′wc

ᵀ
vwi + bwc)

For each word in the corpus wi

For each word wc ∈ context(i)
Draw wc via p(wc|wi) = Discrete(φ(wi))

Mixed
membership

For each word in the corpus wi

Draw a topic zi ∼ Discrete(θ(wi))

For each word wc ∈ context(i)
Draw wc via p(wc|zi) ∝ exp(v′wc

ᵀ
vzi + bwc)

For each word in the corpus wi

Draw a topic zi ∼ Discrete(θ(wi))

For each word wc ∈ context(i)
Draw wc via p(wc|zi) = Discrete(φ(zi))

Table 2: “Generative” models. Identifying the skip-gram (top-left)’s word distributions with topics yields
analogous topic models (right), and mixed membership modeling extensions (bottom).

for each document selects a multinomial distribution
over words, referred to as a topic, with which the docu-
ments’ words are assumed to be generated. LDA topic
models improve over naive Bayes by using a mixed
membership model, in which the assumption that all
words in a document d belong to the same topic is
relaxed, and replaced with a distribution over topics
θ(d). In the model’s assumed generative process, for
each word i in document d, a topic assignment zi is
drawn via θ(d), then the word is drawn from the chosen
topic φ(zi). The mixed membership formalism provides
a useful compromise between model flexibility and sta-
tistical efficiency: the K topics φ(k) are shared across
all documents, thereby sharing statistical strength, but
each document is free to use the topics to its own
unique degree. Bayesian inference further aids data
efficiency, as uncertainty over θ(d) can be managed for
shorter documents. Some recent papers have aimed to
combine topic models and word embeddings (Das et al.,
2015; Liu et al., 2015), but they do not aim to address
the small data problem for computational social sci-
ence, which I focus on here. I provide a more detailed
discussion of related work in the supplementary.

3 The Mixed Membership Skip-Gram

To design an interpretable word embedding model for
small corpora, we identify novel connections between
word embeddings and topic models, and adapt ad-
vances from topic modeling. Following the distribu-
tional hypothesis (Harris, 1954), the skip-gram’s word
embeddings parameterize discrete probability distribu-
tions over words p(wc|wi) which tend to co-occur, and
tend to be semantically coherent – a property lever-
aged by the Gaussian LDA model of Das et al. (2015).
This suggests that these discrete distributions can be
reinterpreted as topics φ(wi). We thus reinterpret the
skip-gram as a parameterization of a certain supervised
naive Bayes topic model (Table 2, top-right). In this
topic model, input words wi are fully observed “cluster
assignments,” and the words in wi’s contexts are a
“document.” The skip-gram differs from this supervised

topic model only in the parameterization of the “topics”
via word vectors which encode the distributions with a
log-bilinear model. Note that although the skip-gram
is discriminative, in the sense that it does not jointly
model the input words wi, we are here equivalently
interpreting it as encoding a “conditionally generative”
process for the context given the words, in order to
develop probabilistic models that extend the skip-gram.

As in LDA, this model can be improved by replacing
the naive Bayes assumption with a mixed membership
assumption. By applying the mixed membership repre-
sentation to this topic model version of the skip-gram,
we obtain the model in the bottom-right of Table 2.1

After once again parameterizing this model with word
embeddings, we obtain our final model, the mixed mem-
bership skip-gram (MMSG) (Table 2, bottom-left). In
the model, each input word has a distribution over
topics θ(w). Each topic has a vector-space embedding
vk and each output word has a vector v′w (a parameter,
not an embedding for w). A topic zi ∈ {1, . . . ,K} is
drawn for each context, and the words in the context
are drawn from the log-bilinear model using vzi :

zi ∼ Discrete(θ(wi)) (1)

p(wc|zi) ∝ exp(v′wc

ᵀ
vzi + bwc

) . (2)

We can expect that the resulting mixed membership
word embeddings are beneficial in the small-to-medium
data regime for the following reasons:

1. By using fewer input vectors than words, we
can reduce the size of the semantic representation
to be learned (output vectors v′w are viewed as
weight parameters, and not used for embedding).

2. The topic vectors are shared across all words, al-
lowing more data to be used per vector.

3. Polysemy is addressed by clustering the words
into topics, which leads to topically focused and
semantically coherent vector representations.

1The model retains a naive Bayes assumption at the
context level, for latent variable count parsimony.
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Classroom learning topic
teaching, learning, reteaching...

Machine learning topic
Reinforcement, belief, learning...

Life learning topic
Mistakes, happiness, wisdom...

x

x

"learning," prior

"learning," posterior

x

x

x

Context: "We used an SVM when learning to predict the class labels."

Figure 1: Mixed membership word embeddings v̄w for
word type w (prior) and v̂wi for word token wi (posterior),
are convex combinations of topic embeddings vk.

Of course, the model also requires some new param-
eters to be learned, namely the mixed membership
proportions θ(w). Based on topic modeling, I hypoth-
esized that with care, these added parameters need
not adversely affect performance in the small-medium
data regime, for two reasons: 1) we can use a Bayesian
approach to effectively manage uncertainty in them,
and to marginalize them out, which prevents them be-
ing a bottleneck during training; and 2) at test time,
using the posterior for zi given the context, instead of
the “prior” p(zi|wi, θ) = θ(wi), mitigates the impact of
uncertainty in θ(wi) due to limited training data:

p(zi = k|wi, context(i),V,V′,b, θ) (3)

∝ θ(wi)
k

∏
c∈context(i)

exp(v′ᵀwc
vk + bwc

)∑V
j′=1 exp(v

′ᵀ
j′ vk + bj′)

.

To obtain a vector for a word type w, we can use

the prior mean, v̄w ,
∑

k vkθ
(w)
k . For a word to-

ken wi, we can leverage its context via the posterior
mean, v̂wi

,
∑

k vkp(zi = k|wi, context(i),V,V′,b, θ).
These embeddings are convex combinations of topic
vectors (see Figure 1 for an example). With fewer
vectors than words, some model capacity is lost, but
the flexibility of the mixed membership representation
allows the model to compensate. When the number of
shared vectors equals the number of words, the mixed
membership skip-gram is strictly more representation-
ally powerful than the skip-gram. With more vectors
than words, we can expect that the increased repre-
sentational power would be beneficial in the big data
regime. As this is not my goal, I leave this for future
work.

4 Training Algorithm for the MMSG

I first describe an idealized but impractical training
algorithm for the MMSG, and then introduce a more
practicable procedure (Algorithm 1). The MMSG can
in principle be trained via maximum likelihood esti-
mation using EM. Optimizing the log-likelihood is hin-

Algorithm 1 Training the mixed membership skip-
gram via annealed MHW and NCE

for j = 1 : maxAnnealingIter do
Tj := T0 + λκj

for i = 1 : N do
c ∼ Uniform(|context(wi)|);
z
(new)
i ∼ qwc

; //via cached alias table samples

accept or reject z
(new)
i via Equation 6;

If accept, zi := z
(new)
i ;

end for
end for
θ̂
(wi)
k :∝ n(wi)¬i

k + αk

[V,V′, b] := NCE(inputWords = z,
contextWords = w);

dered by the latent variables, which EM circumvents by
focusing on the complete-data log-likelihood (CDLL),
log p(w, z|V,V′,b, θ) =

N∑
i=1

K∑
k=1

zi,k log θ
(wi)
k +

N∑
i=1

K∑
k=1

zi,k× (4)

∑
c∈context(i)

(
v′ᵀwc

vk + bwc − log

D∑
j′=1

exp(v′ᵀj′ vk + bj′)
)

.

The E-step computes the E-step responsibilities γi,k:

γi,k = p(zik = 1|wi, context(i), {V,V′,b, θ}(old)) ,

where (old) superscripts denote current parameter es-
timates. The M-step optimizes the lower bound on
the log-likelihood obtained by substituting γi,k for zi,k
in Equation 4. However, this involves a O(KD) com-
plexity for both the E- and M-steps for each token,
where K and D are the number of topics/dictionary
words, respectively, and even O(D) per token is con-
sidered impractical for word embeddings (Mnih and
Teh, 2012; Mikolov et al., 2013a). Instead, I propose
an approximation to EM that is sublinear time in both
K and D. We first impute z using a reparameteri-
zation technique, thereby reducing the task to stan-
dard word embedding. This can be done in sublinear
time using the Metropolis-Hastings-Walker (MHW) al-
gorithm. With an oracle ẑ for z, the log-likelihood
log p(w|V,V′,b, θ) = log

∑
z p(w, z|V,V′,b, θ) sim-

plifies to the CDLL log p(w, ẑ|V,V′,b, θ), as in Equa-
tion 4. We then efficiently learn the topic and word
embeddings via noise-contrastive estimation (NCE).
With enough computation NCE exactly optimizes our
CDLL objective function, but avoids computing ex-
pensive normalization constants and provides an ad-
justable computational efficiency knob. The details are
described below.
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Input word = “Bayesian”
Model Top words in topic for input word. Top 3 topics for word shown for mixed membership models.

SGTM model networks learning neural bayesian data models approach network framework
SG belief learning framework models methods markov function bayesian based inference

MMSGTM neural bayesian networks mackay computation framework practical learning weigend backpropagation
model models bayesian prior data parameters likelihood priors structure graphical
monte carlo chain markov sampling mcmc method methods model bayesian

MMSG neural networks weigend bayesian data mackay learning computation practical
probability model data models priors algorithm bayesian likelihood set parameters
carlo monte mcmc chain reversible sampling model posterior

Table 3: SG = skip-gram, TM = topic model, MM = mixed membership.
4.1 Imputing the z’s

To derive such an algorithm, the key insight is that
our MMSG model (Table 2, bottom left) is equivalent
to the topic model version (Table 2, bottom right), up
to the parameterization. With sufficiently high dimen-
sional embeddings, the log-bilinear model can capture
any distribution p(wc|zi), and so the maximum likeli-
hood embeddings would encode the exact same word
distributions as the MLE topics for the topic model,
φ(zi). However, the topic model admits a collapsed
Gibbs sampler (CGS) that efficiently resolves the clus-
ter assignments, which cause the bottleneck during EM.
I therefore propose to reparameterize the MMSG as its
corresponding topic model for the purposes of imput-
ing the z’s. Then, with the z’s fixed to the estimate
ẑ, learning the word and topic vectors corresponds to
finding the optimal vectors for encoding the φ’s.

This topic model pre-clustering step is reminiscent of
Reisinger and Mooney (2010); Huang et al. (2012); Liu
et al. (2015), who apply an off-the-shelf clustering algo-
rithm (or LDA) to initially identify different clusters of
contexts, and then apply word embedding algorithms
on the cluster assignments. However, our clustering is
learned based on the word embedding model itself, and
clustering at test time is performed via Bayesian reason-
ing, in Equation 3, rather than via an ad-hoc method.
With Dirichlet priors on the parameters, the collapsed
Gibbs update is (derivation in the supplement):

p(zi = k|·) ∝
(
n
(wi)¬i
k + αk

)
(5)

×
|context(i)|∏

c=1

n
(k)¬i
wc + βwc

+ n
(i,c)
wc

n(k)¬i +
∑

w′ βw′ + c− 1
,

where α and β are parameter vectors for Dirichlet priors

over the topic and word distributions, n
(wi)
k and n

(k)¬i
wc

are input and output word/topic counts (excluding the

current word), and n
(i,c)
wc is the number of occurrences

of word wc before the cth word in the ith context. We
scale this algorithm up to thousands of topics using an
adapted version of the recently proposed Metropolis-
Hastings-Walker algorithm for high-dimensional topic
models, which scales sublinearly in K (Li et al., 2014).

The method uses a data structure called an alias table,
which allows for amortized O(1) time sampling from
discrete distributions. A Metropolis-Hastings update
is used to correct for approximating the CGS update
with a proposal distribution based on these samples.
We can interpret the product over the context, which
dominates the collapsed Gibbs update, as a product of
experts (Hinton, 2002), where each word in the context
is an expert which weighs in multiplicatively on the
update. In order to approximate this via alias tables,
we use proposals which approximate the product of
experts with a mixture of experts. We select a word
wc uniformly from the context, and the proposal qwc

draws a candidate topic proportionally to the chosen
context word’s contribution to the update:

c ∼ Uniform(|context(wi)|) , qwc(k) ∝ n
(k)
wc + βwc

n(k) +
∑

w′ βw′
.

We can expect these proposals to bear a resemblance
to the target distribution, but to be flatter, which is a
property we’d generally like in a proposal distribution.
The proposal is implemented efficiently by sampling
from the experts via the alias table data structure, in
amortized O(1) time, rather than in time linear in the
sparsity pattern, as in (Li et al., 2014), since the pro-
posal does not involve the sparse term (which is less
important in our case). We perform simulated anneal-
ing to optimize over the posterior, which is very natural
for Metropolis-Hastings. Interpreting the negative log
posterior as the energy function for a Boltzmann distri-
bution at temperature Tj for iteration j, this is achieved
by raising the model part of the Metropolis-Hastings
acceptance ratio to the power of 1

Tj
:

z
(new)
i ∼ qwc , p(accept z

(new)
i |·) =

min
(

1,
(p(zi = z

(new)
i |·)

p(zi = z
(old)
i |·)

) 1
Tj
qwc(z

(old)
i )

qwc
(z

(new)
i )

)
. (6)

Annealing also helps with mixing, as the standard
Gibbs updates can become nearly deterministic. We
use a temperature schedule Tj = T0 + λκj , where T0 is
the target final temperature, κ < 1, and λ controls the
initial temperature, and therefore mixing in the early
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iterations. In my experiments, I use T0 = 0.0001, κ =
0.99, and λ = |context|. The acceptance probability
can be computed in time constant in K, and sampling
is amortized constant time in K, so each iteration is
in amortized constant time in K. Rao-Blackwellized
estimates of the mixed membership proportions are

obtained from the final sample as θ̂
(wi)
k ∝ n(wi)¬i

k + αk.

4.2 Learning the Embeddings

Finally, with the topic assignments ẑ imputed and θ
estimated via the topic model, we must learn the em-
beddings, which is still an expensive O(D) per context
for maximum likelihood estimation, i.e. optimizing

log p(w, ẑ|~V,b, θ) = log p(w|ẑ, ~V,b) + const, (7)

where ~V is the vector of all word and topic embeddings.
This same complexity is also an issue for the stan-
dard skip-gram, which Mnih and Teh (2012); Mnih and
Kavukcuoglu (2013) have addressed using the noise-
contrastive estimation (NCE) algorithm of Gutmann
and Hyvärinen (2010, 2012). NCE avoids the expensive
normalization step, making the algorithm scale sublin-
early in the vocabulary size D. The algorithm solves
unsupervised learning tasks by transforming them into
the supervised learning task of distinguishing the data
from randomly sampled noise samples, via logistic re-
gression. Supposing that there are k samples from
the noise distribution per word-pair example, the NCE
objective function for context i is

J (i)(~V,b) , E
p
(i)
d

[log σ(G(wc; ~V, wi, zi,b))]

− kEpn [log(1− σ(G(wc; ~V, wi, zi,b)))] (8)

where p
(i)
d is the data distribution for words wc in con-

text i, and G(wc; ~V, wi, zi,b) , log p(wc|~V, wi, zi,b)−
log pn(wc) is the difference in log-likelihood between
the model and the noise distributions. We learn the
embeddings by stochastic gradient ascent on the NCE
objective. As the number of noise samples tends to
infinity, the method increasingly well approximates
maximum likelihood estimation, i.e. the stationary
points of Equation 8 converge on those of Equation 7
(Gutmann and Hyvärinen, 2010, 2012).

5 Experimental Results

The goals of the experiments were to study the relative
merits of big data and domain-specific small data, to
validate the proposed methods, and to study their
applicability for computational social science research.

5.1 Quantitative Experiments

I first measured the effectiveness of the embeddings
at the skip-gram’s training task, predicting context
words wc given input words wi. This task measures the
methods’ performance for predictive language modeling.
I used four datasets of sociopolitical, scientific, and
literary interest: the corpus of NIPS articles from 1987
– 1999 (N ≈ 2.3 million), the U.S. presidential state of
the Union addresses from 1790 – 2015 (N ≈ 700, 000),
the complete works of Shakespeare (N ≈ 240, 000; this
version did not contain the Sonnets), and the writings of
black scholar and activist W.E.B. Du Bois, as digitized
by Project Gutenberg (N ≈ 170, 000). For each dataset,
I held out 10,000 (wc, wi) pairs uniformly at random,
where wc ∈ context(i), |context(i)| = 10, and aimed to
predict wc given wi (and optionally, context(i) \ wc).
Since there are a large number of classes, I treat this
as a ranking problem, and report the mean reciprocal
rank. The experiments were repeated and averaged
over 5 train/test splits.

The results are shown in Table 4. I compared to
a word frequency baseline, the skip-gram (SG), and
Tomas Mikolov/Google’s vectors trained on Google
News, N ≈ 100 billion, via CBOW. Simulated an-
nealing was performed for 1,000 iterations, NCE was
performed for 1 million minibatches of size 128, and 128-
dimensional embeddings were used (300 for Google).
I used K = 2, 000 for NIPS, K = 500 for state of
the Union, and K = 100 for the two smaller datasets.
Methods were able to leverage the remainder of the con-
text, either by adding the context’s vectors, or via the
posterior (Equation 3), which helped for all methods
except the naive skip-gram. We can identify several
noteworthy findings. First, the generic big data vectors
(Google+context) were outperformed by the skip-gram
on 3 out of 4 datasets (and by the skip-gram topic
model on the other), by a large margin, indicating
that domain-specific embeddings are often important.
Second, the mixed membership models, using posterior
inference, beat or matched their naive Bayes counter-
parts, for both the word embedding models and the
topic models. As hypothesized, posterior inference on
zi at test time was important for good performance.
Finally, the topic models beat their corresponding word
embedding models at prediction. I therefore recom-
mend the use of the MMSG topic model variant for
predictive language modeling in the small data regime.

5.1.1 Downstream Tasks

I tested the performance of the representations as fea-
tures for document categorization and regression tasks.
The results are given in Table 5. For document cate-
gorization, I used three standard benchmark datasets:
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Dataset Frequency Google SG SG MMSG MMSG SGTM SGTM MMSGTM MMSGTM
baseline +context +context prior posterior +context prior posterior

NIPS 0.029 0.027 0.038 0.031 0.037 0.062 0.055 0.064 0.046 0.074
SOTU 0.021 0.021 0.025 0.023 0.022 0.034 0.036 0.046 0.032 0.045

Shakespeare 0.015 0.032 0.020 0.010 0.015 0.019 0.025 0.043 0.020 0.025
Du Bois 0.028 0.033 0.045 0.037 0.041 0.053 0.052 0.081 0.050 0.066

Table 4: Mean reciprocal rank of held-out context words. SG = skip-gram, TM = topic model, MM = mixed
membership. Bold indicates statistically significant improvement versus SG.

Dataset #Classes #Topics Tf-idf Google MMSG SG MMSGTM SG+MMSG SG+MMSG+Google

20 Newsgroups 20 200 83.33 52.50 55.58 59.50 64.08 66.55 72.53
Reuters-150 150 500 73.04 53.65 65.26 69.53 66.97 70.63 71.20
Ohsumed 23 500 43.07 20.56 31.82 37.57 32.41 39.53 40.27

SOTU (RMSE) Regression 500 19.57 8.64 12.73 10.57 21.88 9.94 8.15

Table 5: Document categorization (top, classification accuracy, larger is better), and predicting the year of State
of the Union addresses (bottom, RMSE, LOO cross-validation, smaller is better).

20 Newsgroups (19,997 newsgroup posts), Reuters-150
newswire articles (15,500 articles and 150 classes), and
Ohsumed medical abstracts on 23 cardiovascular dis-
eases (20,000 articles).2 I held out 4,000 test documents
for 20 Newsgroups, and used the standard train/test
splits from the literature in the other corpora (e.g. for
Ohsumed, 50% of documents were assigned to training
and to test sets). I obtained document embeddings
for the MMSG, in the same latent space as the topic
embeddings, by summing the posterior mean vectors
v̂wi

for each token. Vector addition was similarly used
to construct document vectors for the other embedding
models. All vectors were normalized to unit length. I
also considered a tf-idf baseline. Logistic regression
models were trained on the features extracted on the
training set for each method.

Across the three datasets, several clear trends emerged
(Table 5). First, the generic Google vectors were consis-
tently and substantially outperformed in classification
performance by the skipgram (SG) and MMSG vectors,
highlighting the importance of corpus-specific embed-
dings. Second, despite the MMSG’s superior perfor-
mance at language modeling on small datasets, the SG
features outperformed the MMSG’s at the document
categorization task. By encoding vectors at the topic
level instead of the word level, the MMSG loses word
level resolution in the embeddings, which turned out
to be valuable for these particular classification tasks.
We are not, however, restricted to use only one type
of embedding to construct features for classification.
Interestingly, when the SG and MMSG features were
concatenated (SG+MMSG), this improved classifica-
tion performance over these vectors individually. This
suggests that the topic-level MMSG vectors and word-
level SG vectors encode complementary information,

2All document categorization datasets were obtained
from http://disi.unitn.it/moschitti/corpora.htm.

and both are beneficial for performance. Finally, fur-
ther concatenating the generic Google vectors’ features
(SG+MMSG+Google) improved performance again,
despite the fact that these vectors performed poorly
on their own. It should be noted that tf-idf, which is
notoriously effective for document categorization, out-
performed the embedding methods on these datasets.

I also analyzed the regression task of predicting the
year of a state of the Union address based on its text
information. I used lasso-regularized linear regression
models, evaluated via a leave-one-out cross-validation
experimental setup. Root-mean-square error (RMSE)
results are reported in Table 5 (bottom). Unlike for
the other tasks, the Google big data vectors were the
best individual features in this case, outperforming the
domain-specific SG and MMSG embeddings individ-
ually. On the other hand, SG+MMSG+Google per-
formed the best overall, showing that domain-specific
embeddings can improve performance even when big
data embeddings are successful. The tf-idf baseline was
beaten by all of the embedding models on this task.

5.2 Computational Social Science Case
Studies: State of the Union and NIPS

I also performed several case studies. I obtained doc-
ument embeddings, in the same latent space as the
topic embeddings, by summing the posterior mean vec-
tors v̂wi for each token, and visualized them in two
dimensions using t-SNE (Maaten and Hinton, 2008)
(all vectors were normalized to unit length). The state
of the Union addresses (Figure 2) are embedded almost
linearly by year, with a major jump around the New
Deal (1930s), and are well separated by party at any
given time period. The embedded topics (gray) allow us
to interpret the space. The George W. Bush addresses
are embedded near a “war on terror” topic (“weapons,

http://disi.unitn.it/moschitti/corpora.htm
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Figure 2: State of the Union (SOTU) addresses. Colored circles are t-SNE projected embeddings for SOTU addresses.
Color = party (red = GOP, blue = Democrats, light green = Whigs, pink = Democratic-Republicans, orange = Federalists
(John Adams), green = George Washington), size = recency (year, see dates in green). Gray circles correspond to topics.

Nearest topic after composition of mean vectors for words

object + recognition objects visual object recognition model
character + recognition recognition segmentation character
speech + recognition speech recognition hmm system hybrid
computer + vision computer vision ieee image pattern
computer + science university science colorado department
bias + variance error training set data performance
covariance + variance gaussian distribution model matrix

Figure 3: Left: Vector compositionality examples, NIPS. Right: NIPS documents/ topics, t-SNE.

war...”), and the Barack Obama addresses are embed-
ded near a “stimulus” topic (“people, work...”).

On the NIPS corpus, for the input word “Bayesian” (Ta-
ble 3), the naive Bayes and skip-gram models learned
a topic with words that refer to Bayesian networks,
probabilistic models, and neural networks. The mixed
membership models are able to separate this into
more coherent and specific topics including Bayesian
modeling, Bayesian training of neural networks (for
which Sir David MacKay was a strong proponent, and
Andreas Weigend wrote an influential early paper),
and Monte Carlo methods. By performing the addi-
tive composition of word vectors, which we obtain by
finding the prior mean vector for each word type w,

v̄w ,
∑

k vkθ
(w)
k (and then normalizing), we obtain rele-

vant topics vk as nearest neighbors (Figure 3). Similarly,
we find that the additive composition of topic and word
vectors works correctly: vobjectRecognition − v̄object +
v̄speech ≈ vspeechRecognition, and vspeechRecognition −
v̄speech + v̄character ≈ vcharacterRecognition.

The t-SNE visualization of NIPS documents (Figure 3)
shows some temporal clustering patterns (blue docu-

ments are more recent, red documents are older, and
gray points are topics). I provide a more detailed case
study on NIPS in the supplementary material.

6 Conclusion

I have proposed a model-based method for training in-
terpretable corpus-specific word embeddings for compu-
tational social science, using mixed membership repre-
sentations, Metropolis-Hastings-Walker sampling, and
NCE. Experimental results for prediction, supervised
learning, and case studies on state of the Union ad-
dresses and NIPS articles, indicate that high-quality em-
beddings and topics can be obtained using the method.
The results highlight the fact that big data is not al-
ways best, as domain-specific data can be very valuable,
even when it is small. I plan to use this approach for
substantive social science applications, and to address
algorithmic bias and fairness issues.
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