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In these appendices, we prove the theoretical results stated in the main article.

A Preliminary Results

In this section, we explicitly compute ‖r∗p(x)‖p for a linear classifier as described in the main article.

Lemma 1. For all p ∈ [1,∞], the `p-distance from any point x to the decision hyperplane H defined by
f (z) = 0 is:

• if p =∞:

‖r∗∞(x)‖∞ =
|f (x)|
‖w‖1

;

• if p = 1:

‖r∗1(x)‖1 =
|f (x)|
‖w‖∞

;

• if p ∈ (1,∞):

‖r∗p(x)‖p =
|f (x)|
‖w‖ p

p−1

.

Overall, for all p ∈ [1,∞], the `p-distance from any point x to the decision hyperplane H : f (z) = 0 is:

‖r∗p(x)‖p =
|f (x)|
‖w‖ p

p−1

.

Proof. We distinguish between the three cases.

• Suppose p =∞. The distance from x to H is equal to the minimum radius α of a ball (i.e., for `∞,
a hypercube) centered at x that intersects H. This intersection with minimum radius necessarily
contains a vertex of the hypercube. To determine which one, it suffices to determine which vector
x + αε, with ε ∈ {−1, 1}d, first intersects H when α increases starting at 0. Such an intersection

arises when wT (x + αε) + b = 0, so α = − f(x)
wT ε

, and since α must be non-negative:

r∗∞(x) = min
f(x)·wT ε≤0

−f (x)

wTε
=
|f (x)|
‖w‖1

,

because ε ∈ {−1, 1}d (simply choose εi = sign (−f (x)wi)).

∗Now at DeepMind.
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• Suppose p = 1. In this case, the proof is symmetric to the one for p =∞, with ε ∈ {−1, 1}d having
exactly one non-zero coordinate.

• Suppose p ∈ (1,∞). The distance from x to H is equal to the minimum radius α of an `p ball Bp
centered at x that intersects H. This ball is described by the following equation (where z is the
variable):

d∑
i=1

(zi − xi)p ≤ αp.

For such a minimum radius, the plane described by f (z) = 0 is tangent to Bp at some point x+n.
Let us assume without loss of generality that every coordinate of n is non-negative. We also know
that this hyperplane is described by the following equations (where z is the variable):

∇x+n

(
d∑
i=1

(zi − xi)p − αp
)T

(z − (x + n)) = 0 ⇔
d∑
i=1

np−1
i (zi − xi − ni) = 0

⇔
d∑
i=1

np−1
i (zi − xi) = αp,

beacuse n belongs to the boundary of Bp. The last equation thus describes the same hyperplane as

wTz = −b. Therefore, there exists λ ∈ R \ {0} such that ∀i, np−1
i = λwi. Then, since x + n ∈ Bp:

d∑
i=1

np−1
i ((xi + ni)− xi) = λ

d∑
i=1

wini = αp,

and, since x + n ∈ H:
d∑
i=1

wi (xi + ni) + b = f (x) + wTn = 0,

we have λ = − αp

f(x) . Finally:

α =

(
d∑
i=1

npi

) 1
p

=

(
d∑
i=1

(λwi)
p

p−1

) 1
p

=

(
αp

|f (x)|

) 1
p−1

‖w‖
1

p−1
p

p−1

α =
|f (x)|
‖w‖ p

p−1

.

B Robustness of Linear Classifiers to `p Noise

B.1 Main Theorem

Theorem 1. Let p ∈ [1,∞]. Let p′ ∈ [1,∞] be such that 1
p + 1

p′ = 1. Then there exist universal constants

C, c, c′ > 0 such that, for all ε < c2

c′ :

ζ1(ε)d1/p ‖w‖p′
‖w‖2

≤ rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖w‖p′

‖w‖2
,

where ζ1(ε) = C
√
ε and ζ2(ε) = 1√

c−
√
c′ε

.

Theorem 1 is proved by the following lemmas.
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Lemma 2. There exists a universal constant C > 0 such that

rp,ε(x)

‖r∗p(x)‖p
≥ ζ1(ε)d1/p ‖w‖p′

‖w‖2
,

where ζ1(ε) = C
√
ε.

Proof. Let us first express conveniently Pv∼Bp
{g (x) 6= g (x + αv)}, where v ∼ Bp means that v is chosen

uniformly at random in Bp:

Pv∼Bp
{g (x) 6= g (x + αv)} = Pv∼Bp

(f (x) f (x + αv) ≤ 0}
= Pv∼Bp

{
sign (f (x))

(
wTx+ b

)
≤ − sign (f (x))αwTv

}
= Pv∼Bp

{
‖w‖ p

p−1
‖r∗p(x)‖p ≤ − sign (f (x))αwTv

}
(1)

= Pv∼Bp

{
‖w‖p′

‖r∗p(x)‖p
|α|

≤ wTv

}
(2)

=
1

2
Pv∼Bp

{
‖w‖p′

‖r∗p(x)‖p
|α|

≤
∣∣wTv

∣∣} , (3)

where Eq. (1) is given by Lemma 1, and Eq. (2) and (3) follow from v ∼ Bp ⇒ −v ∼ Bp.

Markov’s inequality gives, from Eq. (3):

Pv∼Bp
{g (x) 6= g (x + αv)} ≤ 1

2

Ev∼Bp

[(∑d
i=1 wivi

)2
]

(
‖w‖p′

‖r∗p(x)‖p
|α|

)2 .

In [Barthe et al., 2005, Theorem 7], it is proved that there is a constant C0 > 0 such that:

Ev∼Bp

( d∑
i=1

wivi

)2
 ≤ (2C0

d
1
p

‖w‖2

)2

,

Therefore:

Pv∼Bp {g (x) 6= g (x + αv)} ≤ 1

2

(
2C0

d
1
p
‖w‖2

)2

(
‖w‖p′

‖r∗p(x)‖p
|α|

)2 .

So, if |α| <
√
ε d

1
p√

2C0

‖w‖p′
‖w‖2

‖r∗p(x)‖p, then Pv∼Bp
{g (x) 6= g (x + αv)} < ε. Thus, there is a universal

constant C = 1√
2C0

> 0 such that:

rp,ε(x)

‖r∗p(x)‖p
≥ ζ1(ε)d1/p ‖w‖p′

‖w‖2
.

Lemma 3. There exist universal constants c, c′ > 0 such that, for all ε < c2

c′ :

rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖w‖p′

‖w‖2
,

where ζ2(ε) = 1√
c−
√
c′ε

.
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Proof. We first transform the expression of Pv∼Bp
{g (x) 6= g (x + αv)}:

Pv∼Bp
{g (x) 6= g (x + αv)} = Pv∼Bp

{
‖w‖ p

p−1

‖r∗p(x)‖p
|α|

≤ wTv

}
=

1

2
Pv∼Bp

{
‖w‖p′

‖r∗p(x)‖p
|α|

≤
∣∣wTv

∣∣}
=

1

2
Pv∼Bp

{
1

Var (wTv)

(
‖w‖p′

‖r∗p(x)‖p
|α|

)2

≤
(
wTv

)2
Var (wTv)

}
.

Paley-Zygmund’s inequality states that, if X is a random variable with finite variance and t ∈ [0, 1],
then:

P

{
X > tE [X] ≥ (1− t)2E [X]

2

E [X2]

}
.

Note that Ev∼Bp

(
(wT v)

2

Var(wT v)

)
= 1, because Ev∼Bp

(
wTv

)
= 0. So, by using Paley-Zygmund’s inequality

with X =
(wT v)

2

Var(wT v)
and t = 1

Var(wT v)

(
‖w‖p′

‖r∗p(x)‖p
|α|

)2

, when |α| ≥ ‖w‖p′√
Var(wT v)

‖r∗p(x)‖p:

Pv∼Bp
{g (x) 6= g (x + αv)} ≥

(
1− 1

Var(wT v)

(
‖w‖p′

‖r∗p(x)‖p
|α|

)2
)2

2Ev∼Bp

[
(wT v)4

Var(wT v)2

] .

So, if |α| > 1√
Var(wT v)−

√
2εE[(wT v)4]

‖w‖p′ ‖r∗p(x)‖p, then Pv∼Bp {g (x) 6= g (x + αv)} > ε. According to

[Barthe et al., 2005, Theorem 7], there is a universal constant c0 > 0 such that:

• for Var
(
wTv

)
:

Var
(
wTv

)
≥
(
c0

d
1
p

‖w‖2

)2

;

• for E
[(
wTv

)4]
:

E
[(
wTv

)4] ≤ (4C0

d
1
p

‖w‖2

)4

.

So there are universal constants c = c20, c
′ = 512C4

0 > 0 such that:

rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖w‖p′

‖w‖2
.

B.2 Alternative Lower Bound

Actually, the lower bound of Theorem 1 may be improved for most p-norms by the following result.

Lemma 4. There exists a universal constant C ′ > 0 such that

rp,ε(x)

‖r∗p(x)‖p
≥ ζ1(ε)d1/p ‖w‖p′

‖w‖2
,

where ζ1(ε) = C′√
log 3

ε

(
1− 1

min(p,2)

)
.
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Proof. Let p2 = min (p, 2). We have:

Pv∼Bp {g (x) 6= g (x + αv)} = Pv∼Bp

{
‖w‖ p

p−1

‖r∗p(x)‖p
|α|

≤ wTv

}
= Pv∼Bp

{
eθt ≤ exp

(
θwTv

)}
,

where t = ‖w‖p′
‖r∗p(x)‖p
|α| , for any θ > 0. Markov’s inequality gives:

Pv∼Bp {g (x) 6= g (x + αv)} ≤ 1

eθt
Ev∼Bp

[
exp

(
θwTv

)]
=

1

eθt

∞∑
k=0

1

k!
Ev∼Bp

[(
θwTv

)k]
.

≤ 1

eθt

∞∑
k=0

1

(2k)!
Ev∼Bp

[(
θwTv

)2k]
,

since wTv is symmetric. In [Barthe et al., 2005, Theorem 7], it is proved that:

• if k ≤ d and p ≤ 2:

Ev∼Bp

∣∣∣∣∣
d∑
i=1

wivi

∣∣∣∣∣
k
 ≤ (C0k

1
p

d
1
p

‖w‖2

)k
;

• if k ≤ d and p > 2:

Ev∼Bp

∣∣∣∣∣
d∑
i=1

wivi

∣∣∣∣∣
k
 ≤ (C0k

1
2

d
1
p

‖w‖2

)k
;

• if k > d and p ≤ 2:

Ev∼Bp

∣∣∣∣∣
d∑
i=1

wivi

∣∣∣∣∣
k
 ≤ (C0 ‖w‖2)

k ≤

(
C0k

1
p

d
1
p

‖w‖2

)k
;

• if k > d and p > 2:

Ev∼Bp

∣∣∣∣∣
d∑
i=1

wivi

∣∣∣∣∣
k
 ≤ (C0d

1
2

d
1
p

‖w‖2

)k
≤

(
C0k

1
2

d
1
p

‖w‖2

)k
,

where C0 is a universal constant (the same as in the proof of Lemma 2). So, overall:

Ev∼Bp

∣∣∣∣∣
d∑
i=1

wivi

∣∣∣∣∣
k
 ≤ (C0k

1
p2

d
1
p

‖w‖2

)k
.

Thus:

Pv∼Bp {g (x) 6= g (x + αv)} ≤ 1

eθt

∞∑
k=0

1

(2k)!

(
θ
C0 (2k)

1
p2

d
1
p

‖w‖2

)2k

.
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We can bound the following power series using Stirling-like bounds [Robbins, 1955] in (4) and (5):

∞∑
k=0

(2k)
2k
p2

(2k)!
xk ≤ 1 +

1√
2π

∞∑
k=1

(2k)
2k
p2

(2k)
2k+ 1

2

(
e2x
)k

(4)

= 1 +
1√
2π

∞∑
k=1

(2k)
−2
(

1− 1
p2

)
k− 1

2
(
e2x
)k

≤ 1 +
1√
2π

∞∑
k=1

(⌊
2

(
1− 1

p2

)
k

⌋)−⌊2(1− 1
p2

)
k
⌋
− 1

2 (
e2x
)k

≤ 1 +
e√
2π

∞∑
k=1

exp
(
−
⌊
2
(

1− 1
p2

)
k
⌋)

⌊
2
(

1− 1
p2

)
k
⌋
!

(
e2x
)k

(5)

≤ 1 +
e2

√
2π

∞∑
k=1

exp
(
−2
(

1− 1
p2

)
k
)

k!

(
e2x
)k

.

Therefore:

Pv∼Bp
{g (x) 6= g (x + αv)} ≤ 3e−θt exp

(
θ2 p2

p2 − 1

e2C2
0

d
2
p

‖w‖22

)
.

By choosing θ = 1
2 t

(
p2
p2−1

e2C0k
1
p2

d
2
p
‖w‖2

)−1

:

Pv∼Bp
{g (x) 6= g (x + αv)} ≤ 3 exp

(
−t2

(
1− 1

p2

)
d

2
p

2e2C2
0 ‖w‖

2
2

)

= 3 exp

(
−
(‖r∗p(x)‖p

|α|

)2(
1− 1

p2

)
d

2
p ‖w‖2p′

2e2C2
0 ‖w‖

2
2

)
.

So, if |α| < C′√
ln 3

ε

(
1− 1

p2

)
d

1
p
‖w‖p′
‖w‖2

‖r∗p(x)‖p, then Pv∼Bp {g (x) 6= g (x + αv)} < ε, where C = 1
2e2C2

0
> 0

is a universal constant, and:
rp,ε(x)

‖r∗p(x)‖p
≥ ζ1(ε)d1/p ‖w‖p′

‖w‖2
.

B.3 Typical Value of the Multiplicative Factor

Proposition 1. For any p ∈ (1,∞], if w is a random direction uniformly distributed over the unit
`2-sphere, then, as d→∞:

d1/p ‖w‖p′
‖w‖2√
d

−−→
a.s.

√
2

Γ
(

2p−1
2(p−1)

)
√
π

1− 1
p

.

Moreover, for p = 1,

d
‖w‖∞
‖w‖2√
2d ln d

−−→
a.s.

1.

Proof. w can be written as g
‖g‖2

, where g = (g1, . . . , gd) are i.i.d. with normal distribution (µ = 0,

σ2 = 1
2 ).

The law of large numbers gives that, for p′ 6=∞:

1

d

d∑
i=1

|gi|p
′
−−→
a.s.

E
(
|g1|p

′)
=

Γ
(

1+p′

2

)
√
π

.
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Thus:

1

d
1
p′
‖g‖p′ −−→a.s.

Γ
(

1+p′

2

)
√
π


1
p′

,

and, for p ∈ (1,∞]:

d
1
p

√
d

∥∥∥∥ g

‖g‖2

∥∥∥∥
p′
−−→
a.s.

√
2

Γ
(

2p−1
2(p−1)

)
√
π

1− 1
p

,

because ‖g‖2√
d
−−→
a.s.

1√
2
.

For p = 1 we use a result proved in [Galambos, 1987, Example 4.4.1] directly implying that

‖g‖∞√
ln d
−−→
a.s.

1.

Using the previous computations for p = 2, we find:

d
‖w‖∞
‖w‖2√
2d ln d

−−→
a.s.

1.

C Robustness of Linear Classifiers to Gaussian Noise

C.1 Main Theorem

Theorem 2. For ε < 1
3 , ζ ′1(ε) =

√
1

2 ln( 1
ε )

and ζ ′2(ε) =
√

1
1−
√

3ε
:

ζ ′1(ε)
‖w‖2
‖
√

Σw‖2
≤ rΣ,ε(x)

‖r∗2(x)‖2
≤ ζ ′2(ε)

‖w‖2
‖
√

Σw‖2
.

Theorem 2 is proved by the following lemmas.

Lemma 5. For ζ ′1(ε) =
√

1

2 ln( 1
ε )

,

rΣ,ε(x)

‖r∗2(x)‖2
≥ ζ ′1(ε)

‖w‖2
‖
√

Σw‖2
.

Proof. As in the proof of Lemma 2:

Pv∼N (0,Σ) {g (x + αv) 6= g (x)} = Pv∼N (0,Σ)

{
‖w‖2 ‖r

∗
2(x)‖2 ≤ |α|w

Tv
}

.

Since v ∼ N (0,Σ) follows a multivariate normal distribution with a positive definite covariance matrix
Σ, if

√
Σ is the (symmetric) square root of Σ, then v =

√
Σv′ with v′ ∼ N (0, Id). So:

Pv∼N (0,Σ) {g (x + αv) 6= g (x)} = Pv∼N (0,Id)

{
‖w‖2 ‖r

∗
2(x)‖2 ≤ |α|w

T
√

Σv
}

= Pv∼N (0,Id)

{
‖w‖2 ‖r

∗
2(x)‖2 ≤

(
|α|
√

Σw
)T

v

}
.

If v ∼ N (0, Id), then
(
|α|
√

Σw
)T

v ∼ N
(

0, α2‖
√

Σw‖22
)

. Therefore:

Pv∼N (0,Σ) {g (x + αv) 6= g (x)} ≤ exp

(
−1

2

(
‖w‖2 ‖r∗2(x)‖2
α‖
√

Σw‖2

)2
)

.
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So, if |α| <
√

1
2 ln 1

ε

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2, then Pv∼N (0,Σ) {g (x + αv) 6= g (x)} < ε. Thus,

rΣ,ε(x)

‖r∗2(x)‖2
≥ ζ ′1(ε)

‖w‖2
‖
√

Σw‖2
.

Lemma 6. For ε < 1
3 and ζ ′2(ε) =

√
1

1−
√

3ε
,

rΣ,ε(x)

‖r∗2(x)‖2
≤ ζ ′2(ε)

‖w‖2
‖
√

Σw‖2
.

Proof.

Pv∼N (0,Σ) {g (x + αv) 6= g (x)} = Pv∼N (0,Id)

{
‖w‖2 ‖r

∗
2(x)‖2 ≤

(
|α|
√

Σw
)T

v

}
=

1

2
Pv∼N (0,Id)

{
(‖w‖2 ‖r

∗
2(x)‖2)

2 ≤
((

α
√

Σw
)T

v

)2
}

=
1

2
Pv∼N (0,Id)


(

1

α

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2

)2

≤

((√
Σw
)T

v

)2

‖
√

Σw‖22

 .

Note that Ev∼N (0,Id)

((
(
√

Σw)
T
v
)2

‖
√

Σw‖22

)
=

Varv∼N(0,Id)

(
(
√

Σw)
T
v
)

‖
√

Σw‖22
= 1. So, by using Paley-Zygmund’s

inequality, when |α| ≥ ‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2:

Pv∼N (0,Σ) (g (x + αv) 6= g (x)) ≥

(
1−

(
1
α

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2

)2
)2

2‖
√

Σw‖44+‖
√

Σw‖42
‖
√

Σw‖42

=

(
1−

(
1
α

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2

)2
)2

2
(
‖
√

Σw‖4
‖
√

Σw‖2

)4

+ 1

≥

(
1−

(
1
α

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2

)2
)2

3
.

So, if |α| > 1√
1−
√

3ε

‖w‖2
‖
√

Σw‖2
‖r∗2(x)‖2, then Pv∼N (0,Σ) {g (x + αv) 6= g (x)} > ε. Therefore,

rΣ,ε(x)

‖r∗2(x)‖2
≤ ζ ′2(ε)

‖w‖2
‖
√

Σw‖2
.

C.2 Typical Value of the Multiplicative Factor

Proposition 2. Let Σ be a d×d positive semidefinite matrix with Tr (Σ) = 1. If w is a random direction

uniformly distributed over the unit `2-sphere, then, for t ≤
√
π

8 d:

P

{∣∣∣∣∣
(
‖w‖2
‖
√

Σw‖2

)2

− d

∣∣∣∣∣ ≥ t′
}
≤ 2 exp

(
− t

2

8d

)
+ 2 exp

(
− t2

8d2 Tr (Σ2)

)
+ 2 exp

(
− 1

200 Tr (Σ2)

)
,

where t′ = 5
2 t.
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Proof. Suppose that w is a random direction uniformly distributed over the unit `2 sphere.
Then w can be written as g

‖g‖2
, where g = (g1, . . . , gd) are i.i.d. with normal distribution (µ = 0,

σ2 = 1
2 ). By using this representation in the orthogonal basis in which

√
Σ is diagonal, we get

‖g‖2
‖
√

Σg‖2
=

√√√√ ∑d
i=1 g

2
i∑d

i=1 (λigi)
2

,

where
√

Σ = Diag ((λi)) in the previously mentioned orthogonal basis.

Let us focus on the concentration of
∑d
i=1 (λigi)

2
. We have:

d∑
i=1

(λigi)
2 − 1

2
=

d∑
i=1

(λigi)
2 − 1

2

d∑
i=1

λ2
i =

d∑
i=1

λ2
i

(
g2
i − E

(
g2
i

))
.

One of Bernstein-type inequalities [Bernstein, 1927] can be applied:

P


∣∣∣∣∣
d∑
i=1

λ2
i

(
g2
i − E

(
g2
i

))∣∣∣∣∣ ≥ 2t

√√√√Var (g2
i − E (g2

i ))

d∑
i=1

λ4
i

 ≤ 2e−t
2

,

for t ≤ β
√

Tr (Σ2) where β =
√
π

8 is a constant1, i.e., for t ≤ β
2 :

P
{∣∣∣∣‖√Σg‖2 −

1

2

∣∣∣∣ ≥ t} ≤ 2 exp

(
− t2

2 Tr (Σ2)

)
.

2‖g‖22 has a chi-squared distribution, so using a simple concentration inequality for the chi-squared
distribution2:

P
{∣∣∣∣1d‖g‖22 − 1

2

∣∣∣∣ ≥ t} ≤ 2 exp

(
−dt

2

2

)
.

Overall, for t ≤ βd and t′ = 5
2 t:

P

{∣∣∣∣∣
(
‖g‖2
‖
√

Σg‖2

)2

− d

∣∣∣∣∣ ≥ t′
}

= P

{∣∣∣∣∣‖g‖22 − d‖
√

Σg‖22
‖
√

Σg‖2

∣∣∣∣∣ ≥ t′
}

= P


∣∣∣∣∣∣
(
‖g‖22 −

d
2

)
− d

(
‖
√

Σg‖22 − 1
2

)
‖
√

Σg‖22

∣∣∣∣∣∣ ≥ t′


≤ P


∣∣∣ 1d ‖g‖22 − 1

2

∣∣∣+
∣∣∣‖√Σg‖22 − 1

2

∣∣∣
‖
√

Σg‖22
≥ t′

d


≤ P

{∣∣∣∣1d ‖g‖22 − 1

2

∣∣∣∣ ≥ t

2d

}
+ P

{∣∣∣∣‖√Σg‖22 −
1

2

∣∣∣∣ ≥ t

2d

}
+ P

{∣∣∣∣‖√Σg‖22 −
1

2

∣∣∣∣ ≥ 1

10

}
,

so, using the previous inequalities:

P

{∣∣∣∣∣
(
‖g‖2
‖
√

Σg‖2

)2

− d

∣∣∣∣∣ ≥ t′
}
≤ 2 exp

(
− t

2

8d

)
+ 2 exp

(
− t2

8d2 Tr (Σ2)

)
+ 2 exp

(
− 1

200 Tr (Σ2)

)
.

1Because
Γ
(

k+1
2

)
√
π

= E
(
|gi|k

)
≤ 1

2
E
(
g2
i

) (
4√
π

)k−2
k! for all k > 1.

2Using the fact that 2‖g‖22 is a sum of independent sub-exponential random variables (see https://www.stat.berkeley.
edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf, Example 2.5, for instance).
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D Robustness of LAF Classifiers to `p and Gaussian Noise

Theorem 3. Let p ∈ [1,∞]. Let p′ ∈ [1,∞] be such that 1
p + 1

p′ = 1. Let ε0, ζ1(ε), ζ2(ε) be as in
Theorem 1. Then, for all ε < ε0, the following holds.

Assume f is a classifier that is (γ, η)-LAF at point x and x∗ be such that r∗p(x) = x∗ − x. Then:

(1− γ)ζ1(ε)d1/p ‖∇f(x∗)‖p′
‖∇f(x∗)‖2

≤ rp,ε(x)

‖r∗p(x)‖p

and
rp,ε(x)

‖r∗p(x)‖p
≤ (1 + γ)ζ2(ε)d1/p ‖∇f(x∗)‖p′

‖∇f(x∗)‖2
,

provided

η ≥ (1 + γ)ζ2(ε)d1/p ‖∇f(x∗)‖p′
‖∇f(x∗)‖2

∥∥r∗p (x)
∥∥
p

= ηlim.

Proof. Let f− and f+ be functions such that the separating hyperplanes of, respectively, H−γ (x,x∗) and
H+
γ (x,x∗) are described by equations, respectively, f− (z) = 0 and f+ (z) = 0. By definition, we know

that
∥∥r∗p (f−,x)

∥∥
p

= (1− γ)
∥∥r∗p (x)

∥∥
p

and
∥∥r∗p (f+,x)

∥∥
p

= (1 + γ)
∥∥r∗p (x)

∥∥
p
.

From the definition of LAF classifiers, since for all η′ ≤ 1−γ
1+γ ηlim, z ∈ H−γ (x,x∗) ∩ Bp(x, η′) ⇒

f (z) f (x) > 0, we have rp,ε(f−,x) ≤ rp,ε(x); indeed, if x+αv with α ≤ 1−γ
1+γ ηlim is not misclassified by

f−, then it is not misclassified by f . Therefore, by applying Lemma 2 to f−, we get:

(1− γ) ζ1 (ε) d1/p
‖∇f(x∗)‖p′
‖∇f(x∗)‖2

≤ rp,ε(x)

‖r∗p(x)‖p
.

Since as long as η′ ≤ ηlim, z ∈ H+
γ (x,x∗) ∩ Bp(x, η′) ⇒ f (z) f (x) < 0, we can apply a symmetric

reasoning for f+, and get:
rp,ε(x)

‖r∗p(x)‖p
≤ (1 + γ)ζ2(ε)d1/p ‖∇f(x∗)‖p′

‖∇f(x∗)‖2
.

Theorem 4. Let Σ be a d × d positive semidefinite matrix with Tr(Σ) = 1. Let ε′0, ζ
′
1(ε), ζ ′2(ε) as in

Theorem 2. Then, for all ε < 1
2ε
′
0, the following holds.

Assume f is a classifier that is (γ, η)-LAF at point x and x∗ be such that r∗2(x) = x∗ − x. Then:

(1− γ)ζ ′1

(ε
2

) ‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
≤ rΣ,ε(x)

‖r∗2(x)‖2

and
rΣ,ε(x)

‖r∗2(x)‖2
≤ (1 + γ)ζ ′2

(
3ε

2

)
‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
,

provided

η ≥ (1 + γ)

(
1 + 8 Tr

(
Σ2
)

ln
4

ε

)
ζ ′2

(
3ε

2

)
‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
‖r∗2 (x)‖2 = ηlim.

Proof. This proof can be directly adapted from the proof of Theorem 3. The difference in the Gaussian
case is that v is no longer sampled from the unit ball, and its norm is not limited anymore. However,
its norm can be bounded with high probability, and this enables to adapt the bounds of Theorem 3 to
the Gaussian case.

Indeed, using a Bernstein inequality as in the proof of Proposition 2, we have:

P
{∣∣∣‖√Σv‖2 − 1

∣∣∣ ≥ t} ≤ 2 exp

(
− t2

8 Tr (Σ2)

)
≤ ε

2
,

for t = ψ(ε) = 8 Tr
(
Σ2
)

ln 4
ε .
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Let us focus on the upper bound for this proof; the lower bound follows by a similar reasoning. From
the definition of LAF classifiers, since for all for all η′ ≤ ηlim, z ∈ H+

γ (x,x∗)∩Bp(x, η′)⇒ f (z) f (x) < 0,
we have rΣ,ε(x) ≤ rΣ, 3ε2

(f+,x); indeed, if x + αv with α ≤ ηlim
1+ψ(ε) is misclassified by f+, then it is

misclassified by f if ‖αv‖2 ≤ ηlim. Therefore, by applying Lemma 6 to f+:

rΣ,ε(x)

‖r∗2(x)‖2
≤ (1 + γ)ζ ′2

(ε
2

) ‖∇f(x∗)‖2
‖
√

Σ∇f(x∗)‖2
.

E Generalization to Multi-class Classifiers

We present in this section a generalization of Theorem 1 to multi-class linear classifiers, and discuss
about the generalization of the other results to the multi-class case.

A classifier f is said to be linear if for all k ∈ J1, LK, there are vector wk, bk such that fk (x) =

wT
k x + bk. In this setting, Theorem 1 can be generalized by replacing ζ1(ε) by ζ1

(
ε

L−1

)
in the lower

bound.

Theorem 5. Let p ∈ [1,∞]. Let p′ ∈ [1,∞] be such that 1
p + 1

p′ = 1. Let ε0, ζ1(ε), ζ2(ε) be the constants

as defined in Theorem 1. Let k = g (x) (the label attributed to x by f), j be a class such that x + r∗p (x)
lies on the decision boundary between classes k and j (i.e., the class of the adversarial pertubation of x)

and j′ = argminl
‖wk−wl‖p′
‖wk−wl‖2 . Then, for all ε < ε0:

ζ1

(
ε

L− 1

)
d1/p ‖wk −wj′‖p′

‖wk −wj′‖2
≤ rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖wk −wj‖p′

‖wk −wj‖2
.

Proof. We first define for the sake of the demonstration for any class l the adversarial perturbation in
the binary case where only classes k and l are considered:

r∗p (x, l) = argmin
r
‖r‖p s.t. fk(x + r) < fj(x + r).

It is then possible to express conveniently Pv∼Bp {g (x) 6= g (x + αv)}:

Pv∼Bp
{g (x) 6= g (x + αv)} = Pv∼Bp

{∃l 6= k, fk(x) < fl(x + αv)}

= Pv∼Bp

{
∃l 6= k, (wl −wk)

T
v ≥ fk (x)− fl (x)

|α|

}
= Pv∼Bp

{
∃l 6= k,

(wl −wk)
T

‖wl −wk‖p′
v ≥

r∗p (x, l)

|α|

}
.

Let us first prove the inequality on the upper bound, as in Lemma 3.

Pv∼Bp {g (x) 6= g (x + αv)} ≥ Pv∼Bp

{
(wj −wk)

T

‖wj −wk‖p′
v ≥

r∗p (x, j)

|α|

}

= Pv∼Bp

{
(wj −wk)

T

‖wj −wk‖p′
v ≥

r∗p (x)

|α|

}
,

by definition of j. Then using the same reasoning as in Lemma 3 leads to

rp,ε(x)

‖r∗p(x)‖p
≤ ζ2(ε)d1/p ‖wk −wj‖p′

‖wk −wj‖2
.

Let us then prove the inequality on the lower bounds, as in Lemma 2. We use the union bound to
derive the inequality:

Pv∼Bp
{g (x) 6= g (x + αv)} ≤

∑
l 6=k

Pv∼Bp

{
(wl −wk)

T

‖wl −wk‖p′
v ≥

r∗p (x, l)

|α|

}

≤
∑
l 6=k

Pv∼Bp

{
(wl −wk)

T

‖wl −wk‖p′
v ≥

r∗p (x)

|α|

}
,
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because r∗p (x) ≥ r∗p (x, l) for all l. Moreover, for |α| < ζ1

(
ε

L−1

)
d

1
p
‖wk−wj′‖p′
‖wk−wj′‖2

‖r∗p(x)‖p, by following

the reasoning of Lemma 2 for each l 6= k:

Pv∼Bp
{g (x) 6= g (x + αv)} ≤

∑
l 6=k

ε

L− 1
= ε.

Therefore:
rp,ε(x)

‖r∗p(x)‖p
≥ ζ1

(
ε

L− 1

)
d1/p ‖wk −wj′‖p′

‖wk −wj′‖2
.

The proof of this theorem uses the union bound to obtain the lower bound, explaining that ζ1(ε) in
the binary case becomes ζ1( ε

L−1 ) in the multi-class setting. However, this inequality represents a worst
case in the majoration used in the proof, and we observed in our experiments that using the coefficient

ζ1(ε) instead of ζ1( ε
L−1 ) gives a proper lower bound on

rp,ε(x)
‖r∗p(x)‖p .

Notice that it is possible to generalize other results that we proved in the binary case (Lemma 4,
Theorems 2 and 3) to the multi-class problem with a similar transormation of the inequalities (replacing
ζ1(ε) by ζ1( ε

L−1 ) and using similar definitions of j and j′).
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