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A γ divergence minimization

A.1 Unsupervised setting

In this section, we explain the γ divergence minimization for unsupervised setting. We denote true
distribution as p∗(x). We denote the model by p(x; θ). We minimize the following γ cross entropy,

dγ(p
∗(x), p(x; θ)) = − 1

γ
ln

∫
p∗(x)p(x; θ)γdx+

1

1 + γ
ln

∫
p(x; θ)1+γdx. (1)

This is empirically approximated as

Ln(θ) = dγ(p̂(x), p(x; θ)) = − 1

γ
ln

1

n

n∑
i=1

p(xi; θ)
γdx+

1

1 + γ
ln

∫
p(x; θ)1+γdx. (2)

By minimizing Ln(θ), we can obtain following estimation equation,

0 = −

∑n
i=1 p(xi; θ)

γ ∂

∂θ
ln p(xi; θ)∑n

i=1 p(xi; θ)γ
+

∫
p(x; θ)1+γ∫
p(x; θ)1+γdx

∂

∂θ
ln p(x; θ)dx. (3)

This is actually weighted likelihood equation, where the weights are p(xi;θ)
γ∑n

i=1 p(xi;θ)γ
. The second term

is for the unbiasedness of the estimating equation.
Actually above estimator is equivalent to minimizing following expression,

L′
n(θ) = − 1

n

n∑
i=1

γ + 1

γ

p(xi|θ)γ{∫
p(x|θ)1+γdy

} γ
1+γ

(4)

In the main paper, we use L′
n(θ) as γ cross entropy instead of using original expression. The reason

is given in Appendix H.

A.2 Supervised setting

In this section, we explain the γ divergence minimization for the supervised setting. We denote the
true distribution as p∗(y, x) = p∗(y|x)p∗(x). We denote the regression model by p(y|x; θ).
Following Fujisawa and Eguchi [2008], we define the divergence between true distribution and the
model by

Dγ(p
∗(y|x), p(y|x; θ)|p∗(x))

=
1

γ
ln

∫ {∫
g∗(y|x)1+γdy

} 1
1+γ

p∗(x)dx− 1

γ
ln

∫ {∫
g∗(y|x)p(y|x; θ)γdy/

(∫
g∗(y|x)1+γdy

) γ
1+γ

}
p∗(x)dx.

(5)



As discussed in Fujisawa and Eguchi [2008], in the limit where γ → 0, this divergence becomes
ordinary KL divergence,

lim
γ→0

Dγ(p
∗(y|x), p(y|x; θ)|p∗(x)) =

∫
DKL(p

∗(y|x), p(y|x; θ))p∗(x)dx (6)

What we minimize is following γ cross entropy over the distribution p∗(x), Actually, minimizing γ
divergence is equivalent to minimizing the second term of Eq.(5). By empirical approximation, what
we minimize is following expression,

Ln(θ) = − 1

n

n∑
i=1

Ln(θ) = − 1

n

n∑
i=1

p(yi|xi; θ)
γ{∫

p(y|xi; θ)1+γdy
} γ

1+γ

. (7)

As γ → 0, above expression goes to

Ln(θ) = − 1

n

n∑
i=1

ln p(yi|xi; θ). (8)

This is ordinary KL cross entropy.

B β divergence minimization

Until now, we focused on γ divergence minimization. We can also consider supervised setup for β
divergence minimization. The empirical approximation of β cross entropy for supervised settings is

Ln(θ) = dβ(p̂(y|x), p(y|x; θ)|p̂(x)) = −β + 1

β

{
1

n

n∑
i=1

p(yi|xi; θ)
β

}
+

{
1

n

n∑
i=1

∫
p(y|xi; θ)

1+βdy

}
.

(9)

For the unsupervised setting, the empirical approximation of β cross entropy is

Ln(θ) = dβ(p̂(x), p(x; θ)) = −β + 1

β

1

n

n∑
i=1

p(xi; θ)
β +

∫
p(x; θ)1+βdx. (10)

C Proof of Eq.(14) in the main paper

From the definition of KL divergence Eq.(2) in the main paper, the cross entropy can be expressed as

dKL (p̂(x)∥p(x|θ)) = DKL (p̂(x)∥p(x|θ)) + Const. (11)

By substituting the above expression into the definition of L(q(θ)), we obtain

L(q(θ)) = DKL(q(θ)∥p(θ)) +NEq(θ)[DKL (p̂(x)∥p(x|θ))] + Const.

What we have to consider is

arg min
q(θ)∈P

L(q(θ)), (12)

We can disregard the constant term in L(q(θ)), and above optimization problem is equivalent to

arg min
q(θ)∈P

1

N
L(q(θ)). (13)

Therefore Eq.(14) is equivalent to Eq.(13)

D Proof of Theorem 1

The objective function is given as

Lβ = Eq(θ)[Dβ (p̂(x)||p(x|θ))] + λ′DKL (q(θ)||p(θ)) (14)
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where λ′ is the regularization constant. We optimize this with the constraint that
∫
q(θ)dθ = 1. We

calculate using the method of variations and Lagrange multipliers, we can get the optimal q(θ) in the
following way,

d(Lβ + λ(
∫
q(θ)dθ − 1))

dq(θ)
= Dβ (p̂(x)|p(x|θ))] + λ′ ln

q(θ)

p(θ)
− (1 + λ) = 0 (15)

By rearranging the above expression, we can get the following relation,
q(θ) ∝ p(θ)e−

1
λ′ dβ(p̂(x)|p(x|θ)) (16)

If we set 1
λ′ = N and normalize the above expression, we get the Theorem 1 in the main text,

q(θ) =
e−Ndβ(p̂(x)|p(x|θ))p(θ)∫
e−Ndβ(p̂(x)|p(x|θ))p(θ)dθ

. (17)

We can get the similar expression for γ cross entropy.
Interestingly, if we use KL cross entropy instead of β cross entropy in the above discussion, following
relation holds,

q(θ) ∝ p(θ)e−
1
λ′ dKL(p̂(x)|p(x|θ)) = p(θ)e−N(− 1

N

∑
i ln p(xi|θ))

= p(θ)
∏
i

p(xi|θ)

= p(θ)p(D|θ) (18)
The normalizing constant is ∫

p(θ)
∏
i

p(xi|θ)dθ = p(D). (19)

Finally, we get the optimal q(θ)

q(θ) =
p(D|θ)p(θ)

p(D)
. (20)

This is the posterior distribution which can be derived by Bayes’ theorem.
In the above proof, we set regularization constant as 1

λ′ = N to derive the expression. In this paper
we only consider the situation that regularization constant is 1

λ′ = N based on the similarity of
Bayes’ theorem. However how to choose the regularization constant should be studied further in the
future because which reflects the trade off between prior information and information from data.

E Pseudo posterior

The expression Eq.(17) is called pseudo posterior in statistics. In general, pseudo posterior is given
as

q(θ) =
e−λR(θ)p(θ)∫
e−λR(θ)p(θ)dθ

. (21)

where p(θ) is prior and R(θ) expresses empirical risk not restricted to likelihood and not necessarily
additive. The is also called Gibbs posterior and extensively studied in the field of PAC Bayes. Our
β cross entropy based pseudo posterior is

q(θ) ∝ e−N{ β+1
β

1
N

∑N
i=1 p(xi;θ)

β+
∫
p(x;θ)1+βdx}p(θ)

=

[
N∏
i

elθ(xi)p(θ)

]
(22)

where lθ(xi) =
β+1
β p(xi; θ)

β − 1
N

∫
p(x; θ)1+βdx.

As discussed in Ghosh and Basu (2016), we can understand the intuitive meaning of above expression
by comparing this expression with Eq.(18). In ordinary Bayes posterior, the prior belief is updated
by likelihood p(xi|θ) which represents the information from data xi as shown in Eq.(18). On the
other hand, when using β cross entropy, the prior belief is updated by elθ(xi) which has information
about data xi. Therefore the spirit of Bayes, that is, we update information about parameter based
on training data, are inherited to this pseudo posterior.
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Table 1: Cross-entropies for robust variational inference.
Unsupervised Supervised

dβ −β+1
β

1
N

∑N
i=1 p(xi|θ)β +

∫
p(x|θ)1+βdx −β+1

β

{
1
N

∑N
i=1 p(yi|xi, θ)

β
}
+

{
1
N

∑N
i=1

∫
p(y|xi, θ)

1+βdy
}

dγ − 1
N

γ+1
γ

∑N
i=1

p(xi|θ)γ

{
∫
p(x|θ)1+γdx}

γ
1+γ

- 1
N

γ+1
γ

∑N
i=1

p(yi|xi,θ)
γ

{
∫
p(y|xi,θ)1+γdy}

γ
1+γ

F Proof of Theorem 2

We consider the situation where the distribution is expressed as

Gε (x) = (1− ε)Gn (x) + ε∆z (x) (23)

Before going to the detail, we summarize the objective function of VI and proposed method.
First, the objective function of ordinary VI is given by

L = DKL(q(θ)∥p(θ)) +NEq(θ) [NdKL (p̂(x)∥p(x|θ))] . (24)

In the same way, objective functions of β-VI and γ-VI are given by

Lβ = DKL(q(θ)∥p(θ)) +NEq(θ) [Ndβ (p̂(x)∥p(x|θ))] , (25)

Lγ = DKL(q(θ)∥p(θ)) +NEq(θ) [Ndγ (p̂(x)∥p(x|θ))] , (26)

where dβ and dγ are summarized in Table 1. By using these expressions, we will derive the influence
functions.

F.1 Derivation of IF for ordinary VI

We start from the first order condition,

0 =
∂

∂m
L

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

∫
dGϵ(x) ln p(x|θ) + ln p(θ)− ln q(θ;m∗(ϵ))

]
(27)

We differentiate above expression with ϵ, then we obtain following expression,

0 = ∇m

∫
dθ

∂m∗(ϵ)

∂ϵ

∂q

∂m∗(ϵ)

{
(1− ϵ)N

∫
dGn(x) ln p(x|θ) + ϵN ln p(z|θ) + ln p(θ)

}
+∇mEq(θ;m∗(ϵ))

[
−N

∫
dGn(x) ln p(x|θ) +N ln p(z|θ)

]
−∇m

∫
dθ

∂m∗(ϵ)

∂ϵ

∂q

∂m∗(ϵ)
ln q(θ;m∗(ϵ))−∇mEq(θ;m∗(ϵ))

[
∂m∗(ϵ)

∂ϵ
.
∂ ln q

∂m∗(ϵ)

]
(28)

From above expression, if we take ϵ → 0, we soon obtain following expression,

∂m∗ (ε)

∂ε
= −

(
∂2L

∂m2

)−1
∂

∂m
Eq(θ)

[
N

∫
dGn(x) ln p (x|θ)−N ln p (z|θ)

]
. (29)

Actually, this can be transformed to following expression by using the first order condition,

∂m∗ (ε)

∂ε
=

(
∂2L

∂m2

)−1
∂

∂m
Eq(θ) [DKL(q(θ;m)|p(θ)) +N ln p (z|θ)] . (30)
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F.2 Derivation of IF for β VI

Next we consider IF for β VI. To proceed calculation, we have to be careful that empirical approxima-
tion of β cross entropy takes different form between unsupervised and supervised setting as shown
in Eq.(10) and Eq.(9).
For the unsupervised situation, we can write the first order condition as,

0 =
∂

∂m
Lβ

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

∫
dGϵ(x)

β + 1

β
p(x|θ)β −N

∫
p(x|θ)1+βdx+ ln p(θ)− ln q(θ;m∗(ϵ))

]
.

(31)

We can proceed calculation in the same way as ordinary VI. We get the following expression

∂m∗ (ε)

∂ε
= −β + 1

β

(
∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[
N

∫
dGn(x)p(x|θ)β −Np (z|θ)β

]
. (32)

Next, we consider the supervised situation. We consider the situation where the contamination is
expressed as

Gε (x, y) = (1− ε)Gn (x, y) + ε∆z=(x′,y′) (x, y) (33)

The first order condition is,

0 =
∂

∂m
Lβ

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

∫
dGϵ(x, y)

β + 1

β
p(y|x, θ)β −N

∫
dGϵ(x)

{∫
p(y|x, θ)1+βdy

}
+ ln p(θ)− ln q(θ;m∗(ϵ))

]
.

(34)

We can proceed the calculation and derive the influence function as follows,

∂m∗ (ε)

∂ε
=−N

(
∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[
β + 1

β

(∫
dGn(y, x)p(y|x, θ)β − p (y′|x′, θ)

β
)]

+N

(
∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[∫
dGn(x)

(∫
p(y|x, θ)1+βdy

)
−

∫
p(y|x′, θ)1+βdy

]
.

(35)

If we take the limit β to 0, the above expression reduced to IF of ordinary VI.

F.3 Derivation of IF for γ VI

We can derive IF for γ VI in the same way as β VI.
For simplicity, we focus on the transformed cross entropy, which is given Eq.(8). For unsupervised
situation, the first order condition is given by,

0 =
∂

∂m
Lγ

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

∫
dGϵ(x)

p(x|θ)γ{∫
p(x|θ)1+γdx

} γ
1+γ

+ ln p(θ)− ln q(θ;m∗(ϵ))

]
. (36)

In the same way as β VI, we can get the IF of γ VI for unsupervised setting as,

∂m∗ (ε)

∂ε
= −

(
∂2Lγ

∂m2

)−1
∂

∂m
Eq(θ)

[
N

∫
dGn(x)p(x|θ)γ − p(z|θ)γ{∫

p(x|θ)1+γdx
} γ

1+γ

]
. (37)
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For supervised situation, the first order condition is give by,

0 =
∂

∂m
Lγ

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

∫
dGϵ(x, y)

p(y|x, θ)γ{∫
p(y|x, θ)1+γdy

} γ
1+γ

+ ln p(θ)− ln q(θ;m∗(ϵ))

]
. (38)

In the same way as β VI, we can get the IF of γ VI for supervised setting as,

∂m∗ (ε)

∂ε
= −N

(
∂2Lγ

∂m2

)−1
∂

∂m
Eq(θ)

[∫
dGn(x, y)

p(y|x, θ)γ{∫
p(y|x, θ)1+γdy

} γ
1+γ

− p(y′|x′, θ)γ{∫
p(y|x′, θ)1+γdy

} γ
1+γ

]
.

(39)

G Other aspects of analysis based on influence function

In the above sections, we considered that outliers are added to the original training dataset. We can
consider a other type of contamination, such as training data itself is perturbed, that is, a training
point z = (x, y) is perturbed to zϵ = (x + ϵ, y)(Koh and Liang (2017)). We call this type of data
contamination as data perturbation. As for data perturbation, following relation holds,
When we consider data perturbation for a training data, IF of ordinary VI is given by

∂m∗ (ε)

∂ε
= −

(
∂2L

∂m2

)−1
∂

∂m
Eq(θ)

[
∂

∂x
ln p (z|θ)

]
. (40)

IF of β divergence based VI is given by

∂m∗ (ε)

∂ε
= −

(
∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[
∂

∂x
p (z|θ)β

]
. (41)

H Another type of γ VI

In the main paper, we used the transformed γ cross entropy, which is given in Eq.(7). The reason
we used the transformed cross entropy instead of original expression is that we can interpret the
pseudo posterior when using the transformed cross entropy much easily than when using original
cross entropy.
In the same way Eq.(42), we can derive the pseudo posterior using transformed cross entropy,

q(θ) ∝ e
N γ+1

γ
1
N

∑N
i=1

p(xi|θ)
γ

{∫
p(x|θ)1+γdy}

γ
1+γ p(θ)

=

[
N∏
i

elθ(xi)p(θ)

]
(42)

where lθ(xi) =
γ+1
γ

p(xi|θ)γ

{
∫
p(x|θ)1+γdy}

γ
1+γ

. In this formulation, it is easy to consider that the information

of data xi is utilized to update the prior information through elθ(xi).
However, when using original cross entropy, such interpretation cannot be done because the pseudo
posterior is given by,

q(θ) ∝ eN( 1
γ ln 1

N

∑N
i p(xi|θ)γdx− 1

1+γ ln
∫
p(x|θ)1+γdx)p(θ) (43)

and since the summation is not located in the front, this pseudo posterior has not additivity. Therefore
it is difficult to understand how each training data xi contributes to update the parameter. Moreover it
is not straight forward to apply stochastic variational inference framework. Accordingly, we decided
to use the transformed cross entropy.

6



Even thought the interpretation is difficult we can dirive IF in the same way as we discussed. For
unsupervised situation, the first order condition is given by

0 =
∂

∂m
Lγ

∣∣∣∣
m=m∗

= ∇mEq(θ;m∗(ϵ))

[
N

γ
ln

∫
dGϵ(x)p(x|θ)γdx− N

1 + γ
ln

∫
p(x|θ)1+γdx+ ln p(θ)− ln q(θ;m∗(ϵ))

]
.

(44)

In the same way as β VI, we can get the IF of γ VI of original cross entropy for unsupervised setting
as,

∂m∗ (ε)

∂ε
= −N

γ

(
∂2Lγ

∂m2

)−1
∂

∂m
Eq(θ)

[∫
dGn(x)p(x|θ)γ −Np(z|θ)γ∫

dGn(x)p(x|θ)γ

]
. (45)

For supervised situation, we can derive in the same way.

I Discussion of Influence function

In this section, we describe the detail discussion of influence function’s behavior when using a neural
net model for the regression and the classification with logistic loss.
We focus on the influence function of the variational parameter in the approximate posterior distri-
bution. We use mean-field variational inference and Gaussian distribution for approximate posterior.
q(θ) denote the approximate posterior. Since Gaussian distribution is a member of an exponen-
tial family, we can parametrize it by its mean value m. In the case of Gaussian distribution,
m = {E[θ],E[θ2]}. We can parametrize variational posterior as q(θ|m). Thus we only analyze the
influence function of m = E[θ] in this section and m indicates the m = E[θ] not E[θ2].
Let us start ordinary variational inference. In Eq.(40), we especially focus on the term,
∂

∂m
Eq(θ|m) [ln p (y|θ)], because this is the only term that is related to outlier. If we assume that

approximate posterior is an Gaussian distribution, we can transform this term in the following way,

∂

∂m
Eq(θ|m) [ln p (y|θ)] =

∂

∂m

{∫
q (θ|m) ln p (y|θ) dθ

}
=

∫
∂q (θ|m)

∂m
ln p (y|θ) dθ

= −
∫

q (θ|m)
∂

∂θ
ln p (y|θ) dθ

= −Eq(θ|m)

[
∂

∂θ
ln p (y|θ)

]
(46)

, where We used partial integration for the second line to third line. and also used the following
relation which holds for Gaussian distribution

∂q (θ|m)

∂m
=

∂q (θ|m)

∂θ
. (47)

This relation also holds for the Student-T

From above expression, it is clear that studying the behavior of
∂

∂θ
ln p (y|θ) is crucial for analyzing

IF. In this case, the behavior of IF in this expression is similar to that of maximum likelihood. The
related discussion are shown in AppendixJ

I.1 Regression

In this subsection, we consider the regression problem by a neural network. We denote the input to
the final layer as fθ(x) ∼ p(f |x, θ), where x is the input and θs are random variables which obeys
approximate posterior q(θ|m).
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We consider the output layer as Gaussian distribution as p(y|fθ(x)) = N(y|fθ(x), I). From above

discussion, what we have to consider is
∂

∂θ
ln p (y|fθ(x)).

We denote input related outlier as xo, that means xo does not follow the same distribution as other
regular training dataset. Also, we denote the output related outlier as yo that it does not follow the
same observation noise as other training dataset.

Output related outlier

Since we consider the model that output layer is Gaussian distribution, following relation holds for
IF of ordinary VI,

∂

∂θ
ln p (yo|fθ(xo)) ∝ (yo − fθ(xo))

∂fθ(xo)

∂θ
. (48)

We can see that this term does not bounded when yo → ±∞. And thus IF of ordinary VI is
unbounded as output related outlier become large.
As for the β divergence, we have to treat Eq.(35). Fortunately, when we use Gaussian distribution for
output layer, the second term in the bracket of Eq.(35) will be constant by the analytical integration,
and thus its derivative will be zero. Therefore the output related term is only the first term. Thanks
to this property, the denominator of Eq.(39) will also be a constant. Therefore IF of β VI and γ VI
behaves in the same way. Therefore, we only consider β VI for the regression. We get the following
expression,

∂

∂θ
p (yo|fθ(xo))

β ∝ e−
β
2 (yo−fθ(xo))

2

(yo − fθ(xo))
∂fθ(xo)

∂θ

=
(yo − fθ(xo))

e
β
2 (yo−fθ(xo))2

∂fθ(xo)

∂θ
(49)

From this expression, we can see that IF of β VI is bounded because Eq.(49) goes to 0 as yo → ±∞.
This means that the influence of this contamination will become zero. This is the desired property
for robust estimation.

Input related outlier

Next, we consider input related outlier. We consider whether Eq.(48) and Eq.(49) are bounded or
not when xo → ±∞.
To proceed the analysis, we have to specify models. We start from the most simple case, fθ(xo) =

W1xo + b1, where θ = {W1, b1}. This is the simple linear regression. In this case
∂fθ(xo)

∂W1
= xo

and
∂fθ(xo)

∂b1
= 1. When xo → ±∞, fθ(xo) → ±∞.

From these fact, we can soon find that Eq.(48) is unbouded. As for Eq.(49), the exponential function
in the denominator of Eq.(49) plays a crucial role. Thanks to this exponential function,

∂

∂W1
p (yo|fθ(xo))

β ∝ (yo − fθ(xo))

e
β
2 (yo−fθ(xo))2

xo

−−−−→
xo→∞

0 (50)

From these facts, ordinary VI is not robust against input related outliers, however β VI is robust.
Next we consider the situation that there is a hidden layer, that is fθ(xo) = W2(W1xo + b1) + b2,
where θ = {W1, b1,W2, b2}. At this point, we do not consider activation function. Following
relations hold,

∂

∂W1
fθ(xo) = W2xo,

∂

∂W2
fθ(xo) = W1xo + b1 (51)

From these relations, the behavior of IF in the case of xo → ±∞ is actually as same as the case
where there is no hidden layers. Therefore, IF of input related outlier is bounded in β VI and that is
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unbounded in ordinary VI. Even if we add more layers the situation does not change in this situation
where no activation exists.
Next, we consider the situation that there exists activation function. We consider relu and
tanh as activation function. In the situation that there is only one hidden layers, fθ(xo) =
W2(relu (W1xo + b1)) + b2,

∂fθ(xo)

∂W2
= relu (W1xo + b1) ,

∂fθ(xo)

∂W1
=

{
W2xo, W1xo + b1 ≥ 0

0, W1xo + b1 < 0,
(52)

Actually, this is almost the same situation as when there are no activation functions, because there
remains possibility that IF will diverge in ordinary VI, while IF in β VI is bounded.
When we use tanh as a activation function, fθ(xo) = W2tanh (W1xo + b1) + b2,

∂fθ(xo)

∂W1
=

W2xo

cosh2 (W1xo + b1)
−−−−→
xo→∞

0 (53)

The limit of above expression can be easily understand from Fig.1. From this expression, we can

−30 −20 −10 0 10 20 30

−0.4

−0.2

0.0

0.2

0.4

x/(cosh(x))2

Figure 1: Behavior of x
cosh2 x

understand IF of W1 is bounded in both ordinary estimator and β estimator, when we consider the
model, fθ(xo) = tanh (W1xo + b1). As for W2,

∂fθ(xo)

∂W2
= tanh(W1xo + b1) (54)

In this expression, even if input related outlier goes to infinity, the maximum of above expression is
1. Accordingly, the IF of W2 is bounded in any case. And thus IF of both ordinary VI and β VI is
bounded when we use tanh activation function.
Up to now, we have seen the model which has a hidden model. The same discussion can be held for
the model which has much more hidden layers. If we add layers, above discussion holds and there
remains possibility that IF using relu in ordinary VI will diverge.
We can say that ordinary VI is not robust to output related outliers and input related outliers. The
exception is that using tanh activation function makes the IF of ordinary VI bounded. In β VI, the
IF of parameters are always bounded.

Using Student-T output layer

We additionaly consider the property of Student-t loss in terms of IF. When we denote degree of
freedom as ν, and the variance as σ2, following relation holds,

∂

∂θ
ln p (yo|fθ(xo)) ∝

(yo − fθ(xo))

νσ2 + (yo − fθ(xo))
2

∂fθ(xo)

∂θ
(55)
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By comparing Eq.(55) with Eq.(48) and Eq.(49), we can confirm that the behavior of IF in the case
of Student-t loss in ordinary VI is similar to Gaussian loss model in β VI. First, consider output
related outlier,

∂

∂θ
ln p (yo|fθ(xo)) −−−−→

yo→∞
0 (56)

From above expression, we can find that Student-T loss is robust to output related outlier. This is the
desiring property of Student-T.
Next consider input related outlier. We consider the model, fθ(xo) = W1xo + b1, where θ =
{W1, b1}

∂

∂W1
ln p (yo|fθ(xo)) ∝

(yo − fθ(xo))

νσ2 + (yo − fθ(xo))
2xo

=
(yo − fθ(xo))

2

νσ2 + (yo − fθ(xo))
2

xo

yo − fθ(xo)

=
(yo − fθ(xo))

2

νσ2 + (yo − fθ(xo))
2

fθ(xo)− b1
W1(yo − fθ(xo))

−−−−→
xo→∞

−W−1
1 (57)

This is an interesting result that in β VI, the effect of input related outlier goes to 0 in the limit, on
the other hand for Student-t loss, the IF is bounded but finite value remains.
Although the finite value remains in IF when using Student-T loss and its value is W1, the value is
considerably small. Therefore we can disregard the remained influence of Student-T loss in practice.

I.2 Classification

In this section, we consider the classification problem. We focus on the binary classification, and
output y can take +1 or 0. We only consider the input related outlier for the limit discussion because
the influence caused by label misspecification is always bounded.
As the model, we consider the logistic regression model,

p(y|fθ(x)) = fθ(x)
y(1− fθ(x))

(1−y) (58)

where

fθ(x) =
1

1 + e−gθ(x)
(59)

where gθ(x) is input to sigmoid function. We consider a neural net for gθ(x) later.

We first assume gθ(x) = Wx + b, then
∂g

∂W
= x and

∂g

∂b
= 1. We assume prior and posterior

distribution of W and b are Gaussian distributions. For IF analysis, we first consider the first term of
Eq.(35) and only consider outlier related term inside it. To proceed the calculation, we can use the
relation Eq.(46), and what we have to analyze is

∂

∂θ
ln p(y|fθ(x)) =

∂

∂θ
(y ln fθ(x) + (1− y) ln(1− fθ(x)))

= −y(1− f)
∂g

∂θ
+ (1− y)f

∂g

∂θ
(60)

Let us consider, for example y = +1

∂

∂θ
ln p(y = +1|fθ(x)) =

1

1 + egθ(x)
∂g

∂θ
(61)

As for θ = b, this is always bounded. As for θ = W ,
∂

∂W
ln p(y = +1|fθ(x)) =

1

1 + eWx+b
x (62)
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In above expression, if we take limit x → +∞, and if Wx → −∞, above expression can diverge. If
Wx → ∞ when x → +∞, above expression goes to 0. From this observation, it is clear that there
is a possibility that IF for input related outlier diverges in a logistic regression for ordinary VI.
As for β VI, we have to consider the following term,

p(y = +1|fθ(x))β
∂

∂θ
ln p(y = +1|fθ(x)) =

1

(1 + e−gθ(x))β
1

1 + egθ(x)
∂g

∂θ
(63)

This expression converges to 0 when xo → ±∞. In addition, we have to consider the behavior of
the second term in Eq.(35) for analysis of IF, which is vanish in the regression situation. The second
term of Eq.(35) can be written as(

∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[
N

∫
p(y|xo, θ)

1+βdy

]
= N

(
∂2Lβ

∂m2

)−1
∂

∂m
Eq(θ)

[
fθ(xo)

1+β + (1− fθ(xo))
1+β

]
(64)

To proceed the analysis, we can use the relation Eq.(46). Since the inverse of hessian matrix is not
related to outlier, what we have to consider is∫

dθq (θ)
∂

∂θ
fθ(xo)

1+β +
∂

∂θ
(1− fθ(xo))

1+β

= −
∫

dθq (θ)

(
fθ(xo)

1+β(1− fθ(xo))
∂g

∂θ
+ (1− fθ(xo))

1+βfθ(xo)
∂g

∂θ

)
= −

∫
dθq (θ)

{
(1− fθ(xo))

β + fθ(xo)
β
}
(1− fθ(xo))fθ(xo)

∂g

∂θ
(65)

Since in the logistic regression situation, fθ is bounded under from 0 to 1, the term (1− fθ(xo))
β +

fθ(xo)
β cannot goes to zero. Therefore, what we have to consider is the term (1−fθ(xo))fθ(xo)

∂g

∂θ
.

(1− fθ(xo))fθ(xo)
∂g

∂θ
=

1

1 + egθ
1

1 + e−gθ

∂g

∂θ
−−−−→
xo→∞

0 (66)

Therefore, in the limit discussion, we do not have to consider the behavior of second term of Eq.(35).
The behavior of IF is determined by the first term of Eq.(35). Accordingly, IF of logistic regression
when using β VI is bounded.
Consider the case where there exists activation functions such as relu or tanh. Since we do not
use activation function for the final layer, the IF of logistic regression using relu activation function
is not bounded when using ordinary VI because there remains a possibility that gθ(x) → −∞ as
x → ±∞. In such a case, our analyzing term can diverge. When using tanh activation function, as
we discussed in regression setup, IF are always bounded.
Accordingly, our conclusion is that for the logistic regression, relu activation function is not robust
against input related outliers when using ordinal VI, while tanh activation function is robust. As for
β VI, it is apparent from Eq.(63) and Eq.(66) that IF is bounded for both relu and tanh even using
neural net.
Next, we consider the case of γ VI, and what we have to analyze is the second term of Eq.(39). To
proceed the analysis, we can use the relation Eq.(46). Since the inverse of hessian matrix is not
related to outlier, what we have to analyze is,∫

dθq (θ)
∂

∂θ

p(y′|x′)γ

{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

=

∫
dθq (θ)

{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

∂

∂θ
p(y′|x′)γ − p(y′|x′)γ

∂

∂θ
{
∫
p(y|x′, θ)1+γdy}

γ
1+γ

{
∫
p(y|x′, θ)1+γdy}

2γ
1+γ

.

(67)
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In the above expression, what we have to consider is the numerator. The analysis of first term can be
done in the same way as Eq.(63). Therefore it is bounded for both relu and tanh. The second term
can be analyzed in the same way as Eq.(65), we do not have to consider it in the limit. From above
discussion, the behavior of IF for γ VI is the same as that for β VI in the limit, accordingly, it is
bounded even if using relu activation function.

J Analysis based on influence function under no model assumption

Let us compare the behavior of IF of ordinal VI and our proposed methods intuitively. First we con-

sider ordinary VI. In Eq.(29), since the term which depends on contamination is
∂

∂m
Eq(θ) [ln p (z|θ)],

we focus on that term. It is difficult to deal with this expression directly, we focus on typical value
of q (θ), the mean value m. In such a simplified situation, what we have to consider is following
expression.

∂

∂m
ln p (z;m) (68)

This is the ordinary maximum likelihood estimator.
Let us consider the unsupervised β VI. What we consider is,

∂

∂m
(p (z;m))

β
= (p (z;m))

β ∂

∂m
ln p (z;m) (69)

To proceed the analysis, it is necessary to specify a model p(z; θ), otherwise we cannot evaluate
differentiation. Here for intuitive analysis, we simply consider the behavior of ln p(z;m) and
p(z;m)β ln p(z;m), and in the case of z is outlier, that is p(z;m) is quite small.

Figure 2: Behavior of y = log x and y = xβ log x. As x become small, y = log x diverges to −∞,
on the other hand y = xβ log x is bounded.

Fig.1 shows that ln p(z;m) is unbounded, on the other hand p(z;m)β ln p(z;m) is bounded. This
means that β divergence VI is robust to outliers.

K Comparison of β VI and γ VI

In this section, we compare the proposed β VI and γ VI theoretically. Although β VI and γ VI have
robustness in based on the influence function analysis, their robustness property have significant
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difference if the proportion of contamination is large. If the proportion of contamination is large the
assumption of discussion of influence function does not hold because we assumed that the ϵ is near
zero to derive the influence function.
If the proportion of contamination is not small, other kinds of discussion is needed. Such a discussion
is given in in Fujisawa and Eguchi [2008], therefore we review it and use it for our variational
objectives.
Following the notation in Fujisawa and Eguchi [2008], g(x) denotes the contaminated probability
density function,

g(x) = (1− ϵ)f(x) + ϵδ(x), (70)
where f(x) is the underlying true probability density function, δ(x) denotes the contamination
probability density function, and ϵ is the contamination proportion.
We assume that when a data point x∗ is an outlier f(x∗) is sufficiently small. We express this
assumption by saying that the following quantity is sufficiently small for an appropriate large γ0 > 0,

νf =

{∫
δ(x)f(x)γ0dx

}1/γ0

. (71)

This means that δ(x) exists on the tail of f(x). If δ(x) is the Dirac function at x∗, νf = f(x∗), and
above assumption simply means when a data point x∗ is an outlier f(x∗) is sufficiently small.
Under this assumption, following lemma and theorem holds (this is lemma3.1 and theorem 3.2 in
Fujisawa and Eguchi [2008]) that

Lemma 1 Suppose that the positive function h satisfies the above assumption, where f is replaced
by h. It then holds

dγ(g, h) = dγ((1− ϵ)f, h) +O(ϵνγh)

= dγ(f, h)−
1

γ
log(1− ϵ) +O(ϵνγ) (72)

Theorem 1 Suppose that the positive function h satisfies the above assumption, where f is replaced
by h. Let ν = max{νf , νh}. Then, the Pythagorean relation among g, f , and h approximately
holds:

∆(g, f, h) = Dγ(g, h)−Dγ(g, f)−Dγ(f, h) = O(ϵνγ) (73)

This theorem means that the minimizing divergence from the model h to contaminated density g is
approximately equivalent to minimizing the divergence h to true distribution f and its order of error
is given by O(ϵνγ).
Recall that the objective function of our proposed is given by

Lγ(q(θ)) =

∫
q(θ) (Ndγ (g(x)∥p(x|θ))) dθ +DKL(q(θ)∥p(θ)), (74)

where g(x) is the contaminated distribution and p(x|θ) is the model we prepared. By using the
Pythagorean relation, we can rewrite the above expression in the following way by using the true
underlying distribution,

Lγ(q(θ)) =

∫
q(θ)

(
Ndγ(f(x)∥p(x|θ))−

1

γ
log(1− ϵ) +O(ϵνγ)

)
dθ +DKL(q(θ)∥p(θ)).

(75)

This equation means that by using the γ cross entropy, we can utilize the γ cross entropy between true
distribution to our model. We optimized the objective function by using the black-box variational
inference method and optimize the variational parameters by gradient decent, and thus the constant
terms inside the integral are neglected.
This relation is obtained under the assumption of Eq. (71). The assumption is not the assumption
that we used in the influence function that contamination proportion of ϵ is small. Therefore even if
the contamination proportion is large, we can obtain the Actually, the robustness of β divergence is
assured by the influence function (Basu et al. [1998]) and thus it is not guaranteed if the contamination
proportion is not sufficiently small. Following this observation, γ divergence based method is superior
to β divergence method.
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Table 2: RMSE of VI and β=0.1 VI for toy data.

Outliers KL(Gaussian) β = 0.1(Gaussian)
No outliers 0.01 0.01

Outlier exists 0.69 0.01

Table 3: Accuracy of VI and β=0.4 VI for toy data.

Outliers KL(logistic) β = 0.4(logistic)
No outliers 0.97 0.97

Outlier exists 0.95 0.97

L Experimental detail and results

In the numerical experiment, all the prior distributions are standard Gaussian distributions. We used
mean-field variational inference and we used Gaussian distributions as approximate posteriors.

L.1 Toy experiment

For the regression task, we generated the toy data by using (x,y) by y ∼ w⊤x + ϵ, where w⊤ =
(−0.5,−0.1), x ∼ N(0, 1) and ϵ ∼ N(0, 0.1). We generated 1000 data points. Outliers are generated
by x ∼ N(−15, 1) which we considered the measurement error. We generate 24 outliers, which is
2.4% of the regular dataset. We used the linear regression, p(y|x) = N(y|fθ(x), 1), fθ(x) = Wx+b.
For the binary classification, the toy data are generated with the probability p(x|y = +1) =
N(x|µ1, σ1), p(x|y = −1) = N(x|µ2, σ2), where µ⊤

1 = (−1,−1), µ⊤
2 = (1, 1), σ1 = I, σ2 = 4I ,

where I is identity matrix. We generate 1000 data for each class, and in total 2000 regular points. As
outliers we generate 30 outliers by using p(x|y = +1) = N(x|µo, σo), where µ⊤

o = (7, 0), σ2 =
0.1I . The outliers are shown by stars in the picture in the main paper. For binary classification, we
use logistic regression, where p(y = +1|x) = logit(fθ(x)), fθ(x) = Wx + b. We prepare priors
and posteriors in the same way with binary classification.
The performance of ordinary VI estimation and our proposing methods are shown in Table.2. Appar-
ently, the performance of ordinary VI significantly deteriorates when adding outliers. On the other
hand, the performance of our proposing method is not affected by outliers.
The illustrative results are shown in the main text. We also show the performance on this toy
experiment in Table 2 and Table 3. Those tables show that ordinary VI is heavily affected by outliers,
while our method is not affected so much.

L.2 Influence function

Based on the discussion of Appendix I, the dominant term in IF of γ VI behaves similarly with β VI,
therefore we also expected that the perturbation of predictive distribution by outliers in γ VI behaves
in the same way as β VI. And thus, we numerically studied the perturbation of predictive distribution
only about ordinary VI and β VI. In each calculation, we used 200MC samples to get stable curves.

Regression

We investigated three cases where there is only input related outliers and only output related outliers
and both outliers exist.
For an easy visualization and computational savings, we only contaminated the chosen single feature
of the input. Since inputs have four dimensional features, x ∈ R4, we chose the first feature x1

to contaminate. To investigate the how predictive distribution depends on the contamination of the
input, we chose randomly a single data point from the training data and moved the value of the first
feature of the chosen data from −∞ to ∞.
For the output related outlier setting, we chose randomly a single data point from the training data
and moved the output value of chosen data from −∞ to ∞.
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Figure 3: Perturbation on test log-likelihood for neural net regression.

For both input and output related outlier setting, we chose randomly a single data point from the
training data and moved the first feature of the input and the output of chosen data from −∞ to ∞.
In the main paper, the figure of input and output related outlier settings are shown. Here we show
the both the input and output related outlier situation and the graph is the case when the first feature
of the input and the output value increase simultaneously.
From this figure, we confirmed again that in this situation, the perturbation on ordinary VI is not
unbounded and the perturbation on our proposed method is bounded.

Classification

In the classification problem, first we considered how predictive distribution depends on the input
related outlier. The method is as same as the regression problem. Since inputs have 14 dimensional
features, x ∈ R14, we chose the third feature x3 to move.
In the label misspecification experiment, we flipped one label of training dataset and measured how
log-likelihood of test data are changed. From this experiment, we measured how label misspecifica-
tion by chosen training data influences the prediction. We repeated this procedure for every training
data point and took average. By this experiment, we measured how one flip of training data would
influence the prediction on average.
The results shown in the main paper indicates that ordinary VI causes larger minus test log-likelihood
change compared to β VI. Base on the fact that decrease of log likelihood is almost equivalent to
the increase of loss, the label misspecification causes larger perturbation to prediction in ordinary VI
compared to proposed VI.

Calculation of the Hessian

In the above calculation, we have to evaluate the Hessian of ELBO. To save the computational cost
we used following method,

∂2Lβ

∂m2
v = arg min

t

1

2
t⊤

∂2Lβ

∂m2
t− v⊤t (76)
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This is the technique that instead of calculating the Hessian directly, we can calculate the product of
the Hessian and a vector by solving the second order optimization problem. In our case, we consider

t =
∂

∂m
Eq∗(θ) [ln p(xtest|θ)] and solve above optimization problem.

Influence function of the parameter of the neural network

In this section, we show the IF of parameters. Figure 4 shows the plot of IF (x1,W,G) where W
is a chosen one affine parameter in the case of relu activation function. Figure 4(a) shows the case
of ordinary VI, which diverges as absolute value of x1 become large. This means outliers have
unlimited influence to the estimated static. On the other hand, Fig 4(b) shows the case of proposed
method and the influence is bounded, that is the effect of outliers goes to zero. These results are
compatible our theoretical analysis in the previous section.

(a) VI (b) Proposed method

Figure 4: IF of one affine parameter in Bayesian neural net.

However this is not sufficient analysis because what we want to be robust is the predictive distribution
not parameters. Accordingly, it is necessary to study whether prediction is robust against outliers.
For the analysis of prediction, we simulated the test log-likelihood. Actually, if the test log-likelihood
has affected so much by an outlier, that is prediction on the test point is affected so much. Accordingly,
such a model is not robust even under contamination of one outlier.

L.3 Bench mark dataset

In this experiment, we determined β and γ by cross validation. For both regression and classification
settings, the range of β and γ are from 0.1 to 0.9.
For WL(weighted likelihood proposed in Wang et al. [2017]), we considered Beta distribution for
the prior of the weights and we used the method of ADVI for the optimization. For Rényi VI, we
chosen α from the set of {−1.5,−1.0,−0.5, 0.5, 1.0, 1.5} by cross-validation. For BB-α, we chosen
α from the set of {0, 0.25, 0.5, 0.75, 1.0} by cross-validation. For Student-t distribution, we chose
the degree of freedom from 3 to 10 by cross-validation.
In both of the regression and classification problem, we artificially increased the percentage of both
input and output related outliers in the training dataset.
To make the input related outliers, we first specified which features of the input we would contaminate.
In this experiment, for regression tasks, since input dimension is not so large, we contaminated all the
input features. For classification tasks, if the training data has D dimensional features, we randomly
chose D/2 dimensions to contaminate. Next we randomly chose the data points we contaminate
from training dataset. We contaminated the features by adding the Gaussian noise. Since the input
data had been preprocessed by standardization, the noise we use is the Gaussian distribution which
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follows ϵ ∼ N(0, 6). From the numerical calculation of influence function, we considered that the
noise which has the value of “6” sigma variance can be regarded as an outlier.
For output related outlier, in the same way as the input related outlier, we randomly chosen the point
which we would contaminate and add the Gaussian noise which follows ϵ ∼ N(0, 6).
We optimized by using Adam and reparameterization trick. The learning rate of Adam was set to
0.01 and MC samples was 5 except for covertype dataset. For the covertype dataset, the learning rate
of Adam was set to 0.001 and we used 20 MC samples. The minibatch size was set to 128.
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