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Abstract

Robustness to outliers is a central issue
in real-world machine learning applications.
While replacing a model to a heavy-tailed
one (e.g., from Gaussian to Student-t) is
a standard approach for robustification, it
can only be applied to simple models. In
this paper, based on Zellner’s optimization
and variational formulation of Bayesian in-
ference, we propose an outlier-robust pseudo-
Bayesian variational method by replacing the
Kullback-Leibler divergence used for data fit-
ting to a robust divergence such as the β-
and γ-divergences. An advantage of our ap-
proach is that superior but complex models
such as deep networks can also be handled.
We theoretically prove that, for deep net-
works with ReLU activation functions, the
influence function in our proposed method is
bounded, while it is unbounded in the ordi-
nary variational inference. This implies that
our proposed method is robust to both of in-
put and output outliers, while the ordinary
variational method is not. We experimen-
tally demonstrate that our robust variational
method outperforms ordinary variational in-
ference in regression and classification with
deep networks.

1 Introduction

Robustness is a fundamental topic in machine learning
and statistics. Although specific definitions of robust-
ness may be problem-dependent, a commonly shared
notion is “an insensitivity to small deviations from the
assumptions”, according to the seminal book by Huber
and Ronchetti [2011]. Robustness to outliers is get-
ting more important these days since recent advances
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in sensor technology give a vast amount of data with
spiky noise and crowd-annotated data is full of human
errors (Raykar et al. [2010], Zhang et al. [2016], Liu
et al. [2012], Bonald and Combes [2017] ).

A standard approach to robust machine learning is a
model-based method, which uses a heavier-tailed distri-
bution such as the Student-t distribution instead of the
Gaussian distribution as a likelihood function (Murphy
[2012]). However, as pointed out in Wang et al. [2017],
the model-based method is applicable only to a simple
modeling setup.

To handle more complex models, we employ the opti-
mization and variational formulation of Bayesian infer-
ence by Zellner [1988]. In this formulation, the poste-
rior model is optimized to fit data under the Kullback-
Leibler (KL) divergence, while it is regularized to be
close to the prior. In this paper, we propose replacing
the KL divergence for data fitting to a robust diver-
gence, such as the β-divergence (Basu et al. [1998])
and the γ-divergence (Fujisawa and Eguchi [2008]).

Another robust Bayesian inference method proposed
by Ghosh and Basu [2016] follows a similar line to
our method, which adopts the β-divergence for pseudo-
Bayesian inference. They rigorously analyzed the sta-
tistical efficiency and robustness of the method, and
numerically illustrated its behavior for the Gaussian
distribution.

Our work can be regarded as an extension of their work
to variational inference so that more complex mod-
els such as deep networks can be handled. For deep
networks with ReLU activation functions, we prove
that the influence function (IF) (Huber and Ronchetti
[2011]) of our proposed inference method is bounded,
while it is unbounded in the ordinary variational infer-
ence. This implies that our proposed method is robust
to both input and output outliers, while the ordinary
variational method is not.

In Wang et al. [2017], another robust Bayesian infer-
ence method based on a weighted likelihood was pro-
posed, where weights are drawn from their prior distri-
bution. They also conducted IF analysis and showed
that IF is bounded asymptotically. On the other hand,
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our method is guaranteed to have a bounded IF for fi-
nite samples. In addition, by using IF, we numerically
show that influence to the predictive distribution by
outliers is also bounded in our proposed method.

Finally, we experimentally demonstrate that our ro-
bust variational method outperforms ordinary varia-
tional inference in regression and classification with
neural networks.

2 Preliminaries

In this section, we review preliminary materials on sta-
tistical inference.

2.1 Maximum Likelihood Estimation and Its
Robust Variants

Let us consider the problem of estimating an unknown
probability distribution1 p∗(x) from its independent
samples x1:N = {xi}Ni=1. To this end, we consider a
parametric model p(x; θ) with parameter θ, and mini-
mize the generalization error measured by the KL di-
vergence DKL from p∗(x) to p(x; θ):

DKL (p
∗(x)∥p(x; θ)) =

∫
p∗(x) log

(
p∗(x)

p(x; θ)

)
dx. (1)

However, since p∗(x) is unknown in practice, it is re-
placed with

DKL (p̂(x)∥p(x; θ)) = Const.− 1

N

N∑
i=1

ln p(xi; θ), (2)

where p̂(x) = 1
N

∑N
i=1 δ(x, xi), is the empirical distri-

bution and δ is the Dirac delta function. Minimizing
this empirical Kullback-Leibler divergence is equiva-
lent to maximum likelihood estimation. Equating the
partial derivative of Eq.(2) with respect to θ to zero,
we obtain the following estimating equation:

0 =
1

N

N∑
i=1

∂

∂θ
ln p(xi; θ). (3)

Maximum likelihood estimation is sensitive to outliers
because it treats all data points equally. To circumvent
this problem, outlier-robust divergence estimation has
been developed in statistics.

The density power divergence, which is also known as
the β-divergence, is a vital example (Basu et al. [1998]).

1 Although we focus on estimating density p∗(x), almost
the same discussion is possible for estimating conditional
density p∗(y|x), as explained in Section 3.

The β-divergence from functions g to f is defined as

Dβ (g∥f) =
1

β

∫
g(x)1+βdx

−β + 1

β

∫
g(x)f(x)βdx+

∫
f(x)1+βdx. (4)

The γ-divergence (Fujisawa and Eguchi [2008]) is an-
other family of robust divergences:

Dγ (g∥f) =
1

γ(1 + γ)
ln

∫
g(x)1+γdx

− 1

γ
ln

∫
g(x)f(x)γdx+

1

1 + γ
ln

∫
f(x)1+γdx. (5)

In the limit of β → 0 and γ → 0, both the β- and
γ-divergences converge to the KL divergence:

lim
β→0

Dβ (g∥f) = lim
γ→0

Dγ (g∥f) = DKL(g∥f). (6)

Similarly to maximum likelihood estimation, minimiz-
ing the β-divergence (or the γ-divergence) from em-
pirical distribution p̂(x) to p(x; θ) gives an empirical
estimator:

arg min
θ

Dβ (p̂(x)∥p(x; θ)) . (7)

This yields the following estimating equation:

0 =
1

N

N∑
i=1

p(xi; θ)
β ∂

∂θ
ln p(xi; θ)

− Ep(x;θ)

[
p(x; θ)β

∂

∂θ
ln p(xi; θ)

]
, (8)

where the second term assures the unbiasedness of the
estimator. The first term in Eq.(8) is the likelihood
weighted according to the power of the probability den-
sity for each data point. Since the probability densities
of outliers are usually much smaller than those of in-
liers, those weights effectively suppress the likelihood
of outliers.

When β = 0, all weights become one and thus Eq.(8) is
reduced to Eq.(3). Therefore, adjusting β corresponds
to controlling the trade-off between robustness and ef-
ficiency. See Appendices A and B for more details.

Eqs.(3) and (8) are called an M-estimator, and Eq.(8)
is also called a Z-estimator (Huber and Ronchetti
[2011], Basu et al. [1998], Van der Vaart [1998]). In
various machine learning applications, those methods
showed superior performance (Narayan et al. [2015],
Samek et al. [2013], Cichocki et al. [2011]).

2.2 Bayesian Inference and Variational
Methods

In Bayesian inference, parameter θ is regarded as a
random variable, having prior distribution p(θ). With



Futoshi Futami, Issei Sato, Masashi Sugiyama

Bayes’ theorem, the Bayesian posterior distribution
p(θ|x1:N ) can be obtained as

p(θ|x1:N ) =
p(x1:N |θ)p(θ)

p(x1:N )
. (9)

Zellner [1988] showed that p(θ|x1:N ) can also be ob-
tained by solving the following optimization problem:
2

arg min
q(θ)∈P

L(q(θ)), (10)

where P is the set of all probability distributions,
−L(q(θ)) is the evidence lower-bound (ELBO),

L(q(θ)) = DKL(q(θ)∥p(θ))

−
∫

q(θ) (−NdKL (p̂(x)∥p(x|θ))) dθ,

and dKL (p̂(x)∥p(x|θ)) denotes the cross-entropy :

dKL (p̂(x)∥p(x|θ)) = − 1

N

N∑
i=1

ln p(xi|θ). (11)

Note that Bayes posterior (9) can be expressed as

p(θ|x1:N ) =
e−NdKL(p̂(x)∥p(x|θ))p(θ)

p(x1:N )
. (12)

In practice, the optimization problem of Eq.(10) is of-
ten intractable analytically, and thus we need to use
some approximation method. A popular approach is
to restrict the domain of the optimization problem
to a set of analytically tractable probability distribu-
tions Q. Let us denote such a tractable distribution
as q(θ;λ) ∈ Q, where λ is a parameter. Then the
optimization problem is expressed as

arg min
q(θ;λ)∈Q

L(q(θ;λ)). (13)

This optimization problem is called variational infer-
ence(VI).

3 Robust Variational Inference based
on Robust Divergences

In this section, we propose a robust variational infer-
ence method based on robust divergences.

As detailed in Appendix C, Eq.(10) can be equivalently
expressed as

arg min
q(θ)∈P

Eq(θ)[DKL (p̂(x)∥p(x|θ))] +
1

N
DKL (q(θ)∥p(θ)) .

(14)

2Zellner’s formulation of Bayesian inference was also
used for extending variational inference to constrained
methods (Zhu et al. [2014], Koyejo and Ghosh [2013]).

The first term can be regarded as the expected likeli-
hood (see Eq.(2)), while the second term “regularizes”
q(θ) to be close to prior p(θ).

To enhance robustness to data outliers, let us replace
the KL divergence in the expected likelihood term with
the β-divergence:

arg min
q(θ)∈P

Eq(θ)[Dβ (p̂(x)∥p(x|θ))] +
1

N
DKL (q(θ)∥p(θ)) .

(15)

Note that Eq.(15) can be equivalently expressed as

arg min
q(θ)∈P

Lβ(q(θ)), (16)

where −Lβ(q(θ)) is the β-ELBO defined as

Lβ(q(θ) = DKL(q(θ)∥p(θ))

−
∫

q(θ) (−Ndβ (p̂(x)∥p(x|θ))) dθ, (17)

and dβ(p̂(x)∥p(x|θ)) denotes the β-cross-entropy:

dβ(p̂(x)∥p(x|θ)) = −β + 1

β

1

N

N∑
i=1

p(xi|θ)β

+

∫
p(x|θ)1+βdx.

For its solution, we have the following theorem (its
proof is available in Appendix D):

Theorem 1 The solution of Eq.(15) is given by

q(θ) =
e−Ndβ(p̂(x)∥p(x|θ))p(θ)∫
e−Ndβ(p̂(x)∥p(x|θ))p(θ)dθ

. (18)

Interestingly, the above expression of q(θ) is the same
as the pseudo posterior proposed in Ghosh and Basu
[2016]. Although the pseudo posterior is not equiv-
alent to the posterior distribution derived by Bayes’
theorem, the spirit of updating prior information by
observed data is inherited (Ghosh and Basu [2016]).
For this reason, we refer to Eq.(18) simply as a poste-
rior in this paper. We discuss how prior information
is updated in pseudo-Bayes-posteriors in Appendix E.

The optimization problem (15) is generally intractable.
Following the same line as the discussion in Section 2.2,
let us restrict the set of all probability distributions to
a set of analytically tractable parametric distributions,
q(θ;λ) ∈ Q. Then the optimization problem yields

arg min
q(θ;λ)∈Q

Lβ(q(θ;λ)).

We call this method β-variational inference (β-VI).
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Table 1: Cross-entropies for robust variational inference.

Unsupervised Supervised

β −β+1
β

1
N

∑N
i=1 p(xi|θ)β +

∫
p(x|θ)1+βdx −β+1

β

{
1
N

∑N
i=1 p(yi|xi, θ)

β
}
+
{

1
N

∑N
i=1

∫
p(y|xi, θ)

1+βdy
}

γ − 1
N

γ+1
γ

∑N
i=1

p(xi|θ)γ

{
∫
p(x|θ)1+γdx}

γ
1+γ

- 1
N

γ+1
γ

∑N
i=1

p(yi|xi,θ)
γ

{
∫
p(y|xi,θ)1+γdy}

γ
1+γ

We optimize objective function Lβ by black-box varia-
tional inference method and re-parameterization trick
(Ranganath et al. [2014]). In our implementation, we
estimate the gradient of the objective function (17) by
Monte Carlo sampling.

So far, we focused on the unsupervised learning case
and the β-divergence. Actually, we can easily gener-
alize the above discussion to the supervised learning
case and also to the γ-divergence, by simply replacing
the cross-entropy with a corresponding one shown in
Table 1. We denote the objective function for the γ-
divergence as Lγ in the same way as Eq.(17). Note
that, there are several choices for the γ-cross-entropy,
as detailed in Appendix H. Explicit expression of L,
Lβ , and Lγ are summarized in Appendix F.

4 Influence Function Analysis

In this section, we analyze the robustness of our pro-
posed method based on the influence function (IF)
(Huber and Ronchetti [2011]). IFs have been used in
robust statistics to study how much contamination af-
fects estimated statistics.

4.1 Influence Function

First, we review the notion of IFs. Let G be an empir-
ical cumulative distribution of {xi}ni=1:

G (x) =
1

n

n∑
i=1

∆xi
(x) , (19)

where ∆x stands for the point-mass 1 at x. Let Gε,z

be a contaminated version of G at z:

Gε,z(x) = (1− ε)G(x) + ε∆z(x), (20)

where ε is a contamination proportion. For a statistic
T and empirical distribution G, IF at point z is defined
as follows (Huber and Ronchetti [2011]):

IF (z, T,G) =
∂

∂ε
T (Gε,z(x))

∣∣∣∣
ε=0

= lim
ε→0

T (Gε,z(x))− T (G(x))

ε
. (21)

Intuitively, IF is a relative bias of a statistic caused by
contamination at z.

4.2 Derivation of Influence Functions

Now we analyze how posterior distributions derived by
VI are affected by contamination. In ordinary VI, we
derive a posterior by minimizing Eq.(13). Let us con-
sider an approximate posterior q(θ;m) parametrized
by m. Then the objective function given by Eq.(13)
can be regarded as a function of m whose first-order
optimality condition yields

0 =
∂

∂m
L

∣∣∣∣
m=m∗

. (22)

For notational simplicity, we denote q(θ;m∗) by q∗(θ).

Referring to Eq.(21), T corresponds to m∗, and G is
approximated empirically by the training dataset in
VI. Then substituting Eq.(20) into Eq.(13) and using
Eq.(21) and Eq.(22) yield the following theorem (its
proof is available in Appendix F):

Theorem 2 When data contamination is given by
Eq.(20), IF of ordinary VI is given by(
∂2L

∂m2

)−1
∂

∂m
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nl(z)] , (23)

IF of β-VI is given by(
∂2Lβ

∂m2

)−1
∂

∂m
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nlβ(z)] , (24)

and IF of γ-VI is given by(
∂2Lγ

∂m2

)−1
∂

∂m
Eq∗(θ) [DKL(q

∗(θ)∥p(θ)) +Nlγ(z)] , (25)

where l(z), lβ(z), and lγ(z) are defined in Table 2.

Using these expressions, we analyze how estimated
variational parameters can be perturbed by out-
liers. In practice, it is important to calculate
supz |IF(z, θ,G)|, because if it diverges, the model can
be sensitive to small contamination of data.

4.3 Influence Function Analysis for Specific
Models

In our analysis, we consider two types of outliers—
outliers related to input x and outliers related to out-
put y. For true data generating distributions p∗(x) and
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Table 2: Influence functions for robust variational inference.

Unsupervised Supervised z=(x’,y’)

l(z) ln p (z|θ) ln p (y′|x′, θ)

lβ(z)
β+1
β p(z|θ)β −

∫
p(x|θ)1+βdx β+1

β p(y′|x′, θ)β −
∫
p(y|x′, θ)1+βdy

lγ(z)
γ+1
γ

p(z|θ)γ

{
∫
p(x|θ)1+γdx}

γ
1+γ

γ+1
γ

p(y′|x′,θ)γ

{
∫
p(y|x′,θ)1+γdy}

γ
1+γ

Table 3: Behavior of supz |IF(z,W,G)| in neural networks, “Regression” and “Classification” indicate the cases
of ordinary VI, while “β- and γ-Regression” and “β- and γ-Classification” mean that we used β-VI or γ-VI.
“Activation function” means the type of activation functions used. “Linear” means that there is no nonlinear
transformation, inputs are just multiplied W and added b. (xo : U, yo : U) means that IF is unbounded while
(xo : B, yo : U) means that IF is bounded for input related outliers, but unbounded for output related outliers.

Activation function Regression β- and γ-Regression Classification β- and γ-Classification

Linear (xo : U, yo : U) (xo : B, yo : B) (xo : U) (xo : B)
ReLU (xo : U, yo : U) (xo : B, yo : B) (xo : U) (xo : B)
tanh (xo : B, yo : U) (xo : B, yo : B) (xo : B) (xo : B)

p∗(y|x), input-related outlier xo does not obey p∗(x)
and output-related outlier yo does not obey p∗(y|x).
Below we investigate whether IFs are bounded even
when xo → ∞ or yo → ∞.

Although general IF analysis has been extensively car-
ried out in statistics (Huber and Ronchetti [2011]), few
works exist focusing on specific models that we often
use in recent machine learning applications. Based
on this, we consider neural network models for regres-
sion and classification (logistic regression). In neural
networks, there are parameters θ = {W, b} where out-
puts of hidden units are calculated by multiplying W
to input and then adding b. Our analysis shows that
supz |IF(z, b,G)| is always bounded (see Appendix I
for details), and our exemplary analysis results for
supz |IF(z,W,G)| are summarized in Table 3.

From Table 3, we can confirm that ordinary VI is
always non-robust to output-related outliers. As for
input-related outliers, ordinary VI is robust for the
“tanh”-activation function, but not for the ReLU and
linear activation functions. On the other hand, IFs of
our proposed method are bounded for all three activa-
tion functions including ReLU. We have further con-
ducted IF analysis for the Student-t likelihood, which
is summarized in Appendix I.

Actually, in Bayesian inference, what we really want to
know in the end is the predictive distribution at test
point xtest:

p(xtest|x1:N ) =

∫
p(θ|x1:N )p(xtest|θ)dθ

≈
∫

q∗(θ)p(xtest|θ)dθ.

Therefore, it is important to investigate how the predic-

tive distribution is affected by outliers. If the training
dataset is contaminated at a rate of ϵ at point z, we
can analyze the effect of such data contamination on
the predictive distribution by using IFs of the posterior
distribution:

∂

∂ϵ
Eq∗(θ) [p(xtest|θ)] =

∂Eq∗(θ) [p(xtest|θ)]
∂m

∂m∗ (Gε,z(x))

∂ε
,

(26)

where
∂m∗(Gε,z(x))

∂ε can be analyzed with the IFs de-
rived above. Since analytical discussion on this expres-
sion is difficult, we numerically examined its behavior
in Section 5.2.

The above expression looks similar to the ones derived
in Giordano et al. [2015] and Koh and Liang [2017].
However, discussion in Giordano et al. [2015] focused
on prior perturbation and expression in Koh and Liang
[2017] is applicable only to maximum likelihood esti-
mation. To our knowledge, ours is the first work to
derive IFs of variational inference for data contamina-
tion.

5 Experiments

In this section, we report the experimental results of
our proposed method on toy and benchmark datasets.
In all the experiments, we used mean-field black-box
VI combined with the Adam (Kingma and Ba [2014])
optimizer and assumed that the prior and approxi-
mated posterior are both Gaussian. Detailed experi-
mental setups can be found in Appendix L.
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(a) Ordinary VI with
outliers

(b) Proposed VI (β =
0.1) with outliers

Figure 1: Linear regression. Predictive distributions
are derived by variational inference (VI).

5.1 Toy Data Experiment

We performed a toy dataset experiment for both re-
gression and classification tasks to analyze the per-
formance of the proposed method. We used a two-
dimensional toy data and observed how the perfor-
mance and the predictive distribution are affected by
outliers when using ordinary VI and our method. The
linear regression and logistic regression models are
used. The detailed experimental setup is given in Ap-
pendix L.1.

For regression, the toy data and predictive distribu-
tion are shown in Fig. 1, where the horizontal axis in-
dicates the first input feature x1 and the vertical axis
indicates the output y. As outliers, we considered in-
put related outliers, which are caused by measurement
error. The result of ordinary VI is heavily affected by
outliers when there exist outliers, while the result of
the proposed method is less affected by outliers.

For classification, we considered the situation where
some of the labels are wrongly specified, as shown in
Fig. 2. We also illustrated obtained decision bound-
aries in Fig. 2(a), which shows that the ordinary
VI based method is heavily affected by outliers and
Fig. 2(b) shows that our method with β = 0.4 is less
affected by outliers.

5.2 Influence to Predictive Distribution

Based on Eq.(26), we numerically studied the influ-
ence of outliers on the predictive distribution. In this
study, we used a two-hidden-layer neural network with
20 units in each hidden layer for regression and for clas-
sification with logistic loss.

Regression

We used the powerplant dataset in UCI (Lichman
[2013]) which has four features for each input. Since

(a) Ordinary VI with
outliers

(b) Proposed VI
(β=0.4) with outliers

Figure 2: Boundaries of logistic regression using ordi-
nary VI and the proposed method

it is difficult to visualize the behavior of the influence
of predictive distributions, instead, we plot how the
log-likelihood of a test point is influenced by an out-
lier. We compared the influence of ordinary VI based
method and proposed method (β=0.1). To calculate
Eq.(26), we have to specify an outlier and a test data
point. As an input related outlier, we randomly chose
a single data point from the training data and moved
the first feature of the chosen data from −∞ to +∞.
Similarly, as an output related outlier, we moved ran-
domly chosen output y from −∞ to +∞. As the test
data point, we randomly chose a single data point from
the test data. For the detailed experimental setting,
see Appendix L.2.

The results are shown in Fig. 3, where the hori-
zontal axis indicates the value of the perturbed fea-
ture, and the vertical axis indicates the value of
∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)].

The results in Fig. 3 show that the model using the
ReLU activation inferred by ordinary VI can be af-
fected infinitely by input related outliers, while the
influence is bounded in our method. As for output
related outliers, models inferred by ordinary VI are in-
finitely influenced, while influence in our method is
bounded. From those results, we can see that our
method is robust for both input and output related
outliers in the sense that test point prediction is not
perturbed infinitely by contaminating a single training
point.

A notable difference from the IF analysis in Sec-
tion. 4.3 is that for the perturbation by input related
outliers for the tanh activation function, the value of

of
∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)], does not converge to zero even

for the proposed method in the limit that the absolute
value of the input related outlier goes to ∞.

This might be due to the fact that in the limit, the
input to the next layer goes to ±1 when the tanh ac-
tivation function is used. For the next layer, an input
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(a) Influence by input related outlier (b) Influence by output related outlier

Figure 3: Influence on the test log-likelihood for neural net regression. The horizontal axis indicates the value

of the perturbed feature, while the vertical axis indicates the value of
∂

∂ϵ
Eq∗(θ) [ln p(xtest|θ)].

which has value ±1 might not be so strange compared
to regular data, and thus it is not regarded as an out-
lier. Therefore, during the optimization process, the
likelihood of input related outliers is not downweighted
so much in the robust divergence and the influence of
outliers remains non-zero. If we use the ReLU activa-
tion function, in the limit, the input to the next layer
becomes much larger than the regular data, and thus
it is regarded as an outlier.

Classification

We used the eeg dataset in UCI which has 14 features
as input. In the same way as the regression experi-
ment, as an input related outlier, we randomly chose
a single data point from the training data and moved
the third feature of the chosen data from −∞ to +∞.
The result of how the test log-likelihood is influenced
is given in Fig. 4. For ordinary VI, using the ReLU
activation function causes unbounded influence, while
our method keeps the influence bounded. We can also
confirm that the influence in our method converges to
smaller value than that in ordinary VI in the limit even
in the case of tanh.

As an output related outlier, we investigated the in-
fluence of label misspecification. We flipped one of
the labels in the training data and observed how the
test log-likelihood changes. By assuming ϵ = 1

N ,
where N is the number of training data, we calculated

1
N

1
N

∑
i

1
Ntest

∑
j

∂

∂ϵi
Eq∗(θ)

[
ln p(yjtest|x

j
test, θ)

]
, which

represents the averaged amount of change in the test
log-likelihood, and the term inside the sum over j
means the change in the log-likelihood for the jth test
data caused by flipping the label of the ith training
data. Without IF, this is difficult to calculate because

Figure 4: Influence on the test log-likelihood by input
related outlier for neural net classification with logistic
loss.

Table 4: Average change in the test log-likelihood

Ordinary VI Proposed VI (β = 0.1)

ReLU -1.65e-3 -3.29e-5
tanh -2.3e-3 -3.49e-4

we have to retrain a neural network with flipped data
and this is extremely demanding .

Table 4 shows that the change in the test log-likelihood
in our method is smaller than that in ordinary VI. This
implies that our method is robust against label mis-
specification.

From these case studies, we confirmed that our method
is robust for both input and output related outliers in
both regression and classification settings in the sense
that the prediction is less influenced by outliers.
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Table 5: Test regression accuracy in RMSE
Dataset Outliers KL(G) KL(St) WL Rényi BB-α β γ

concrete 0% 8.87(2.57) 7.34(0.41) 7.89(0.77) 7.62(0.44) 7.34(0.31) 7.58(0.38) 7.34(0.76)
N=1030 10% 15.7(2.50) 8.94(2.65) 12.3(2.41) 14.2(1.74) 11.4(2.69) 8.11(0.89) 8.26(0.98)
D=8 20% 16.8(0.70) 11.1(3.78) 14.3(2.91) 15.6(1.90) 11.9(2.64) 8.15(0.99) 9.25(1.27)
powerplant 0% 4.41(0.13) 4.43(0.15) 4.46(0.17) 4.48(0.15) 4.38(0.83) 4.37(0.15) 4.45(0.17)
N=9568 10% 6.44(1.88) 4.54(0.14) 5.12(0.41) 5.49(0.45) 5.91(1.63) 4.39(0.14) 4.47(0.16)
D=4 20% 9.97(4.7) 4.56(1.45) 6.44(0.52) 6.87(1.09) 5.52(1.31) 4.41(0.15) 4.53(1.46)
protein 0% 5.61(0.38) 4.79(0.05) 5.50(0.62) 5.62(0.25) 4.89(0.05) 4.86(0.05) 4.79(0.04)
N=45730 10% 6.13(0.02) 4.92(0.05) 6.13(0.03) 6.11(0.03) 6.13(0.03) 4.91(0.04) 4.90(0.06)
D=9 20% 6.14(0.03) 4.98(0.07) 6.14(0.03) 6.12(0.03) 6.10(0.28) 4.96(0.05) 4.95(0.06)

Table 6: Test classification accuracy

Dataset Outliers KL KL(ϵ) WL Rényi BB-α β γ

spam 0% 90.9(5.8) 91.2(4.4) 89.2(5.7) 90.0(0.7) 92.9(1.5) 93.3(1.3) 92.2(0.8)
N=4601 10% 76.5(37.6) 90.0(5.1) 89.1(5.7) 92.6(1.4) 91.6(1.4) 92.4(1.2) 92.1(1.1)
D=57 20% 60.6(48.3) 89.8(5.5) 88.3(5.3) 91.6(1.6) 91.6(1.6) 92.2(1.3) 91.6(1.4)
eeg 0% 72.8(2.9) 77.7(3.2) 81.3(2.4) 68.4(7.9) 77.5(3.3) 75.9(5.5) 80.2(3.4)
N=14890 10% 56.0(2.6) 62.7(0.09) 56.0(2.4) 57.5(9.6) 67.9(8.2) 60.8(8.1) 72.5(2.6)
D=14 20% 56.0(2.7) 60.0(7.1) 56.0(2.4) 57.7(2.4) 67.4(8.8) 56.0(2.4) 72.2(6.4)
covertype 0% 65.2(8.8) 73.1(6.2) 73.4(6.3) 72.0(6.6) 73.2(4.8) 70.5(5.9) 73.4(6.1)
N=581012 10% 60.2(16.9) 74.4(6.2) 73.7(5.5) 65.4(8.5) 70.6(5.9) 65.7(9.0) 72.4(7.7)
D=54 20% 56.4(18.7) 71.4(10.4) 71.2(7.2) 67.6(9.7) 67.1(8.1) 66.2(9.6) 72.3(5.9)

5.3 How to Determine β and γ

Finally we show that by choosing parameters β and γ
by cross validation, our method can achieve even bet-
ter performance compared to ordinary VI and other ex-
isting robust methods on several benchmark datasets
in UCI. The detailed experimental setup is described
in Appendix L.3.

Regression

We used a neural net which has two hidden layers each
with 20 units and the ReLU activation function. As
outliers, we added both input and output related out-
liers. The experimental results are summarized in Ta-
ble 5. In Table 5, “Outliers” means the percentage of
outliers in the training dataset we contamined artifi-
cially. KL(G) means ordinary VI with the Gaussian
likelihood, KL(St) is ordinary VI with the Student-t
likelihood, WL means the method proposed in Wang
et al. [2017], Rényi is the Rényi divergence minimiza-
tion method proposed in Li and Turner [2016] and BB-
α is the black-box α divergence minimization method
proposed in Hernandez-Lobato et al. [2016] and Li and
Gal [2017].

Our method compares favorably with ordinary VI and
existing robust methods for all the datasets.

Classification

We used a neural net which has two hidden layers each
with 20 units except for the covertype dataset. For
the covertype dataset, we used a neural net which has
one hidden layer with 50 units. We used the ReLU

activation function for all the networks. As outliers,
we considered both input and output related outliers.
The experimental results are in Table 6. In Table 6,
KL(ϵ) means that we used the robust loss function
which is p(y = 1|g(x, θ)) = ϵ+(1−2ϵ)σ(g(x, θ)), where
σ is the sigmoid function, g(x, θ) is the input to the
final layer and ϵ is the hyperparameter.

Our method performs equally to or better than ordi-
nary VI and other existing methods for all the datasets.

6 Conclusions

In this work, we proposed outlier-robust variational
inference based on robust divergences. We can make
our estimation robust against outliers without chang-
ing models. We also theoretically compared our pro-
posed method and the ordinary variational inference
by using the influence function. By using the influence
function, we can evaluate how much outliers affect our
predictions. The analysis showed that the influence of
outliers is bounded in our model, but is unbounded
by ordinary variational inference in many cases. Fur-
ther, experiments demonstrated that our method is
robust for both input and output related outliers in
both regression and classification settings. In addition,
our method outperforms ordinary VI on benchmark
datasets.

In our future work, we would like to extend the method
to be applicable to more complex models, such as time
series or structured data. Another way is to combine
other approximation methods such as MCMC or ex-
pectation propagation.
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