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Abstract

In this paper, we consider online learning with
non-convex loss functions. Similar to Besbes
et al. [2015] we apply non-stationary regret as
the performance metric. In particular, we study
the regret bounds under different assumptions
on the information available regarding the loss
functions. When the gradient of the loss func-
tion at the decision point is available, we pro-
pose an online normalized gradient descent algo-
rithm (ONGD) to solve the online learning prob-
lem. In another situation, when only the value of
the loss function is available, we propose a ban-
dit online normalized gradient descent algorithm
(BONGD). Under a condition to be called weak
pseudo-convexity (WPC), we show that both al-
gorithms achieve a cumulative regret bound of
O(
√
T + VTT ), where VT is the total temporal

variations of the loss functions, thus establishing
a sublinear regret bound for online learning with
non-convex loss functions and non-stationary re-
gret measure.

1 Introduction

Online convex optimization (OCO) has been studied ex-
tensively in the literature. In OCO, at each period t ∈
{1, 2, . . . , T}, an online player chooses a feasible strategy
xt from a decision set X ⊂ Rn, and suffers a loss giv-
en by ft(xt), where ft(·) is a convex loss function. One
key feature of the OCO is that the player must make a de-
cision for period t without knowing the loss function ft(·).
The performance of an OCO algorithm is usually measured
by the stationary regret, which compares the accumulated
loss suffered by the player with the loss suffered by the best
fixed strategy. Specifically, the stationary regret is defined
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as

RegretST ({xt}T1 ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗), (1)

where x∗ is one best fixed decision in hindsight, i.e. x∗ ∈

argminx∈X
T∑
t=1

ft(x). Several sub-linear cumulative re-

gret bounds measured by stationary regret have been es-
tablished in various papers in the literature. For example,
Zinkevich [2003] proposed an online gradient descent algo-
rithm which achieves an regret bound of order O(

√
T ) for

convex loss functions. The order of the regret can be fur-
ther improved toO(log T ) if the loss functions are strongly
convex (see Hazan et al. [2007]). Moreover, the bounds are
shown to be tight for the OCO with convex / strongly con-
vex loss functions respectively in Abernethy et al. [2009].
One important extension of the OCO is the so-called bandit
online convex optimization, where the online player is only
supposed to know the function value ft(xt) at xt, instead
of the entire function ft(·). In particular, when the play-
er can only observe the function value at a single point,
Flaxman et al. [2005] established an O(T 3/4) regret bound
for general convex loss functions by constructing a zeroth-
order approximation of the gradient. Assuming that the loss
functions are smooth, the regret bound can be improved
to O(T 2/3) by incorporating a self-concordant regulariz-
er (see Saha and Tewari [2011]). Alternatively, if multi-
ple points can be inquired at the same time, Agarwal et al.
[2010] showed that the regrets can be further improved to
O(T 1/2) and O(log T ) for convex / strongly convex loss
functions respectively.

As suggested by its name, the loss functions in the OCO
are assumed to be convex. Only a handful of papers stud-
ied online learning with non-convex loss functions. In the
existing works, most of the time heuristic algorithms were
proposed (e.g. Gasso et al. [2011], Ertekin et al. [2011])
without focussing on establishing sublinear regret bounds.
There are a few noticeable exceptions though. Hazan and
Kale [2012] developed an algorithm that achievesO(T 1/2)
and O(T 2/3) regret bounds for the full information and
bandit settings respectively, by assuming the loss function-
s to be submodular. Zhang et al. [2015] showed that an
O(T 2/3) regret bound still holds if the loss functions are in
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the form of composition between a non-increasing scalar
function and a linear function.

The stationary regret requires the benchmark strategy to re-
main unchanged throughout the periods. This assumption
may not be relevant in some of the applications. Recent-
ly, a new performance metric known as the non-stationary
regret was proposed by Besbes et al. [2015]. The non-
stationary regret compares the cumulative losses of the on-
line player with the losses of the best possible responses:

RegretNST ({xt}T1 ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (2)

where x∗t ∈ argminx∈X ft(x). Clearly, the non-stationary
regret is never less than the stationary regret. Besbes et al.
[2015] proves that if there is no restriction on the changes
of the loss functions, then the non-stationary regret is lin-
ear in T regardless of the strategies. To obtain meaningful
bounds, the authors assumed that the temporal change of
the sequence of the function {ft}T1 is bounded. Specifi-
cally, the loss functions are assumed to be taken from the
set

V :=

{
{f1, f2, . . . , fT } :

T−1∑
t=1

‖ft − ft+1‖ ≤ VT

}
, (3)

where ‖ft − ft−1‖ = supx∈X |ft(x) − ft−1(x)|. For
nonzero temporal change VT , Besbes et al. [2015] then
proposes algorithms with sub-linear non-stationary regret
bounds: O(V

1/3
T T 2/3), O(V

1/2
T T 1/2), and O(V

1/3
T T 2/3)

respectively, for the cases where loss functions are: convex
with noisy gradients, strongly convex with noisy gradients,
and strongly convex with noisy function values. (Note that
VT > 0 is assumed in the bounds.) More recently, Yang
et al. [2016] also studied the non-stationary regret bounds
for OCO. They proposed an uncertainty set SpT of the se-
quence of functions in which the worst-case variation of the
optimal solution x∗t of ft(·) (referred to as the path varia-
tion) is bounded:

SpT := {{f1, f2, . . . , fT } :

maxx∗t∈argminx∈X ft(x)

T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
.

They then proved some upper and lower bounds for the
several different feedback structure and functional class-
es (within the convex function class). In particular, they
showed that some existing algorithms (with some modi-
fication) can achieve the VT ,

√
TVT and

√
TVT for true

gradient (with smooth condition), noisy gradient and two-
point bandit feedback, respectively. (Note that VT > 0 is
assumed in the bounds.)

In this paper, we consider online non-convex optimization
with non-stationary regret as the performance metric. To
the best of our knowledge, such a combination had not been

studied before. For each period t, even after the decision xt
is made, the online player is not assumed to know the func-
tion ft(·); instead, only some partial information regarding
the loss at xt is revealed. Specifically, only ∇f(xt) (in
the first-order setting) or f(xt) (the zeroth-order setting) is
available to the player. Similar to Yang et al. [2016], we
define the uncertainty set ST of the sequence of functions
as follows:

ST := {{f1, f2, . . . , fT } : ∃x∗t ∈ argminx∈X ft(x),

t = 1, ..., T, s.t.
T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
.

Note that SpT ⊆ ST for the same VT . In particular, consider
a static sequence ft(·) = f(·), t = 1, .., T where f(·) has
multiple optimal solutions. This sequence would clearly
belong to ST even when VT = 0. However, VT would have
to be linear in T in order for this sequence to be in SpT . We
propose the Online Normalized Gradient Descent (ONGD)
and the novel Bandit Online Normalized Gradient Descen-
t (BONGD) algorithms for the first-order setting and the
zeroth-order setting respectively. For the loss functions sat-
isfying (4) and a condition to be introduced later, we show
that these two algorithms both achieve O(

√
T + VTT ) re-

gret bound. Compared to the regret bounds in Yang et al.
[2016], our regret bound for the first-order setting is worse
but is the same for the zeroth-order setting. Note however,
that our loss functions are non-convex and we use a weaker
version of variational constraints.

Regarding non-convex objective function, a related work
in the literature is Hazan et al. [2015], where the authors
propose a Normalized Gradient Descent (NGD) method for
solving an optimization model with the so-called strictly lo-
cally quasi-convex (SLQC) function as the objective. They
further show that the NGD converges to an ε-optimal mini-
mum within O(1/ε2) iterations. This paper generalizes the
results in Hazan et al. [2015] in the following aspects:

• Hazan et al. [2015] considers an optimization model,
while this paper considers an online learning model.

• Hazan et al. [2015] assumes the objective function to
be strictly locally quasi-convex (SLQC). In this pa-
per we introduce the notion of weak pseudo-convexity
(WPC), which will be shown to be a weaker condition
than the SLQC. We show that the regret bounds hold
if the objective function is weak pseudo-convex.

• Hazan et al. [2015] considers only the first-order set-
ting, while our proposed BONGD algorithm works for
the bandit (zeroth-order) setting as well.

The rest of the paper is organized as follows. Section 2
presents some preparations including the assumptions and
notations. In Section 3, we present the ONGD algorithm
and prove its regret bound. In Section 4, we present the
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BONGD algorithm for the zeroth-order setting and show
its regret bound under some assumptions. Finally, we con-
clude the paper in Section 5.

2 Problem Setup

In this section, we present the assumptions underlying our
online learning model and introduce some notations that
will be used in the paper. Let X ⊂ Rn be a convex de-
cision set that is known to the player. For every period
t ∈ {1, 2, . . . , T}, the loss function is ft(·). Throughout
the paper, we assume that X ⊂ Rn is bounded, i.e., there
exists R > 0 such that ‖x‖ ≤ R for all x ∈ X . We present
the following definitions regarding the loss functions.

Definition 1 (Bounded Gradient) A function f(·) is said
to have bounded gradient if there exists a finite positive val-
ueM such that for all x ∈ X , it holds that ‖∇f(x)‖ ≤M .

Note that if f(·) has bounded gradient, then it is also Lips-
chitz continuous with Lipschitz constant M on the set X .

Definition 2 (Weak Pseudo-Convexity) A function f(·)
is said to be weakly pseudo-convex (WPC) if there exists
K > 0 such that

f(x)− f(x∗) ≤ K∇f(x)
>(x− x∗)

‖∇f(x)‖
,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0

if ∇f(x) = 0, where x∗ is one optimal solution, i.e., x∗ ∈
argminx∈X f(x).

Here we discuss some implications of the weak pseudo-
convexity. If a differentiable function f(·) is Lipschitz
continuous and pseudo-convex, then we have (see similar
derivation in Nesterov [2004])

f(x)− f(y) ≤M∇f(x)
>(x− y)

‖∇f(x)‖
,

for all y, x with f(x) ≥ f(y), where M is Lipschitz con-
stant. Therefore, we can simply let K = M , and the func-
tion is also weakly pseudo-convex. Moreover, as anoth-
er example, the star-convex function proposed by Nesterov
and Polyak [2006] is weakly pseudo-convexity.

Proposition 1 If f(·) is star-convex and smooth with
bounded gradient in X , then f(·) is weakly pseudo-convex.

The proof of Proposition 1 can be found in the supplemen-
tary file. We next introduce a property that is essentially
the same as the SLQC property introduced in Hazan et al.
[2015].

Definition 3 (Acute Angle) Gradient of f(·) is said to sat-
isfy the acute angle condition if there exists a positive value

Z such that

cos(∇f(x), x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

≥ Z > 0,

holds for all x ∈ X , with the convention that ∇f(x)
‖∇f(x)‖ = 0

if ∇f(x) = 0, where x∗ is one optimal solution, i.e., x∗ ∈
argminx∈X f(x).

The following proposition shows that the acute angle con-
dition together with the Lipschitz continuity implies the
weak pseudo-convexity.

Proposition 2 If f(·) has bounded gradient and satisfies
the acute angle condition, then f(·) is weakly pseudo-
convex.

The proof of Proposition 2 can be found in the supplemen-
tary file. The class of weakly pseudo-convex functions cer-
tainly go beyond the acute angle condition. For example,
below is another class of functions satisfying the WPC.

Proposition 3 If f(·) has bounded gradient and satisfy the
α-homogeneity with respect to its minimum, i.e., there ex-
ists α > 0 satisfying

f(t(x− x∗) + x∗)− f(x∗) = tα(f(x)− f(x∗)),

for all x ∈ X and t ≥ 0 where x∗ = argminx∈X f(x),
then f(·) is weak pseudo-convex.

The proof of Proposition 3 can be found in the supplemen-
tary file. Proposition 3 suggests that all non-negative homo-
geneous polynomial satisfies WPC with respect to 0. Take
f(x) = (x21 + x22)

2 + 10(x21 − x22)2 as an example. It is
easy to verify that f(·) satisfies the condition in Proposi-
tion 3, and thus is weakly pseudo-convex. In Figure 1, the
curvature of f(x) and a sub-level set of this function are
plotted. The function is not quasi-convex since the sub-
level set is non-convex. However, this function satisfies the
acute-angle condition in 3.

Note that if fi(x) is αi-homogeneous with respect to the
shared minimum x∗ for all 1 ≤ i ≤ I with αi ≥ α >
0, and the gradient of fi is uniformly bounded over a set
X , then

∑I
i=1 fi(x) is WPC. As a result, we can construct

functions that are WPC but do not satisfy the acute-angle
condition. Consider a two-dimensional function f(x) =
x21 + |x2|3/2, and suppose that X is the unit disc centered
at the origin. Clearly, f(x) is differentiable and Lipchitz
continuous in X . Also, it is the sum of a 2-homogeneous
function and a 3/2-homogeneous function with a shared
minimum (0, 0). Thus f(x) is WPC. We compute that

cos(∇f(x), x− x∗) =
∇f(x)>(x− x∗)
‖∇f(x)‖ · ‖x− x∗‖

=
2x21 +

3
2 |x2|

3/2√
(4x21 +

9
4 |x2|)(x

2
1 + x22)

.
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Figure 1: Plot of a WPC function that is not quasi-convex

Consider a parameterized path (x1, x2) = (t1/2, t2/3) with
t > 0. On this path, we have

cos(∇f(x), x− x∗) =
2x21 +

3
2 |x2|

3/2√
(4x21 +

9
4 |x2|)(x

2
1 + x22)

=
7t

2
√
(4t+ 9

4 t
2/3)(t+ t4/3)

=
7t1/6

2
√
(4t1/3 + 9

4 )(1 + t1/3)
.

Therefore, along the path, as t approaches to 0, we have
cos(∇f(x), x−x∗)→ 0. This example shows that a WPC
function may fail to satisfy the acute angle condition.

As we mentioned before, in order to establish some sub-
linear non-stationary regret bound, we need to confine the
loss functions {ft}T1 in a unified manner. Therefore, we
introduce the uncertainty set of the loss functions ST , as a
set of admissible loss functions where their total variation
of the minimizers are bounded by VT .

Definition 4 The uncertainty set of functions ST is defined
as

ST := {{f1, f2, . . . , fT } : ∃x∗t ∈ argminx∈X ft(x),

t = 1, ..., T, s.t.
T−1∑
t=1
‖x∗t − x∗t+1‖ ≤ VT

}
.

(4)
where VT ≥ 0.

In the zeroth-order setting to be discussed in Section 4, on-
ly the function value is available. Therefore, some random-
ized approaches are needed in the algorithm. To account for

this situation, we introduce the expected non-stationary re-
gret for an algorithm that outputs a random sequence {xt}T1
in the performance metric.

Definition 5 The expected non-stationary regret for a ran-
domized algorithm A is defined as

ERegretNST ({xt}T1 ) = E

[
T∑
t=1

(ft(xt)− ft(x∗t ))

]
, (5)

where the expectation is taken over the filtration generated
by the random sequence {xt}T1 produced by A.

3 The First-Order Setting

In this section, we assume that for each period, the gradient
information at the current point is available to the online
player after the decision is made. Specifically, at each peri-
od t, the sequence of the events is as follows:

1. The online player chooses a strategy xt;

2. The online player receives the feedback∇ft(xt);

3. Regret ft(xt) − ft(x∗t ) incurs (but is not necessarily
known to the online player).

We propose the Online Normalized Gradient Descend al-
gorithm (ONGD) in this setting. The normalized gradi-
ent descent method was first proposed in Nesterov [2004]
which can be applied to solve the pseudo-convex mini-
mization problem. The ONGD algorithm uses the first-
order information∇ft(xt) to compute the normalized vec-
tor ∇ft(xt)/‖∇ft(xt)‖ as the search direction. Simi-
lar to the standard gradient method, it moves along that
search direction with a specific stepsize η > 0 and then
projects the point back to the decision set X ; see Algorith-
m 1 for the details. Note that in Algorithm 1,

∏
X (y) :=

Algorithm 1 Online Normalized Gradient Descent
Input: feasible set X , # time period T
Initialization: x1 ∈ X
for t = 1 to T do

chooses xt and receives the feedback gt = ∇ft(xt)
if ‖gt‖ > 0 then
xt+1 =

∏
X

(
xt − η gt

‖gt‖

)
else
xt+1 = xt

end if
end for

argminx∈X ‖y − x‖ is the projection operator. The main
result is shown in the following theorem which claims an
O(
√
T + VTT ) non-stationary regret bound for ONGD.
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Theorem 1 Let VT be as defined in (4). For any se-
quence of loss functions {ft}T1 ∈ ST where ft is weakly
pseudo-convex with common constant K, let the stepsize

η =
√

4R2+6RVT
T . Then, the following regret bound holds

for ONGD:

RegretNST ({xt}T1 ) ≤ K
√
T (R2 + 1.5RVT )

= O(
√
T + VTT ).

Proof: Let x∗t , t = 1, .., T be the sequence of optimal so-
lutions satisfying the condition in Definition 4, and zt :=
‖xt − x∗t ‖. Then we have:

z2t+1 = ‖xt+1 − x∗t+1‖2

= ‖xt+1 − x∗t ‖2 + ‖x∗t − x∗t+1‖2

+2(xt+1 − x∗t )>(x∗t − x∗t+1)

≤

∥∥∥∥∥∏
X

(
xt − η

gt
‖gt‖

)
− x∗t

∥∥∥∥∥
2

+ 6R‖x∗t − x∗t+1‖

≤
∥∥∥∥xt − η gt

‖gt‖
− x∗t

∥∥∥∥2 + 6R‖x∗t − x∗t+1‖

= z2t + η2 − 2η
g>t (xt − x∗t )
‖gt‖

+ 6R‖x∗t − x∗t+1‖.

By rearranging terms and multiplying K on both sides we
have

K
g>t (xt − x∗t )
‖gt‖

≤ K

2η

(
z2t − z2t+1 + η2 + 6R‖x∗t − x∗t+1‖

)
.

(6)
By Definition 2, noting that gt = ∇ft(xt), we have

ft(xt)− ft(x∗t )

≤ K
∇ft(xt)>(xt − x∗t )
‖∇ft(xt)‖

≤ K

2η

(
z2t − z2t+1 + η2 + 6R‖x∗t − x∗t+1‖

)
.

Summing these inequalities from t = 1, ..., T , we have

RegretNST ({xt}T1 )

≤ K

2η

(
z21 − z2T+1 + Tη2 + 6R

T∑
t=1

‖x∗t − x∗t+1‖

)

≤ K

2η

(
4R2 + Tη2 + 6RVT

)
.

As a result, by noting η =
√

4R2+6RVT
T , we have

RegretNST ({xt}T1 ) ≤ K
√
T (R2 + 1.5RVT )

= O(
√
T + VTT ).

2

4 The Zeroth-Order Setting

In the previous section, it is assumed that the gradient in-
formation is available, which may not be the case in some
applications. Such exceptions include the multi-armed ban-
dit problem, dynamic pricing and Bayesian optimization.
Therefore, in this section, we consider the setting where
the online player only receives the function value ft(xt),
instead of the gradient∇ft(xt), as the feedback.

As mentioned above, the zeroth-order (or bandit) setting
has been studied in the OCO literature. The main tech-
nique in the OCO literature (see Flaxman et al. [2005] for
example) is to construct a zeroth-order approximation of
the gradient of a smoothed function. That smoothed func-
tion is often created by integrating the original loss function
with a chosen probability distribution. By querying some
random samples of the function value according to a prob-
ability distribution, the player is able to create an unbiased
zeroth-order approximation of the gradient of the smoothed
function. This is, however, not applicable in our online nor-
malized gradient descent algorithm since what we need is
the direction of the gradient. Therefore, we shall first devel-
op a new type of zeroth-order oracle that can approximate
the gradient direction without averaging multiple samples
of gradients when the norm of the gradient is not too small.

To proceed, we require some additional conditions on the
loss function.

Definition 6 (Error Bound) There exists D > 0 and γ >
0 such that

‖x− x∗t ‖ ≤ D‖∇ft(x)‖γ ,

for all x ∈ X , 1 ≤ t ≤ T , where x∗t is the optimal solution
to ft(·), i.e., x∗t = argminx∈X ft(x).

Since X is a compact set, the error bound condition is es-
sentially the requirement for a unique optimal solution and
no local minimum.

Definition 7 (Lipschitz Gradient) There exists a positive
number L, such that

‖∇ft(x)−∇ft(y)‖ ≤ L‖x− y‖,

for all x, y ∈ X , where 1 ≤ t ≤ T .

Note that ... We introduce some notations that will be used
in subsequent analysis.

S(n): the unit sphere in Rn;
m(A): the measure of set A ⊂ Rn;
βn: the area of the unit sphere S(n);
dSn: the differential unit on the unit sphere S(n);
1A(x): the indicator function of set A;
sign(·): the sign function.
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Before we present the main results, several lemmas are in
order. The first lemma considers some geometric properties
of the unit sphere.

Lemma 1 For any non-zero vector d ∈ Rn and δ < 1, let
Sxδ be defined as

Sxδ :=
{
v ∈ S(n)| s.t. |d>v| < δ2

}
.

If ‖d‖ ≥ δ, then there exists a constant Cn > 0, such that

m(Sxδ ) < Cnδ.

Proof: We have

m(Sxδ ) =

∫
v∈S(n)∩Sxδ

dSn.

By the symmetry of S(n), we may assume w.l.o.g. that d =

(0, . . . , 0, ‖d‖)>. Let a = δ2

‖d‖ . Since a < 1, we have

m(Sxδ )

=

∫
v∈S(n)

1{
− δ2

‖d‖≤vn≤
δ2

‖d‖

}(v)dSn

= 2

∫
1−a2≤v21+···+v

2
n−1≤1

1√
1− v21 − · · · − v2n−1

dv1 · · · dvn−1

= 2

∫
√

1−a2≤r≤1

rn−2

√
1− r2

dr · dSn−1

= 2βn−1

∫
√

1−a2≤r≤1

rn−2

√
1− r2

dr

≤ 2βn−1

∫
√

1−a2≤r≤1

1√
1− r2

dr

= 2βn−1

(π
2
− arcsin(

√
1− a2)

)
= 2βn−1(arcsin a) < 2βn−1

π

2
a = πβn−1

δ2

‖d‖ ≤ πβn−1δ.

By setting Cn = πβn−1, the desired result follows. 2

The next lemma leads to an unbiased first-order estimator
of the direction of a vector.

Lemma 2 Suppose d ∈ Rn, and d 6= 0. Then,∫
v∈S(n)

sign(d>v)vdSn = Pn
d

‖d‖
,

where Pn is a constant.

Proof: By the symmetry of S(n), again we may assume
d = (0, . . . , 0, ‖d‖)>, and∫

v∈S(n)

sign(d>v)vdSn = 2

∫
v∈S(n)

1vn≥0(v)vdSn.

Notice that if v ∈ S(n), then u =
(−v1,−v2, . . . ,−vn−1, vn)> is also in S(n). As a
result, the above integral will be on the direction of
d
‖d‖ = (0, 0, . . . , 0, 1)>, and its length is given by

2

∫
v∈S(n)

1vn≥0(v)vndSn

= 2

∫
0≤v21+···+v

2
n−1≤1

√
1− v21 − · · · − v2n−1dSn

= 2

∫
0≤v21+···+v

2
n−1≤1

√
1− v21 − · · · − v2n−1√
1− v21 − · · · − v2n−1

dv1 . . . dvn−1

= 2

∫
0≤r≤1

rn−2drdSn−1

=
2βn−1

n− 1
:= Pn.

2

Using the previous lemmas, we have the following result
which constructs a zeroth-order estimator for the normal-
ized gradient.

Theorem 2 Suppose f(x) has Lipschitz gradient and
‖∇f(x)‖ ≥ δ at x. Let ε = δ2

L . Then we have∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]−Qn
∇f(x)
‖∇f(x)‖

∥∥∥∥ ≤ 2Dnδ

where v is a random vector uniformly distributed over
S(n), and Qn = Pn

βn
and Dn = Cn

βn
.

Proof: By Definition 7, we have

|f(x+ εv)− f(x)− ε∇f(x)>v| ≤ εL

2
‖v‖2 ⇐⇒

∇f(x)>v − ε

2
L ≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v + ε

2
L.

Since |∇f(x)>v| ≥ δ2 for v ∈ S(n)\Sxδ , if we let ε = δ2

L ,
we have

∇f(x)>v − δ2

2
≤ f(x+ εv)− f(x)

ε
≤ ∇f(x)>v + δ2

2
.

Thus,

sign
(
∇f(x)>v

)
= sign

(
∇f(x)>v − δ2

2

)
≤ sign

(
f(x+ εv)− f(x)

ε

)
≤ sign

(
∇f(x)>v + δ2

2

)
= sign

(
∇f(x)>v

)
,

implying sign(∇f(x)>v) = sign
(
f(x+εv)−f(x)

ε

)
. There-
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fore,

βnES(n) [sign(f(x+ εv)− f(x))v]

=

∫
v∈S(n)\Sx

δ

[sign(f(x+ εv)− f(x))v] dS(n)

+

∫
v∈Sx

δ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)\Sx

δ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sx

δ

[sign(f(x+ εv)− f(x))v] dS(n)

=

∫
v∈S(n)

[
sign(∇f(x)>v)v

]
dS(n)

−
∫

v∈Sx
δ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sx

δ

[sign(f(x+ εv)− f(x))v] dS(n)

= Pn
∇f(x)
‖∇f(x)‖ −

∫
v∈Sx

δ

[
sign(∇f(x)>v)v

]
dS(n)

+

∫
v∈Sx

δ

[sign(f(x+ εv)− f(x))v] dS(n),

where the last equality is due to Lemma 2.

Putting the estimations together, we have∥∥∥∥ES(n) [sign(f(x+ εv)− f(x))v]− Pn
βn

∇f(x)
‖∇f(x)‖

∥∥∥∥
≤ 1

βn

∫
v∈Sx

δ

∥∥∥sign(∇f(x)>v)v
∥∥∥ dS(n)

+
1

βn

∫
v∈Sx

δ

‖sign(f(x+ εv)− f(x))v‖ dS(n)

≤ 2m(Sxδ )

βn
≤ 2Cnδ

βn
.

Note that Qn = Pn
βn

and Dn = Cn
βn

, the theorem is proved.
2

Based on Theorem 2, for a given δ > 0 we have a zeroth-
order estimator for the normalized gradient given as:

Gt(xt, vt) =
sign(ft(xt + εvt)− ft(xt))

Qn
vt, (7)

where ε = δ2/L and vt is an uniformly distributed ran-
dom vector over S(n). Theorem 2 implies that the distance
between the estimator and the normalized gradient can be
controlled up to a factor of δ. Essentially, the Bandit On-
line Normalized Gradient Descent (BONGD) algorithm re-
places the normalized gradient by Gt(xt, vt) in the ONGD
algorithm.

Algorithm 2 Bandit Online Normalized Gradient Descent
Input: feasible set X , # time period T , δ
Initialization: x1 ∈ X , ε = δ2/L
for t = 1 to T do

Sample vt uniformly over S(n) ⊂ Rn;
play xt and xt + εvt;
receive feedbacks ft(xt) and ft(xt + εvt);
set Gt(xt, vt) =

sign(ft(xt+εvt)−ft(xt))
Qn

vt;
update xt+1 =

∏
X (xt − ηGt(xt, vt)).

end for

Note that Algorithm 2 actually outputs a random se-
quence of vectors {xt}T1 ; hence the notion of expect-
ed non-stationary regret is applicable here. Let us
denote {Ft}T1 be the filtration generated by {xt}T1 .
Then vt is independent of Ft. Note that in Algorith-
m 2, at each step, it queries the function at anoth-
er point xt + εvt. Therefore, besides its output se-
quence {xt}T1 , we need to include {xt + εvt}T1 in our re-
gret. We thus define ERegretNST ({xt}T1 , {xt + εvt}T1 ) =

E[
T∑
t=1

(ft(xt)− ft(x∗t ))] +E[
T∑
t=1

(ft(xt + εvt)− ft(x∗t ))].

The following theorem shows that by choosing η and δ ap-
propriately, we can still achieve an O(

√
T + VTT ) expect-

ed non-stationary regret bound.

Theorem 3 Let VT be defined in (4). Assume that the loss
functions have Lipschitz gradients (Definition 7), satisfying
the error bound condition (Definition 6) and are weakly
pseudo-convex with bounded gradient. For any sequence
of loss functions {ft}T1 ∈ ST , applying BONGD with η =

Qn

√
4R2+6RVT

T and δ = min{T−
1
2γ , T−

1
4 } where Qn =

Pn
βn

and Pn is a constant, the following regret bound holds
ERegretNST ({xt}T1 , {xt + εvt}T1 ) ≤ O(

√
T + VTT ).

Proof: Let zt := ‖xt − x∗t ‖. Then,

z2t+1

= ‖xt+1 − x∗t+1‖2
= ‖xt+1 − x∗t ‖2 + ‖x∗t − x∗t+1‖2

+2(xt+1 − x∗t )>(x∗t − x∗t+1)
≤ ‖xt+1 − x∗t ‖2 + 2R‖x∗t − x∗t+1‖+ 4R‖x∗t − x∗t+1‖
= ‖

∏
X (xt − ηGt(xt, vt))− x∗t ‖

2
+ 6R‖x∗t − x∗t+1‖

≤ ‖xt − ηGt(xt, vt)− x∗t ‖
2
+ 6R‖x∗t − x∗t+1‖

= z2t + η2‖Gt(xt, vt)‖2 − 2ηGt(xt, vt)
>(xt − x∗t )

+6R‖x∗t − x∗t+1‖
≤ z2t +

η2

Q2
n
− 2ηGt(xt, vt)

>(xt − x∗t ) + 6R‖x∗t − x∗t+1‖.

By rearranging the terms, we have:

KGt(xt, vt)
>(xt − x∗t ) (8)

≤ K

2η

(
z2t − z2t+1 +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)
.
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Now based on ‖∇ft(xt)‖, we have two different cases:

• ‖∇ft(xt)‖ ≥ δ. In this case, by Theorem 2, we have

‖E[Gt(xt, vt)|xt]−
∇ft(xt)
‖∇ft(xt)‖

‖ ≤ 2Dn

Qn
δ.

Therefore,

ft(xt)− ft(x∗t )

≤ K
∇ft(xt)>(xt − x∗t )
‖∇ft(xt)‖

≤ KE[Gt(xt, vt)|xt]>(xt − x∗t ) +
2DnK

Qn
δ‖xt − x∗t ‖

=
K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+
2DnK

Qn
δ‖xt − x∗t ‖

≤ K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+
4DnK

Qn
Rδ. (9)

• ‖∇ft(xt)‖ < δ. In this case, by the error bound property
(Definition 6) we have

‖xt − x∗t ‖ ≤ D‖∇ft(xt)‖γ < Dδγ .

Therefore, due to the boundedness of gradient

ft(xt)− ft(x∗t ) ≤M‖xt − x∗t ‖ ≤MDδγ , (10)

and

0 ≤ K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

−KE[Gt(xt, vt)|xt]>(xt − x∗t )

≤ K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+K
βn
Qn

Dδγ . (11)

Adding (10) with (11), it follows that

ft(xt)− ft(x∗t )

≤ K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+

(
K
βn
Qn

D +MD

)
δγ . (12)

In view of (9) and (12), if we let U =

max
{

4CnK
Pn

R, (K βn
Qn
D +MD)

}
, then in either case the

following inequality holds:

ft(xt)− ft(x∗t )

≤ K

2η

(
E[z2t |xt]− E[z2t+1|xt] +

η2

Q2
n

+ 6R‖x∗t − x∗t+1‖
)

+Uδγ .

Summing these inequalities over t = 1, ..., T , we have

ERegretNST ({xt}T1 , {xt + εvt}T1 )

= E

[
T∑
t=1

(ft(xt) + ft(xt + εvt)− 2ft(x
∗
t ))

]

≤ E

[
T∑
t=1

(2ft(xt)− 2ft(x
∗
t ) +Mε‖vt‖)

]

≤ K

η

(
E[z21 ]− E[z2T+1] + T

η2

Q2
n

+ 6R

T∑
t=1

‖x∗t − x∗t+1‖

)
+2TUδγ +MTε

≤ K

2η

(
4R2 + T

η2

Q2
n

+ 6RVT

)
+ 2TUδγ + TM

δ2

L
.

By choosing η = Qn

√
4R2+6RVT

T , and δ =

min{T−
1
2γ , T−

1
4 }, we have

ERegretNST ({xt}T1 , {xt + εvt}T1 )

≤ 2K

Qn

√
T (4R2 + 6RVT ) + (2U +

M

L
)
√
T

≤ O(
√
T + VTT ).

2

Therefore, under the additional error bound condition (Def-
inition 6) and the Lipschitz continuity of the gradient (Defi-
nition 7) on the loss functions (e.g. the function depicted in
Figure 1 satisfies all the conditions of Theorem 3), the ex-
pected regret of BONGD remains O(

√
T + VTT ), which

matches both the upper and lower bound in Yang et al.
[2016] for the general Lipschitz continuous convex cost
functions and two point bandit feedback. Moreover, the
zeroth-order estimator for the normalized gradient could be
of interest on its own.

5 Concluding Remarks

In this paper, we considered online learning with non-
convex loss functions and non-stationary regret measure,
and establishedO(

√
T + VTT ) regret bounds, where VT is

the total variation of the loss functions, for a gradient-type
algorithm and a bandit-type algorithm under some condi-
tions on the non-convex loss function. As a direction for
future research, it will be interesting to find out if the same
regret bound can still be established without knowing VT
in advance. Moreover, it remains open to extend the results
to the setting where the loss functions may be noisy and
non-smooth.
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