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A Appendix: Proof of Differential

Privacy

In this appendix we aim to prove Theorem 4.1. Al-
gorithm 1, though being an iterative process, can be
decomposed into two steps.

1. Central server draws T adaptive queries from the
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2. The central server calculates the output Q⇤
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post-processing of H

j

(S
j

).
Theorem 4.1 states that the output Q⇤
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)is
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Rd⇤k. Suppose sample
x
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is from the jth data provider, i.e. x
i

2 S
j

. Our proof
consists of three parts. In Lemma A.1, we prove that
every query H

j

�

S
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, Q(t)

�

is differentially private. In
Lemma A.2, we prove that adaptive composition of
T queries H

j

(S
j

) introduces more privacy error, but
is still differentially private. In Lemma A.3, we argue
that post-processing preserves privacy and thus Q⇤

dp

is
differentially private.
Lemma A.1 (Gaussian Mechanism). For
S
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=
{x

1

,x
2

, . . . ,x0
i

, . . . ,x
n

j

}, and any measurable set
R ✓ Rd⇥k, we have
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where � = 2✏�1

p

2 ln(2/�) with 0 < ✏ < 1 and 0 < � <
1/2.

Proof. For simplicity of notation, we omit the sub-
script j in the proof. In each iteration of Algorithm
1, H(S, Q(t)) = b⌃(S)Q(t) + G(t)/n

j

, where b⌃ is the
sample covariance of the jth data provider, and G(t) is
a d ⇥ k matrix with entry-wise i.i.d. normal random
variable N(0, �2). Note that
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for all R ✓ Rd⇥k is equivalent to
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for all R ✓ Rd⇥k, where n
j

is the number of samples.
Without any lose of generality, we can let n
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= 1 and
||x
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 1 (because of the boundedness assumption),
we have
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and since Q(t) 2 Rd⇥k is an orthonormal matrix, ac-
cording to the rotation invariant property of Frobenius
norm, we have
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Denote W = b⌃(S)Q(t) and W 0 = b⌃(S0)Q(t). Let
�W = W � W 0 2 Rd⇥k, and R

W

= {X + W |X 2 R}.
From (A.1) we know ||�W ||
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Let’s take X and �W as d ⇥ k dimensional vectors.
Since the Gaussian distribution is spherical and sym-
metric, we can assume that �W = (w

1

, 0, 0, . . .) (only
nonzero in the first entry) by change of basis. Denote
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as the first entry of W and x
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(A.2)

Based on (A.1), we know 0 < w
1

= ||�W ||  2. Next
we prove that with � = 2✏�1

p

2 ln(2/�), the second
term in (A.2) is bounded by �.
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1

� w
1

/2, we first verify the following
inequality
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Denote � = c/✏, where c = 2
p

2 ln(2/�). We want
the first term in the left-hand-side of (A.3) to be non-
negative, equivalently,
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where the second to last inequality is due to the fact
that w
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ing function of w
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which also implies that the second term of the left-hand-
side of (A.3) is bounded, i.e.
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Based on (A.4) and (A.6), we know that (A.3)
holds.Taking exponential on both sides of (A.3) gives
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where the first inequality is Chernoff bound for normal
random variables. Plug in this to (A.2), we concluded
that
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Lemma A.2 (Adaptive Composition). Let S =
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Proof. Let’s prove by induction. First we consider the
case for m = 2. Let µ be the probability measure. For
any measurable set R
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, we have
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where p, p0 are the Random-Nikodym derivatives of the
left-hand-side with respect to the probability measure.
Bases on the definition of differential privacy, we also
have
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Now we can prove the lemma with m = 2 as follows
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Assume that the lemma holds for m. Now in the case
of m + 1, denote

M = (M
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From induction hypothesis, we know that M is (✏, �)-
differentially private, where ✏ =
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Pr((M,M
m+1

) 2 R
m+1

|S)

e✏+✏

m+1 Pr((M,M
m+1

) 2 R
m+1

|S0�+ � + �
m+1

,

which means that the lemma holds for m+1. By math-
ematical induction, we conclude the proof.

Lemma A.3 (Post-processing). Denote the set of sam-
ples as S = {x
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,x
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, . . . ,x
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, . . . ,x
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}. Let randomized
algorithm M(S) 2 C
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be (✏, �)-differentially private
and an arbitrary mapping f : C
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By definition we know that f � M is also (✏, �)-
differentially private.

Proof of Theorem 4.1. Based on Lemma A.1, we
know that H

j

(S
j

, Q) is (✏/T, �/T )-differentially private
given fixed Q. Then we can deduce from Lemma A.2
that the adaptive composition
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) and
thus Q⇤
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is (✏, �)-differentially private.

B Appendix: Proof for the Main

Theorem

B.1 Notations

Let x

1

,x
2

, . . . ,x
n

2 Rd be samples drawn from under-
lying distribution, where d is the dimension and n is
the number of samples. Denote S = {x

1

,x
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, . . . ,x
n

}
as the set of all the samples, and S

i

as the sample
set of ith data provider. Let ⌃ 2 Rd⇥d be the popula-
tion covariance matrix of the generating distribution,
and let b⌃ 2 Rd⇥d be sample covariance matrix, i.e.
b⌃ = (
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>
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)/n. Let the d ⇥ k matrix Q⇤ 2 Rd⇥k

with orthogonal columns spans the k leading eigenspace
of ⌃.
Let I ✓ {1, . . . d} be an index set. For any matrix
M 2 Rn⇥m, denote MI 2 Rd⇥d as the restriction of
M onto the rows and columns indexed by I. Denote
MI,⇤ 2 Rn⇥m as the matrix M restricted on rows
indexed by I, with value 0 on rows not indexed by I.
Denote �

k

(M) as the k-th leading eigenvalue of any
matrix M , and we simplify the notation �

k

(⌃) as �
k

.
Define bQ(I) 2 Rd⇥k as a matrix with orthogonal
columns which span the top k leading eigenspace
of b⌃I . Let bQ(I)? be the matrix with orthogonal
columns which span the subspace corresponding to
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(b⌃I), . . . �
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(b⌃I).
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(B.1)

which is the sparsity of row-support of Q⇤.

B.2 Assumptions

Assumption B.1. Assume that there exists ↵ 2 (0, 1)
such that 0 < ↵ < 1 � � and ⌧ > 0 such that

2kN
�

p
bs +

p
k + ⌧

�

n↵
 �

k

�(✏, �)
. (B.2)
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Here the noise-to-signal ratio parameter ↵ is upper-
bounded by
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1 + 2
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k
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(B.3)

We also suppose the choice of thresholding parameter
bs satisfies the following condition

bs = C
1
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⇢⇠

4k

(⇢�1/2 � 1)2

⇡

, 1

�

· s⇤, C
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> 1. (B.4)

And the sample size n is large enough such that for a
positive constant C

2

> 0

 (2bs) = C
2

·
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�
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�
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·
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bs · (k + log d)
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24
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Initialization of the algorithm Q(0) satisfies

kQ(0)>Q⇤?k
F

 min

⇢

⇢1/2

p

(1 � ⇢1/2)

2
,
⇢1/2

4

�

.

(B.6)

Assumption Justifications.
• Let us remark that equation (B.2) essentially uses

the parameter ↵, ⌧ to bound the noise-to-signal ra-
tio �(✏, �)/�

k

. Under mild privacy constraint when
the signal-to-noise ratio �

k

/�(✏, �) is sufficiently
large or the sample number n is sufficiently large,
we can find ⌧ > 0 and ↵ 2 (0, 1� �) small enough
to satisfy the constraints (B.2) (B.3). Note that
(B.2) does not involve dimension d and thus this
constraint on sample number n does not scale with
d.

• The effective sample size is n/N in (B.2), which
characterizes the effect of having samples stored
in a distributed system with N data providers.

• The condition (B.4) on choice of sparsity param-
eter bs ensures that we would not lose too much
information in the thresholding procedure where
only bs rows are preserved and others are set to zero.
When the effective eigengap ⇢ = �/(1�↵) is close
to one, the parameter bs has to be comparatively
large because the problem becomes ill-conditioned
and we cannot afford to lose accuracy in the thresh-
olding procedure.

• The assumption on good initial value for noncon-
vex optimization (B.6) is a common practice in the
literature of sparse PCA and privacy-preserving
PCA such as [47] and [18].

B.3 Sketch Of Proof

Now we present a sketch of proof for Theorem 4.3 to-
gether with three lemmas supporting the proof. Please

see §B.1 for the meaning of notation bQ(I)? and Q⇤?

in the following lemmas.
Lemma B.2 analyzes the privacy preservation step in
Algorithm 1 by presenting a contractive relationship be-
tween kV (t)>

bQ(I)?k
F

and kQ(t)>
bQ(I)?k

F

. It is shown
in (B.15) in Appendix §B.5 that

V (t) = Orthogonalize
�

b⌃Q(t) +
N

n
G(t)

�

.

The contractive relationship means that although Gaus-
sian noise matrices are added, the noise is only effective
in bs rows thanks to the thresholding procedure and can
be controlled in high dimensional setting.
Lemma B.2. Let I be the index of the row-support
of Q(t). If we have

�

�Q(t)>
bQ(I)?�

�

F

< 1/2, (B.7)

for t = 1, 2, . . . , T and assume that there exists ↵ 2
(0, 1) such that 0 < ↵ < 1��, and ⌧ > 0 such that (B.2)
in Assumption B.1 is satisfied. Denote ⇢ = �/(1�↵) 2
(0, 1). We have the following result

�

�V (t)>
bQ(I)?�

�

F


�

�Q(t)>
bQ(I)?

�

�

F

q

1 �
�

�Q(t)>
bQ(I)?

�

�

2

F

· ⇢ +
↵

2(1 � ↵)
,

(B.8)

holds for t = 1, 2, . . . , T with probability at least 1 �
2Te�2⌧

2

.

Proof. Please see Appendix §B.5 for a detailed proof.

The thresholding procedure in Algorithm 1 aims to
impose sparsity in every iteration. However, as we do
not know the true support of the k leading eigenspace,
thresholding could bring in some extra error. The fol-
lowing lemma analyzes the thresholding error.
Lemma B.3. Remember that the true model sparsity
s⇤ is defined as the sparsity level of the row support
of Q⇤ whose columns span the leading k-dimensional
principal subspace of ⌃. Given the sparsity parameter bs
in Algorithm 1, if

p

s⇤/bs  1 and kV (t)>Q⇤?k
F

 1/2.
We have

�

�Q(t+1)>Q⇤?�
�

F


✓

1 + 2

r

ks⇤

bs

◆

�

�V (t)>Q⇤?�
�

F

.

(B.9)

Proof. Please see Appendix §B.6 for a detailed proof.

The above two lemmas analyze the privacy-preserving
and thresholding steps in each iteration, based on which
we can now proceed to prove the contractive property
of each iteration in Algorithm 1. The function  in
(B.10) is defined in (B.5).
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Lemma B.4. Under Assumption B.1, suppose we have

�

�Q(t)>Q⇤?�
�

F

 min
n

q

(1 � ⇢1/2), 1/2
o

,

where C
1

� 1 is a constant. We can show that
�

�Q(t+1)>
bQ⇤?�

�

F

⇢1/4 ·
�

�Q(t)>
bQ⇤?�

�

F

+ 3⇢1/2 · (bs)

+
⇣

1 + 2

r

ks⇤

bs

⌘ ↵

2(1 � ↵)
(B.10)

with probability at least

1 � 2e�⌧

2
/2 � 4/(n � 1) � 1/d � 6 log n/n � 1/n.

(B.11)

Proof. The proof is based on Lemma B.2 and Lemma
B.3. Please see Appendix §B.7 for details of proof.

From the contractive property (B.10) of each iteration
in Lemma B.4, we can derive the estimation error in
Theorem 4.3. Please see Appendix §B.8 for a detailed
proof.

B.4 Technical Preliminaries

We will first present some auxiliary lemmas here be-
fore going into the proof of Lemma B.2, Lemma B.3,
Lemma B.4 and Theorem 4.3 in §B.5 §B.6, §B.7 and
§B.8 respectively.
The estimation error of the eigenspace will be analyzed
in terms of subspace distance between two k dimen-
sional linear subspace U ,V in Rd. Denote U and V as
two d ⇥ k matrices whose orthonormal columns span
the linear subspace U and V. Denote U? and V ? as
two d ⇥ (d � k) matrices whose orthonormal columns
span the linear subspace U? and V? orthogonal to U
and V respectively. The orthogonal projection matrices
for U ,V are denoted as ⇧

u

, ⇧
v

.
Lemma B.5. Singular values of ⇧

u

⇧?
v

are zeros after
the top k entries

s
1

, s
2

, . . . , s
k

, 0, 0, · · · , 0.

Canonical angles between U and V are defined as

✓
i

(U, V ) = arcsin(s
i

), i = 1, 2, . . . , k.

Let ⇥(U, V ) = diag(✓
1

, ✓
2

, . . . , ✓
k

). The distance be-
tween U and V can be characterized as

D[U ,V] = k sin⇥(U, V )k
F

=
�

�U>V ?�
�

F

=
�

�V >U?�
�

F

=
1p
2
k⇧

u

�⇧
v

k
F

= k⇧
u

⇧?
v

k
F

= k⇧?
u

⇧
v

k
F

.

Besides we have the property similar to Pythagorean
theorem

kU>V ?k2

F

+ kU>V k2

F

= k. (B.12)

Proof. Please see Theorem I.5.5 in [39] and Theorem
2.5.1 in [2] for details of proof.

Before the proof we present a lemma here which will
be useful in the proof of Lemma B.7.
Lemma B.6. For any I ✓ {1, 2, . . . , d} with |I|  d/2,
the condition

||b⌃� ⌃||
2,|I|  C

1

�
1

r

|I| log d

n

holds with probability at least 1 � 1/n.

Proof. The proof follows from Lemma 3.2.4 in [40].

Lemma B.7. Assume that there exists ↵ 2 (0, 1) such
that 0 < ↵ < 1 � � and ⌧ > 0 sufficiently large such
that

�  ↵�
k+1

2k
�

p
bs +

p
k + ⌧

�

. (B.13)

Let matrix G be a bs ⇥ k matrix with i.i.d. Gaussian
N(0, �2) entries. Let I be the row support in thresh-
olding step in Algorithm 1. We have

�

�G(t)

�

�

F

 ↵�
k

(b⌃I)/2 (B.14)

holds for all t = 1, 2, . . . , T with probability at least
1 � 2Te�⌧

2
/2.

Proof. Based on the Tracy-Widom fluctuations in [35],
we have

P
n

�

�G(t)

�

�

2

> �(
p
bs +

p
k + ⌧)

o

 2e�⌧

2
/2.

Since we have assumption (B.13), it follows that

P
⇢

�

�G(t)

�

�

2

>
↵�

k+1

2k

�

P
n

�

�G(t)

�

�

2

> �(
p
bs +

p
k + ⌧)

o

 2e�⌧

2
/2.

Besides we have
�

�G(t)

�

�

F

 k
�

�G(t)

�

�

2

, it follows that

P
⇢

�

�G(t)

�

�

F

>
↵�

k+1

2

�

P
⇢

k
�

�G(t)

�

�

2

>
↵�

k+1

2

�

 2e�⌧

2
/2.

From Lemma B.6 we have

�
k

(b⌃I) � �
k

� ||b⌃� ⌃||
2,|I| � �

k

� �
k

� �
k+1

4
� �

k+1

,

which implies

P
⇢

�

�G(t)

�

�

F

>
↵�

k

(b⌃I)

2

�

P
⇢

�

�G(t)

�

�

F

>
↵�

k+1

2

�

 2e�⌧

2
/2.

Hence the probability that (B.14) holds for t =

1, 2, . . . , T is 1 � 2Te�⌧

2
/2.
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B.5 Proof of Lemma B.2

Proof of Lemma B.2. For the Gaussian noise matrix
G(t)

i

used by data owner i in iteration t, we simply
denote it as G(t). Remind that the notation bQ(I) is a
row-sparse matrix with row support in I. We use VI,⇤ 2
Rd⇥k to denote the matrix whose rows are restricted
on the index set I, and it is set to zeros for the rows
not indexed by I. From (B.12) we have
�

�V (t)>
bQ(I)?�

�

F

=
�

k �
�

�V (t)>
bQ(I)

�

�

2

F

�

1/2

=
�

k �
�

�V (t)>
I,⇤

bQ(I)
�

�

2

F

�

1/2

.

With the goal to analyze the subspace distance
�

�V (t)>
bQ(I)?

�

�

F

, we can focus on V (t)

I,⇤ instead of V (t)

in our analysis. Note that

H(t)

i

= b⌃
i

Q(t) +
1

n
i

G(t),

V (t)R
1

= K(t) =

P

N

i=1

n
i

H(t)

i

P

N

i=1

n
i

= b⌃ · Q(t) +
N

n
G(t),

(B.15)

where b⌃ is the sample covariance for the samples of
all the N data owners. Besides, since G(t) is a random
matrix with i.i.d entries N(0, �(✏, �)2). We will denote
� = N�(✏, �)/n and assume that G(t) is entrywise i.i.d
with N(0, �2). We now have

V (t)R
1

= K(t) = b⌃ · Q(t) + G(t),

and the standard deviation � = N�(✏, �)/n satisfies the
requirement (B.13) because of the (B.2) in Assumption
B.1.
By taking restriction on the rows indexed by I, we
obtain

V (t)

I,⇤ · R
1

= b⌃I · Q(t) + G(t)

I,⇤. (B.16)

Let the eigen-decomposition of b⌃I be

b⌃I = bQ(I)⇤
0

bQ(I)> + bQ(I)?⇤
1

⇥

bQ(I)?⇤>,

where ⇤
0

is the diagonal matrix of the top k eigenvalues
of b⌃I , and ⇤

1

is the diagonal matrix of the rest of
eigenvalues in decreasing order.
Equation (B.16) can be written as

V (t)

I,⇤ · R
1

= bQ(I)⇤
0

bQ(I)> · Q(t)

+ bQ(I)?⇤
1

⇥

bQ(I)?⇤> · Q(t) + G(t)

I,⇤.

(B.17)

If bQ(I)> and [ bQ(I)?]> are used to multiply both sides
of (B.17) respectively, we can have the following two

equations

bQ(I)>V (t)

I,⇤R1

= ⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤,

(B.18)

[ bQ(I)?]>V (t)

I,⇤R1

= ⇤
1

[ bQ(I)?]>Q(t) + [ bQ(I)?]>G(t)

I,⇤.

(B.19)

Note that bQ(I)>Q(t) and bQ(I)>G(t)

I,⇤ are both k ⇥ k
square matrices. We prove that the right-hand-side of
equation (B.18) is non-singular by showing that the
smallest singular value of the right-hand-side is posi-
tive. From the perturbation theory for singular value
decomposition in [38], we have

�
k

⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤

��
k

⇥

⇤
0

bQ(I)>Q(t)

⇤

�
�

� bQ(I)>G(t)

I,⇤
�

�

2

��
k

(b⌃I) · �
k

⇥

bQ(I)>Q(t)

⇤

�
�

� bQ(I)>G(t)

I,⇤
�

�

2

. (B.20)

According to the Pythagorean relation (B.12), we can
derive that

�
k

⇥

bQ(I)T Q(t)

⇤

=

q

1 � �
1

⇥

( bQ(I)?)>Q(t)

⇤

2

�
q

1 �
�

�( bQ(I)?)>Q(t)

�

�

2

F

> 0.

Since bQ(I) 2 Rd⇥k has orthonormal columns, the fol-
lowing equation holds with probability at least 1 �
2Te�⌧

2
/2

�

� bQ(I)T · G(t)

I,⇤)
�

�

2


�

�G(t)

I,⇤
�

�

2

↵�
k

(b⌃I)

q

1 �
�

�( bQ(I)?)>Q(t)

�

�

2

F

< ↵�
k

(b⌃I)/2.

The last inequality follows from the fact that
�

�( bQ(I)?)>Q(t)

�

�

F

< 1/2, and the high probability
claim follows from Lemma B.7.
Putting the above two equations into equation (B.20)
gives

�
k

⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤

�(1 � ↵)�
k

(b⌃I)

q

1 �
�

�( bQ(I)?)>Q(t)

�

�

2

F

> 0,

(B.21)

and thus ⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤ is non-singular.
From equation (B.21) and (B.18) we have

R�1

1

=
⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤�1 · bQ(I)>V (t)

I,⇤.

Combining the above equation with equation (B.19),
we have
⇥

bQ(I)?⇤>V (t)

I,⇤ =
⇣

⇤
1

[ bQ(I)?]>Q(t) + [ bQ(I)?]>G(t)

I,⇤

⌘

⇥
h

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤

i�1

· bQ(I)>V (t)

I,⇤.

(B.22)
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The Frobenius norm of the right-hand-side of equation
(B.22) can be upper bounded by

�

�

�

⇤
1

[ bQ(I)?]>Q(t) + [ bQ(I)?]>G(t)

I,⇤
�

�

�

F

⇥
�

�

⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤�1

�

�

2

�

� bQ(I)>V (t)

I,⇤
�

�

2

.

(B.23)

The first part can be further controlled in the following
way

�

�⇤
1

[ bQ(I)?]>Q(t) + [ bQ(I)?]>G(t)

I,⇤
�

�

F


�

�⇤
1

[ bQ(I)?]>Q(t)

�

�

F

+
�

�[ bQ(I)?]>G(t)

I,⇤
�

�

F

�
k+1

(b⌃I)
�

�[ bQ(I)?]>Q(t)

�

�

F

+
�

�G(t)

I,⇤
�

�

F

. (B.24)

The second part can also be upper bounded as

�

�

⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤�1

�

�

2

=
1

�
k

⇥

⇤
0

bQ(I)>Q(t) + bQ(I)>G(t)

I,⇤
⇤

 1

(1 � ↵)�
k

(b⌃I)
q

1 �
�

�( bQ(I)?)>Q(t)

�

�

2

F

, (B.25)

where the second inequality follows from equation
(B.21). The third part is obviously upper bounded

�

� bQ(I)>V (t)

I,⇤
�

�

2


�

� bQ(I)>�
�

2

�

�V (t)

I,⇤
�

�

2

 1. (B.26)

After we put equation (B.24), (B.25), (B.26) into (B.23),

equation (B.22) can be upper-bounded by

�
k+1

(b⌃I)
�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

+
�

�G(t)

I,⇤
�

�

F

(1 � ↵)�
k

(b⌃I)
q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F


�

k+1

(b⌃I)
�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

+ ↵�(b⌃I)/2

(1 � ↵)�
k

(b⌃I)
q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

 1

1 � ↵

�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

· �
k+1

(b⌃I)

�
k

(b⌃I)

+
↵

2(1 � ↵)
q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

 1

1 � ↵

�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

·
�

k+1

(⌃) + ||b⌃� ⌃||
2,|I|

�
k

(⌃) � ||b⌃� ⌃||
2,|I|

+
↵p

3(1 � ↵)

 1

1 � ↵

�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

3�
k+1

(⌃) + �
k

(⌃)

�
k+1

(⌃) + 3�
k

(⌃)

+
↵p

3(1 � ↵)

=

�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

· ⇢ +
↵p

3(1 � ↵)
.

(B.27)

Since the columns of bQ(I)? are eigenvectors of the
row sparse matrix b⌃I , the rows of bQ(I)? must also be
restricted on the set of index I, and thus

�

� bQ(I)?V (t)

�

�

F

=
�

� bQ(I)?V (t)

I,⇤
�

�

F

.

Based on the above equation, (B.27) and (B.22) we
have

�

� bQ(I)?V (t)

�

�

F


�

�

⇥

bQ(I)?⇤>Q(t)

�

�

F

q

1 �
�

�

⇥

bQ(I)?
⇤>

Q(t)

�

�

2

F

· ⇢ +
↵p

3(1 � ↵)
,

which is equivalent to

�

�V (t)>
bQ(I)?�

�

F


�

�Q(t)>
bQ(I)?

�

�

F

q

1 �
�

�Q(t)>
bQ(I)?

�

�

2

F

· ⇢ +
↵p

3(1 � ↵)
.

The entire proof holds with probability at least 1 �
Te�⌧

2
/2.

B.6 Proof of Lemma B.3

Proof. In this proof we will analyze the error in each
iteration induced by the thresholding procedure. De-
note I as the set of index used for thresholding in the
current iteration. Also let I⇤ to be ground truth of the
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row support of Q⇤ whose columns span the leading k
eigenspace of the population covariance matrix ⌃ in
our model. Under this notation, we have bs = |I| and
s = |S|. Since the thresholding comes from the differ-
ence between I and I⇤, our analysis relies on these
critical quantities

I
1

= I⇤\I, I
2

= I⇤ \ I, I
3

= I\I⇤.

Now we compare the approximation accuracy between
eQ(t) and V (t)

�

�Q⇤>
eQ(t)

�

�

F

=
�

�Q⇤>V (t) + Q⇤>�
eQ(t) � V (t)

�

�

�

F


�

�Q⇤>V (t)

�

�

F

� kQ⇤>�
eQ(t) � V (t)

�

k
F

=
�

�Q⇤>V (t)

�

�

F

�
�

�(Q⇤
I1,⇤)

>V (t)

I1,⇤
�

�

F

. (B.28)

On the other hand, we can easily get the upper bound
�

�Q⇤>
eQ(t)

�

�

F

=
�

�Q⇤>Q(t)R
2

�

�

F


�

�Q⇤>Q(t)

�

�

F

·
�

�R
2

�

�

2

=
�

�Q⇤>Q(t)

�

�

F

·
�

�Q(t+1)R
2

�

�

2

=
�

�Q⇤>Q(t)

�

�

F

·
�

� eQ(t)

�

�

2

=
�

�Q⇤>Q(t)

�

�

F

·
�

�V (t)

I,⇤
�

�

2


�

�Q⇤>Q(t)

�

�

F

·
�

�V (t)

�

�

2

=
�

�Q⇤>Q(t)

�

�

F

, (B.29)

where we use the facts that Q(t+1) has orthogonal
columns and

�

�V (t)

I,⇤
�

�

2

= max
||x||2=1

�

�x>V (t)

I,⇤
�

�

2

 max
||x||2=1

�

�x>V (t)

�

�

2

=
�

�V (t)

2

�

�

2

.

Based on (B.28) and (B.29) we have
�

�Q⇤>Q(t)

�

�

F

�
�

�Q⇤>V (t)

�

�

F

�
�

�Q⇤
I1,⇤

�

�

2

�

�V (t)

I1,⇤
�

�

F

.

(B.30)

First of all we want to show the following
�

�Q⇤
I1,⇤

�

�

2


�

�Q(t+1)>Q⇤?�
�

F

, (B.31)

which is very intuitive because when Q(t+1) is very close
in subspace distance to Q⇤, the index set I selected
in the thresholding procedure would cover the true
row support I⇤ effectively and the thus index set I

1

=
I⇤\I must only over rows with very small norm. Hence
the norm of Q⇤

I1,⇤ can be controlled by the subspace
distance. To be precise with our reasoning, first notice
that

�

�Q⇤
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2
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�Q⇤
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= k. (B.32)

We also have
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�(Q⇤)>Q(t+1)
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If we combine the two equations (B.32) and (B.33), we
have
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,

which is exactly what we want to show in (B.31). Sec-
ondly we also have to give an upper bound for

�

�V (t)
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.
Following similar arguments in (B.32), we have
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based on which we can show that
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. (B.34)

Besides, we also need the following inequality based on
the definition of the thresholding procedure
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. (B.35)

Combining (B.34) and (B.35), and note the fact that
a/b  (a + c)/(b + c) for 0 < a  b, c > 0, we have
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By the Pythagorean property (B.12), we can derive the
upper bound as

�

�V (t)

I1,⇤
�

�

F


r

s⇤

bs

�

�V (t)>Q⇤?�
�

F

. (B.37)

Finally we can prove the lemma with (B.30), (B.31) and
(B.37). Simply putting (B.31) and (B.37) into (B.30),
we have
�

�Q⇤>Q(t+1)

�

�

F

�
�

�Q⇤>V (t)

�

�

F

�
r

s⇤

bs

�

�V (t)>Q⇤?�
�

F

�

�Q(t+1)>Q⇤?�
�

F

.

(B.38)

By our assumption
�

�V (t)>Q⇤?
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< 1/2 and (B.12),
we have
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Based on the above equation and s⇤ < bs, it can
be shown that the right-hand side of (B.38) is non-
negative
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where the last inequality follows from (B.39). If we take
square of both sides of (B.38), we have
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Again we use the Pythagorean property (B.12) and
obtain
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This quadratic inequality implies
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B.7 Proof of Lemma B.4

First of all we will have to prove that this result holds.
Lemma B.8. For n sufficiently large, and S⇤ ✓ I, we
have

kQ⇤>
bQ(I)?k
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 C
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·
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�
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� �
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·
r

|I| · (k + log d)

n
,

which holds with probability at least 1 � 4/(n � 1) �
1/d � 6 log n/n.

Proof. The proof is an extension from the deviation
for main upper bound analysis [41]. The details of the
proof can be found in Appendix B of [43].

Now we give the proof of Lemma B.4.

Proof. In this proof we denote I
1

= I [ I⇤ as the
union of the row-support of Q⇤ and Q(t). Under this
notation we have |I

1

|  s⇤ + bs. Besides for sufficiently
large n Lemma B.8 implies that we can assume that
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 1/2.
Since the assumptions of Lemma B.2 are all satisfied
here, we have the result of Lemma B.2
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, (B.40)

where ⇢ = �/(1 � ↵) follows the same notation in
Lemma B.2.
Triangle inequality of subspace distance and Lemma
B.8 implies that
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Combining equation (B.40) and (B.42) we obtain
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(B.43)

Here we define an auxiliary function f(z) = z/
p

1 � z2.
Since f(z) is convex for �1 < z < 1, we have
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Since we have assumed that  (2bs)  1/24, equation
(B.41) implies that
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where the last inequality follows from the fact that
|I

1

|  bs + s⇤  2bs. Due to the fact that the function
f(z) is increasing, we have
⇣

1 �
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�Q(t)>
bQ(I
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�

� 3
2

F

⌘

 (1 � 1/2)� 3
2 < 3. (B.45)

And thus (B.44) and (B.45) implies an upper bound
for the right-hand side of (B.43)
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Remind that Lemma B.3 has the following result
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(B.47)

Combining (B.46) and (B.47), we obtain
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Under our assumption

bs = C
1

max

⇢⇠

44

(⇢�1/2 � 1)2

⇡

, 1

�

· s⇤,

and kQ(t)>Q⇤?k
F

 min
n

q

(1 � ⇢1/2), 1/2
o

,

with C
1

> 1, we have

1 + 2

r

ks⇤

bs
 ⇢�1/2,

1
q

1 �
�

�Q(t)>Q⇤?
�

�

2

F

 ⇢�1/4.

(B.49)

Plugging (B.49) into (B.48) and note that |I
1

|  2bs,
we obtain
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Since our proof depends on high probability result
Lemma B.6 and Lemma B.7 in (B.58) and (B.59). The
entire proof holds with probability at least

1 � 2e�⌧

2
/2 � 4/(n � 1) � 1/d � 6 log n/n � 1/n.

B.8 Proof of Main Theorem

Proof. To simplify notation, we introduce
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We will prove by mathematical induction that for t =
2, . . . , T ,
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First of all we have the assumption for the initial value
Q(0)
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Based on Lemma B.3, the Initialization step of Algo-
rithm 1 implies that
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(B.52)

By our assumption on bs (B.4), we have
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Combining (B.51), (B.52) and (B.53), we have
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which means the condition of Lemma B.4 is satisfied
and hence
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Thus we have proved (B.50) holds for t = 2. Now sup-
pose (B.50) holds for t � 2, we want to prove that it
also holds for the case for t + 1. We notice that
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Under the assumption (B.3) and (B.5), we also have
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Plugging (B.54), (B.56) and (B.55) into the right-hand
side of (B.50), we find out that
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And thus Lemma B.4 implies that
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If we plug (B.50) into the right-hand side of (B.57), we
have
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By mathematical induction, we know that (B.50) holds
for t = 1, 2, . . . , T . By simply replacing  (2bs) by the
definition of  , and also noticing the assumption B.4,
we have our result
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Since the proof depends on high probability result
Lemma B.3 and Lemma B.5, our result holds for t =
1, 2, . . . , T with probability at least

1 � 2Te�⌧

2
/2 � 4/(n � 1) � 1/d � 6 log n/n � 1/n.


