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Abstract

This paper proposes a distributed privacy-
preserving sparse PCA (DPS-PCA) algo-
rithm that generates a minimax-optimal
sparse PCA estimator under differential pri-
vacy constraints. In a distributed optimiza-
tion framework, data providers can use this al-
gorithm to collaboratively analyze the union
of their data sets while limiting the disclosure
of their private information. DPS-PCA can
recover the leading eigenspace of the popula-
tion covariance at a geometric convergence
rate, and simultaneously achieves the optimal
minimax statistical error for high-dimensional
data. Our algorithm provides fine-tuned con-
trol over the tradeoff between estimation accu-
racy and privacy preservation. Numerical sim-
ulations demonstrate that DPS-PCA signifi-
cantly outperforms other privacy-preserving
PCA methods in terms of estimation accuracy
and computational efficiency.

1 Introduction

Principal component analysis (PCA) is one of the most
widely used tools for data analysis and dimension re-
duction. Let x

1

,x
2

, · · · ,x
n

2 Rd be samples drawn
from some underlying distribution with covariance ma-
trix ⌃ 2 Rd⇥d, where d is the dimension and n is
the data size. Principal component analysis estimates
the leading k (k ⌧ d) eigenvectors of ⌃ based on the
given samples. Projection of the samples into the k-
dimensional principal subspace spanned by the eigen-
vectors provides a low-dimensional representation of
the high-dimensional data.
We focus on a distributed setting in which multiple
data providers interact with one another. Suppose that
the data providers, who may come from different inter-
est groups, aim to calculate the principal components
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of the union of their data sets. For example, the data
providers can be healthcare providers holding medi-
cal records related to certain types of drugs or proce-
dures, or research institutes with genome-wide associa-
tion (GWA) genetic study results for certain diseases.
Even if the data providers may wish to collaborate on
data analysis, they are often unwilling to directly share
data with others because inappropriate data sharing
may lead to severe privacy breach [22, 32].
In practical contexts where privacy matters, there has
been a surging demand for collaborative principal com-

ponent analysis applications, including clinical infer-
ence [13] and genome population structure modeling
[12]. This motivates us to redesign principal component
analysis algorithms, in order to allow data providers
to collaboratively analyze the data sets without phys-
ically merging them. It is desired that the new algo-
rithm achieves strong privacy guarantees, making it
nearly impossible to infer an individual’s exact state
in the data set from the algorithm’s output. We adopt
the notion of differential privacy introduced by [10], a
cryptographically inspired guarantee that is resistant
to many forms of privacy attacks (see [14]). Intuitively,
differential privacy of an algorithm means that a small
change in the input has no significant impact on the
output of the algorithm (a rigorous definition to be
provided later).
High dimensionality poses another critical challenge to
modern data applications such as population genome
study and brain voxel estimation. It is desired that the
new algorithm produces estimates achieving the opti-
mal or nearly optimal statistical accuracy. However, in
the typical high-dimensional setting where d� n, sin-
gular value decomposition fails to work by producing
inconsistent estimates of principal components [23, 31].
To overcome this problem, we adopt the sparsity regu-
larization for high dimensional PCA, which has been
extensively studied in [1, 3, 5, 7, 8, 23, 24, 27, 29, 31,
36, 37, 40, 41, 43, 45, 49].
The goal of this paper is to provide an algorithmic
solution to distributed principal component analysis,
which leverages the sparsity of high-dimensional data
as well as achieves sufficient privacy preservation. In
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what follows, we briefly review some earlier works on
privacy-preserving PCA, sparsity regularization and
distributed optimization, and discuss their relevance
with the current paper.
Related works. One line of existing works is on differ-
entially private algorithms for model-free PCA, such as
the Sub Linear Queries (SuLQ) method by [4], the Pri-
vate PCA (PPCA) and modified SuLQ (MOD-SuLQ)
method by [6] and Analyze Gauss in [11]. MOD-SuLQ
and Analyze Gauss both add noise to the sample co-
variance matrix before applying the singular value de-
composition. PPCA applies the exponential mecha-
nism [30] to perform private selection of the leading
eigenspace. However, model-free methods cannot be
applied successfully on high dimensional data. It is
demonstrated in [6] that the sample size has to be on
the same order of dimension n ⇡ d so that a differen-
tially private algorithm can achieve a targeted level of
estimation accuracy. The utility gap in Analyze Gauss
[11] (Theorem 3) is on the order of O(

p
d). This is quite

discouraging for high dimensional scenarios.
Another line of related work is on the locally differen-
tial privacy of PCA. In this setting, each data sample
is obscured by some random transformation to ensure
privacy. One of the earliest among these works is [48],
which proposed to apply a random linear transforma-
tion to each sample. Other works such as [9, 42, 44]
studied the theoretical tradeoff between the minimax
statistical rate and the local privacy level imposed on
the initial data. In contrast to these works, we consider
the interactive setting in which each data provider re-
leases information by answering a series of statistical
queries with designed protocol, as opposed to simply ob-
scuring all the samples once and for all. For this reason,
our approach is more task-specific and very different
from the locally differential privacy studied earlier.
A third line of related works is on high-dimensional
PCA, e.g., [16–18], which proved the dimension-free
statistical results under incoherent assumption of the
sample covariance matrix. Power method for sparse
PCA has been studied in [43], which is shown to achieve
the statistical minimax rate in polynomial time. In this
paper, we follow their technique of imposing sparsity
by adding a thresholding step in the power iteration.
A similar technique was also used in the truncated
power method in [47]. We also note that distributed
versions of PCA have been studied by [25, 28, 34]. The
focus there is the tradeoff between communication ef-
ficiency and approximation accuracy. In contrast, our
current focus is the privacy preservation feature of dis-
tributed PCA instead of its communication efficiency.
Distributed privacy-preserving analysis has also been
studied in works such as [46] and [19]. [19] focused
Bayesian inference and is not directly comparable. [46]
assumed that a non-distributed version of the privacy-

preserving procedure is already available and proposed
a multiparty computation protocol. In the context of
sparse PCA estimation, [46] is not applicable because
even the non-distributed version of privacy-preserving
sparse PCA estimation algorithm has not been studied
before in the literature.
Our Contributions. In this paper, we aim to study
the distributed PCA with a focus on the privacy preser-
vation of high dimensional data. From the algorithmic
perspective, we are interested in designing efficient al-
gorithms with fast convergence rate and reasonable
complexity. From the theoretical perspective, we are
interested in the tradeoff between the estimation accu-
racy and the level of privacy preservation, especially in
the sparse high-dimensional setting. The main contri-
butions of this paper are summarized as follows:

(i) We show that efficient estimation of high dimen-
sional sparse principal subspace can be achieved
under privacy preservation constraints.

(ii) We propose a privacy-preserving algorithmic
framework which obtains an efficient estimate
converging in geometric rate to the minimax-
optimal statistical error.

(iii) Numerical simulations show that our method
significantly outperforms current state-of-the-art
privacy-preserving PCA methods such as MOD-
SuLQ, PPCA [6] and Analyze Gauss [11] in terms
of estimation accuracy and computational effi-
ciency.

To the best knowledge of the authors, this is the
first work on privacy-preserving method for high-
dimensional sparse PCA in a distributed optimization
framework. This is also the first work showing that
the minimax statistical rate of sparse PCA can be
achieved under differential privacy constraints in poly-
nomial time.

2 Collaborative PCA in Distributed

Systems

Let us consider the distributed computing setting with
a number of data providers. The data providers aim to
collaborate with one another, in order to compute the
principal components of the union of all their local data
sets. Each data set may contain sensitive information
that can not be released to the public. In this section,
we introduce a distributed collaborative framework that
enables privacy-preserving PCA, and describe the mod-
eling assumptions for high-dimensional data.
We propose a distributed algorithmic framework for
privacy-preserving PCA, as illustrated in Figure 1. Let
S

i

(i = 1, 2, · · · , N) be the sample set held by the ith
data provider. A central server is used to coordinate the
distributed computation process but it is not trusted
by the data providers. Each data provider is able to
communicate with the central server. This framework
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allows an iterative algorithm in which the central server
repeatedly updates the global estimates while commu-
nicating with all the data providers.
In each iteration of the algorithm, the central server
sends the current global estimate Q(t) to all the par-
ticipating providers, where Q(t) 2 Rd⇥k is an orthog-
onal basis matrix of the estimated leading eigenspace
of the covariance matrix in the underlying statistical
model. Upon receiving the current estimate Q(t), each
data provider computes a local intermediate result
H

i

(S
i

, Q(t)) 2 Rd⇥k which is a d ⇥ k matrix contami-
nated with intentional noise. Then each data provider
sends back H

i

(S
i

, Q(t)) to the central server, which
later combines all the messages H

1

, H
2

, · · · , H
N

to up-
date the global estimate.

Data Provider 1 Data Provider 2

Central Server

Data Provider N

Q(t)

H
1

(S
1

, Q(t))

Initial Estimation Algorithm Output
Q(0) Q⇤

dp

H
N

(S
N

, Q(t))
Q(t)

Figure 1: Distributed Private Sparse PCA Algorithm
Structure

The proposed framework allows individual data
providers to add noise to outgoing messages at their
own discretion. This provides significant flexibility to
the collaborative analysis. Note that due to the exis-
tence of noise, any algorithm under this framework is a
randomized algorithm. We use the following notion of
differential privacy for randomized algorithms, which
has been studied in [26] and [18]. It says that an algo-
rithm is differentially private if the output is insensitive
to small input perturbation.
Definition 2.1 (Differential Privacy of Randomized
Algorithms). Let S = {x

1

, . . . ,x
j

, . . . ,x
n

} be the set
of all samples. A randomized algorithm M : ⌦! R is
(✏, �)-differentially private (✏, � > 0) if for all pairs of
neighboring data sets S,S 0 differing in any individual
data item: S 0 = {x

1

, . . . ,x0
j

, . . . ,x
n

}, and for all R ✓ R,
the algorithm satisfies

Pr(M(S0) 2 R)  e✏ · Pr(M(S0) 2 R) + �.

What privacy guarantee can we promise to the data
providers under this definition? From the perspective
of the i-th data provider, first of all, the central server
cannot determine (to some extent) the presence or ab-
sence of any individual data item in the sample set S

i

,
given the information H

i

(S
i

, Q(t)) (t = 1, 2, . . . , T ) col-
lected during the computation. Secondly, the change of
any individual data item in sample set S

i

does not have
an significant impact on the output of the algorithm
Q⇤

dp

. The extent of privacy is determined by ✏ > 0 and
� > 0, with smaller ✏ and � implying less disclosure of

private information related to an individual data item.
In order to provide sharp estimates given high-
dimensional data, we adopt the following notion of
subspace sparsity.
Definition 2.2 (Subspace Sparsity). A linear sub-
space is s-sparse if the number of non-zero diagonal
entries of the projection matrix onto the subspace is
equal to s.

The notion of subspace sparsity has been introduced in
recent literature on sparse PCA such as [40, 41]. Being
invariant to rotation, the sparsity level of the subspace
spanned by columns of Q⇤ can be defined as the number
of non-zero entries in the diagonal of the projection
matrix ⇧⇤ = Q⇤Q⇤T . Note that ⇧⇤

i,i

=
P

k

j=1

(Q⇤
i,j

)2,
the sparsity level s⇤ = |supp[diag(⇧⇤)]| is actually the
number of non-zero rows of Q⇤. And thus we have

s⇤ = |supp[diag(⇧⇤)]| = ||Q⇤||
2,0

=
�

�(||Q⇤
1,⇤||2, ||Q⇤

2,⇤||2, . . . , ||Q⇤
d,⇤||2)

�

�

0

.

Now let us describe the modeling assumptions about
the data.
Assumption 2.3. The data samples held by the data
providers are independent and identically distributed
with a bounded random variable X in a model class
M(s⇤, k) for integers k, s⇤, 0 < k < s⇤ < d. For any
X 2 M(s⇤, k), the following three assumptions are
made.

1. The random variable X = ⌃1/2Z, in which Z 2
Rd is a zero-mean bounded random variable with
variance proxy less than one and identity covari-
ance matrix. The matrix ⌃ 2 Rd⇥d is positive
semidefinite.

2. The k-dimensional principal eigenspace of ⌃ is s⇤-
sparse.

3. The k-th eigengap is strictly positive, i.e., �
k

�
�

k+1

> 0 and �
k

is the kth largest eigenvalue.

Let b⌃ be the sample covariance matrix for the union
of all the samples S

1

[ S
2

. . . [ S
N

. Our mathematical
problem is to approximate the k-dimensional leading
principal subspace estimator under sparsity and differ-
ential privacy constraints

bQ⇤ = argmin
Q2Rd⇥k

� tr
�

Q>
b⌃Q

�

,

subject to Q>Q = I
k

, ||Q||
2,0

 s⇤, (2.1)

and the algorithm has to be differentially private.
According to our framework of distributed algorithms,
the overall covariance matrix b⌃ is not known to neither
the central server or any data provider. In what follows,
we present such an algorithm that iteratively computes
an approximate solution to (2.1) based on locally held
sample sets S

1

, S
2

, . . . , S
N

.
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3 Distributed Privacy-Preserving

Sparse PCA Algorithm

In this section, we propose details of the privacay preser-
vation mechanism under the distributed framework of
collaborative PCA, see Algorithm 1. The algorithm can
be viewed as a noisy truncated power iteration, which
is a variant of the classical power iteration for eigenvec-
tor computation [15]. Specifically, the matrix-matrix
multiplications in the power step are corrupted by i.i.d.
Gaussian noise matrices. For the estimated principal
subspace basis matrix in each iteration, thresholding
procedure is used to set its rows to zeros whose `

2

-
norm ranking (ranked in decreasing order among all
the rows) is larger than bs. Sparsity constraint is explic-
itly imposed by thresholding.
Algorithm 1 Distributed Privacy-Preserving Sparse
PCA (DPS-PCA)
Input: Sample sets S

i

, i = 1, 2, . . . , N held by the
N data providers respectively; Number of samples
held by the ith provider is n

i

= |S
i

|; Initialization
Q(0) 2 Rd⇥k

Parameters: Sparsity parameter bs; Maximum num-
ber of Iterations T ; Differential privacy parameters
✏, � with 0 < ✏ < 1 and 0 < � < 1/2

Output: Q⇤
dp

 DPS-PCA(b⌃, Q(0))

1: eQ(0)  Threshold(Q(0), bs)
2: Q(1), R Thin_QR( eQ(0))
3: Let �(✏, �) 2T ✏�1

p

2(2T/�)
4: for i = 1, 2, . . . , N do
5: b⌃

i

 
P

x

j

2S

i

x

j

x

>
j

/n
i

6: end for
7: for t = 1, 2, . . . , T do
8: Generate entrywise i.i.d. gaussian matrix

G(t) ⇠ N(0, �2)d⇥k

9: for i = 1, 2, . . . , N do
10: H(t)

i

 b⌃
i

Q(t) + G(t)/n
i

. Privacy
Preservation Step

11: end for
12: K(t)  

P

N

i=1

n
i

H(t)

i

/
P

N

i=1

n
i

13: V (t), R
1

 Thin_QR(K(t))

14: eQ(t)  Threshold(V (t), bs)
15: Q(t+1), R

2

 Thin_QR( eQ(t))
16: end for
17: Q⇤

dp

 Q(T+1)

The Thin_QR step in Algorithm 1 is the thin QR
decomposition in [15]. For any matrix A 2 Rm⇥n with
full column rank, the Thin_QR factorization

A = QR

is unique where Q 2 Rm⇥n has orthonormal columns
and R 2 Rn⇥n is upper triangular with positive diago-
nal entries. Effectively, the Thin_QR step orthogonal-
izes the k basis vectors of the k leading eigenspace in

Algorithm 2 Thresholding procedure in Algorithm 1

Input: Matrix V 2 Rd⇥k, Sparsity Parameter bs
Output: eV  Threshold(V, bs)
1: Sort rows in Euclidean norm and let S to be the set

of row indices corresponding to the top bs largest
rows of V in Euclidean norm

2: eV takes zeros on the rows not indexed by S; The
rows of eV indexed by S take the same value as the
entries in V

Algorithm 3 Thin_QR decomposition in Algorithm
1
Input: Matrix A 2 Rd⇥k

Output: Q, R  Thin_QR(A), where Q 2 Rd⇥k

has orthonormal columns and upper triangular ma-
trix R 2 Rk⇥k has positive diagonal entries, and
A = QR; Here we use the Householder QR method
described in [15]

each iteration of the algorithm.
Algorithm 1 takes O(k · d2) time per iteration with a
naive implementation. Note that the privacy preserva-
tion step has O(k · d2) operations in the matrix multi-
plication. The Householder procedure for Thin_QR de-
composition has time complexity O(d ·k2). Besides, the
thresholding procedure has time complexity O(d log d)
in the sorting part and O(d·k) in the looping part. If we
store Q(t) as a row sparse matrix, the matrix multiplica-
tion should take much fewer operations and Algorithm
1 can be as efficient as O(k · bs · d) time complexity for
each iteration.

4 Analysis of Accuracy-Privacy

Tradeoff

In this section we state the differential privacy guar-
antee of Algorithm 1 and then analyze the minimax-
optimal estimation error obtained by Algorithm 1 in
Theorem 4.3. Some technical proofs are deferred to the
Appendix.
Theorem 4.1 (Privacy Preservation of Algorithm 1).
If 0 < ✏ < 1, 0 < � < 1/2, the principal subspace
estimator Q⇤

dp

of the Algorithm 1 is (✏, �)-differentially
private. And the information collected by the central
server related to the ith data provider

�

H
i

(S
i

, Q(1)), H
i

(S
i

, Q(2)), . . . , H
i

(S
i

, Q(T ))
�

is also (✏, �)-differentially private.

Proof. See Appendix §A for a detailed proof.

Remind that the samples are generated by a sub-
Gaussian random variable with covariance matrix
⌃ 2 Rd⇥k and we want to recover the top k leading
eigenspace of the ⌃. The eigenvalues are sorted in de-
creasing order as �

1

� �
2

� . . . �
k

> �
k+1

� . . . �



Jason Ge, Zhaoran Wang, Mengdi Wang, Han Liu

�
d

� 0. We use the scalar � as a metric of the eigengap
between �

k

and �
k+1

,

� =
3�

k+1

+ �
k

3�
k

+ �
k+1

< 1.

Smaller � implies larger eigengap �
k

/�
k+1

and it is
easier to recover the top k eigenspace from the observed
samples.
After we fix the noise level �(✏, �), k, sample number n,
the number of data providers N , �

k

and the threshold-
ing parameter bs, assume that there exists parameters
↵ > 0 and ⌧ > 0 such that

2k
�

p
bs +
p

k + ⌧
�

↵
 n�

k

N�(✏, �)
.

Note that when we have sufficiently large average sam-
ple number n/N or signal-to-noise ratio �

k

/�(✏, �), the
existence of ⌧ > 0 and ↵ > 0 can be easily justified.
Besides, the existence of smaller ↵ implies larger signal-
to-noise ratio �

k

/�(✏, �), and as we will show later, the
parameter ⌧ is related to the tradeoff between privacy
and success probability of the algorithm. We denote

⇢ =
�

1� ↵

as the effective eigengap which characterizes the rate
of convergence in our analysis.
The tradeoff analysis is presented under reasonable
assumptions on the parameters ↵, ⌧ , sample size n,
sample dimension d, number of data providers N , the
thresholding parameter bs, the true sparsity level of the
k leading eigenspace of the covariance matrix ⌃ and the
quality of initialization Q(0). Please refer to Appendix
§B.2 for the assumptions and their justifications.
The estimation error is analyzed in terms of subspace

distance, which is defined as follows.
Definition 4.2. Let the matrices with orthogonal
columns U 2 Rd⇥k and V 2 Rd⇥k be the basis matrices
for two k dimensional subspaces U and V in d dimen-
sional space. Let U? 2 Rd⇥(d�k) and V ? 2 Rd⇥(d�k)

be matrices whose orthogonal columns span the sub-
spaces U? and V? which are perpendicular to U and V
respectively. We define the subspace distance between
U and V as

D[U ,V] =
�

�U>V ?�
�

F

=
�

�V >U?�
�

F

.

Such definition is related to the canonical angles be-
tween subspaces. Let ⇧

u

2 Rd⇥d and ⇧
v

2 Rd⇥d be
orthonormal projection matrices for U and V respec-
tively. It will be explained later in Appendix §B.4 that
the singular values of ⇧

u

⇧?
v

are

s
1

, s
2

, . . . , s
k

, 0, 0, · · · , 0.

Canonical angles between U and V are defined as

✓
i

(U, V ) = arcsin(s
i

), i = 1, 2, . . . , k.

Let ⇥(U, V ) = diag(✓
1

, ✓
2

, . . . , ✓
k

). The distance be-
tween U and V can be characterized as

D[U ,V] = k sin ⇥(U, V )k
F

=
�

�U>V ?�
�

F

=
�

�V >U?�
�

F

.

In the special case of k = 1, the subspace distance
between two unit-norm eigenvectors u 2 Rd and v 2
Rd is

D[U ,V] = sin ✓(u,v), ✓(u,v) = arccoshu,vi

||u||
2

= 1, ||v||
2

= 1.

Please see Lemma B.5 in Appendix §B.4 for a detailed
discussion of Definition 4.2.
Theorem 4.3 (Convergence rate and estimation er-
ror of Algorithm 1). Let Assumption B.1 hold. The
sequence {Q(t)}>

t�1

generated by Algorithm 1 satisfies

kQ(t)>Q⇤?k
F

 ⇠
stats_err

+ ⇠
priv_err

+ ⇠
opt_err

(t),

for all t = 1, 2, . . . , T with probability at least

1� 2Te�⌧

2
/2 � 4

n� 1
� 1

d
� 6 log n

n
� 1

n
, (4.1)

where T is the total number of iterations. Here the near
optimal minimax optimal statistical error is

⇠
stats_err

=
C

1

p
k

1� ⇢1/4

p

�
1

�
k+1

�
k

� �
k+1

r

s⇤(k + log d)

n
,

C
1

> 0 is a constant. (4.2)

and the error induced by privacy constraint is

⇠
priv_err

=
1p

3(1� ⇢1/4)

✓

1 + 2

r

ks⇤

bs

◆

↵

1� ↵
, (4.3)

and the optimization error decays at geometric rate

⇠
opt_err

(t) = ⇢(t�1)/4 · min

⇢

⇢1/2

p

(1� ⇢1/2)

2
,
1

4

�

.

(4.4)

Proof. Please see Appendix §B for a detailed proof.

Theorem 4.3 precisely characterizes the accuracy and
privacy tradeoff of our algorithm.
• Privacy for free. The statistical and privacy errors

can be written as

⇠
stat_err

= C 0
p

log d, with d!1,

⇠
priv_err

< C 0(⇢)
↵

1� ↵
, with ↵! 0,
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where C 0, C 0(⇢) > 0 are ↵ < 1 are dimension-free
parameters determined by eigenvalues, sparsity pa-
rameter and differential privacy parameters. When
the parameter ↵ is sufficiently small and dimension
d is very large, the error induced by privacy con-
straints can be dominated by the statistical error
⇠
priv_err

< ⇠
stat_err

. In other words, we can enjoy
the differential privacy guarantee with induced er-
ror even smaller than the inherent statistical error,
as is shown in Figure 2.

Figure 2: Illustration of theoretical privacy-accuracy
tradeoff. We fix the differential parameter � as 0.01
and let ✏ range from 0.2 to 2. With smaller ✏, more
privacy is preserved at the cost of less estimation
accuracy.

• Privacy and success probability. The claims of The-
orem 4.3 hold with probability at least

1� 2Te�⌧

2
/2 � 4

n� 1
� 1

d
� 6 log n

n
� 1

n
,

where in the second term, the parameter ⌧ > 0 also
depends on the differential privacy parameters in
the following way

⌧  n

2kN

�
k

�(✏, �)
�
p
bs�
p

k.

If � is large due to stringent privacy constraint or
sample size is very small, in the above equation
⌧ has to be relatively small and thus the term
�2Te�⌧

2
/2 could undermine the success probabil-

ity of the algorithm.
• Minimax optimal statistical error. The statistical

error ⇠
stat_err

obtained by our estimator actually
achieves the lowest error (up to a constant) among
all the possible estimators under worst-case gener-
ating distribution

⇠
stat_err

= C 00 inf
e
Q

sup
P2M

EP
⇥

�

� eQ>Q⇤?�
�

F

⇤

,

where P is any generating distribution in the model
class M = M(s⇤, k) as described in Assumption
2.3, Q⇤ spans the eigenspace of the covariance ma-
trix of P and eQ is any estimator of Q⇤ based on

n samples from P. We further assume that the
eigengap of population covariance matrix ⌃ satis-
fies �

k

� �
k+1

> �
k+1

for some constant  > 0.
Under this model class, the minimax lower bound
is

inf
e
Q

sup
P2M

EP
⇥

�

� eQ>Q⇤?�
�

F

⇤

=C
2

p

�
1

�
k+1

�
k

� �
k+1

r

s⇤(k + 1/4 · log d)

n
,

where C
2

is a positive constant [41]. With eigengap
condition and fixed ↵, we have

⇢ =
1

3(1� ↵)

⇣

1 +
4



⌘

,

which can be treated as a constant for a fixed ↵.
Hence the statistical error

⇠
stat_err

=
C

1

p
k

1� ⇢1/4

p

�
1

�
k+1

�
k

� �
k+1

r

s⇤(k + log d)

n

matches the minimax optimal lower bound up to
constants.

• Privacy and rate of convergence. The optimiza-
tion error ⇠

opt_err

decays at the geometric rate
⇢ = �/(1�↵) < 1. More stringent privacy require-
ments lead to smaller parameter ↵ and thus much
slower rate of convergence.

5 Numerical Results

In this section we present numerical synthetic experi-
ments to validate our theory of accuracy and privacy
tradeoff. Comparisons with existing state-of-the-art pri-
vate PCA methods are also conducted. For any tar-
geted privacy level, our algorithm is superior in both
estimation accuracy and computation efficiency.

5.1 Empirical Privacy-Accuracy Tradeoff

We choose d = 103, n = 105, k = 5 and s⇤ = 10 in
the experiment, and assume that there is only one data
owner in the system for fair comparisons with other non-
distributed private PCA method. Data samples are
generated independently from a multivariate Gaussian
distribution with population covariance ⌃ and mean
0, where ⌃ =

P

d

j=1

�
j

u⇤
j

(u⇤
j

)> = U⇤U>, and ⇤ =
diag{�

1

, �
2

, . . . , �
k

, . . . , �
d

} with

�
i

= 100, i = 1, 2, . . . k,

�
i

⇠ Uniform[0, 10], i = k + 1, k + 2, . . . d.

We generate an s⇤⇥ k matrix of i.i.d. standard normal
Gaussian entries and orthogonalize it into a matrix L
with orthogonal columns. After concatenated with a
(d � s⇤) ⇥ k all zero matrix, it becomes a d ⇥ k ma-
trix Q⇤ = [L> 0]> whose columns span the k leading
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eigenspace. The rest of the eigenvectors Q⇤? are gen-
erated as follows. We project a d ⇥ (d � k) matrix R
with i.i.d. standard normal entries into the linear space
orthogonal to the space spanned by Q⇤

R? = (I
d⇥d

�Q⇤Q⇤>)R, R ⇠ N (0, I
d⇥(d�k)

).

The columns of R? are then orthogonalized into matrix
Q⇤?. Finally, by concatenating the columns of Q⇤ and
Q⇤? we obtain U = [Q⇤ Q⇤?] and thus ⌃ = U⇤U>.
The parameters in Algorithm 1 are chosen as T = 10
and bs = 50.
Fixing the differential parameter � as 0.3, we plot
the trajectory of estimation error kQ(t)>Q⇤?k

F

for
t = 1, 2, . . . , T under different parameter ✏ in Figure
3 (a). Remind that kQ(t)>Q⇤?k

F

is the subspace dis-
tance between the subspace spanned by Q(t) and true
eigenspace of ⌃ spanned by Q⇤.
We also fix ✏ to be 1.0 and plot trajectory of the error for
t = 1, 2, . . . , T under different parameter � and obtain
Figure 3 (b). It is clear in Figure 3 that more stringent
privacy constraints can cause slower rate of convergence
and larger approximation error of the output Q(T ).

5.2 Comparisons With Existing Methods

Firstly we compare the accuracy of estimated
eigenspace for fixed privacy level across three differ-
ent methods: MOD-SULQ, PPCA and our DPS-PCA
method described in Algorithm 1. The SuLQ method is
proposed in [4] and later modified in [6] as MOD-SULQ.
SuLQ contaminates the sample covariance matrix by a
random matrix with independent zero mean Gaussian
entries. The variance of the Gaussian noise is adjusted
according to the differential parameter ✏ and �. The
PPCA method [6] privately selects leading eigenvec-
tors by drawing from a matrix Bingham distribution
by Gibbs sampling procedure [21]. Privacy is preserved
thanks to the randomized noise in the Gibbs sampling.
There are several other methods such as [11, 16, 18], but
they follow different definition of differential privacy in
terms of the granularity of privacy, which prevents di-
rect comparisons.

5.2.1 Comparisons of Estimation Accuracy

We run simulations under the same high dimensional
model described in §5.1 where dimension d = 103 and
sample number n = 105. The differential parameter �
is fixed as 0.3. It is clear from Figure 4 (a) that MOD-
SULQ cannot produce meaningful estimation of leading
eigenvectors in high dimensional setting because the
standard deviation of Gaussian noise used by MOD-
SULQ is on the order of O(d log d), which becomes so
large in high dimensional setting that the estimation ac-
curacy is severely undermined. We take 1000 iterations
of Gibbs sampling for the PPCA method but it is hard
to determine whether or not the sampling process has

reached the stationary distribution. Since the Gibbs
sampling only approximates the matrix Bingham dis-
tribution, the ✏-differential privacy is not guaranteed
by PPCA in practice.

5.2.2 Comparisons of Scalability

In low dimensional settings, our DPS-PCA method also
outperforms other methods. If we fix the sample size to
be n = 105 and change the dimension from 40 to 140, it
can be observed in Figure 4 (b) that MOD-SULQ and
PPCA can perform reasonably well in low dimensions.
The differential privacy parameters are set as � = 0.1
and ✏ = 1.0. The simulations are carried out on the
same statistical model as §5.1 but with parameters
changed to k = 3 and s⇤ = 10.

5.2.3 Comparisons of Computation Efficiency

Our DPS-PCA method excels in terms of computation
time thanks to the geometric convergence rate and the
O(d2) time complexity in each iteration. In contrast,
the Gibbs sampling procedure [21] used in PPCA takes
O(d3) time per iteration and the number of iterations
(burn-in time) could be on the order of 103�104 before
the sampling reaches the stationary distribution [6].
For ease of comparison, we only take T = 100 Gibbs
sampling iterations for PPCA method, and use the
R package rstiefel [20] as suggested in [6] for Gibbs
sampling. The number of iterations for DPS-PCA is set
to T = 10. Calculation of the leading k eigenvectors in
MOD-SULQ uses the R package rARPACK [33]. We
carry out simulations on the same statistical model
described in §5.1 with the dimension d changed in each
case. All simulations are conducted on an Intel Xeon
3.4GHz CPU.

Table 1: CPU time of privacy-preserving PCA methods
under different dimensions. DPS-PCA has shown signif-
icant advantages in terms of computation complexity
because it converges in geometric rate and takes only
O(d2) time per iteration. PPCA takes O(d3) time for
each iteration and the number of Gibbs sampling itera-
tions can be as high as 104�105 as in [6]. MOD-SULQ
scales well computationally with dimension but its esti-
mation accuracy quickly degenerates when d becomes
large.

Method CPU Time
d = 200 d = 400 d = 800

DPS-PCA <1ms <1ms <1ms
MOD-SULQ 8ms 21ms 97ms
PPCA 9.82s 37.46s 173.78s

6 Conclusion

Our paper proposes an effective distributed optimiza-
tion algorithm that produces a minimax-optimal sparse
PCA estimator subject to differential privacy con-
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Figure 3: Geometric convergence of estimation accuracy (subspace distance) kQ(t)>Q⇤?k

F

in the first T = 10
iterations. We fix � = 0.3 and change ✏ in (a) and fix ✏ = 2.0 and change � in (b). More privacy is preserved
for smaller differential parameters ✏ or � at the cost of compromising convergence rate and the final estimation
accuracy.
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Figure 4: Comparisons of privacy-preserving PCA methods. We plot the estimation accuracy of several methods
under different differential privacy constraints in (a) where sample dimension d and sample number n are fixed
as d = 103 and n = 105. In (b), the differential privacy parameters are set as ✏ = 1.0 and � = 0.1 and the sample
number is fixed as n = 105. We let sample dimension range from 40 to 160 and show that the performance of
MOD-SULQ quickly deteriorates when d becomes large. Our method DPS-PCA outperforms in all scenarios.

straints. We analyze the tradeoff between privacy con-
straints and estimation accuracy and validate our the-
ory and empirical performance of the algorithm by sim-
ulation results.
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