
Learning Generative Models

with Sinkhorn Divergences

Supplementary Material

Anonymous

October 20, 2017

Abstract

These supplementary materials present numerical evidence of the low-
sample complexity of Sinkhorn divergence, and of its positivity.

1 Numerical Exploration of the Sinkhorn Diver-
gence

1.1 Sample Complexity

To better grasp the statistical tradeoff offered by the entropic regularization,
we study numerically the so-called sample complexity of these divergence. We
consider

µ̂N =
1

N

N∑
i=1

δxi
and ν̂N =

1

N

N∑
i=1

δxi

which are random measures, where the (xi)i and (yi)i are ponts independently
drawn from the same distribution ξ. In the numerical experiments, ξ is the
uniform distribution on [0, 1]d where d ∈ N∗ is the ambient dimension.

We recall that

W̄c,ε(µ, ν)
def.
= 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν)

where Wc,ε(µ, ν)
def.
=

∫
c(x, y)dγε

where γε is the unique solution of the entropy-regularization optimal transport
problem between µ and ν. In the following, we consider c(x, y) = ‖x− y‖p for
p = 3/2 for (x, y) ∈ (Rd)2.

As shown in the paper, one has

Wc,ε(µ, ν)
ε→0−→ 2Wp(µ, ν)p and Wc,ε(µ, ν)

ε→+∞−→ ‖µ− ν‖2ED(p)
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Figure 1: Influence of the regularization εon the sample complexity rate. The
plot displays log10(Rε,d(N)) as a function of log(N).

whereWp is the Wasserstein-p distance while ‖ξ‖2ED(p) =
∫
−‖x− y‖p dξ(x)dξ(y)

is the Energy Distance, which is a special case of MMD norm for 0 < p < 2.
The goal is to study numerically the decay rate toward zero of

Rε,d(N)
def.
= E(W̄c,ε(µ̂N , ν̂N ))

and also analyze the standard deviation

S2
ε,d(N)

def.
= E(|W̄c,ε(µ̂N , ν̂N )−Rε,d(N)|2).

In these formula, the expectation E with respect to random draws of (xi)i and
(yi)i is estimated numerically by averaging over 103 drawings. For optimal
transport, i.e. ε = 0, it is well-known (we refer to the references given in the
paper) that R0,d(N) = O( 1

Np/d ), while for MMD norm, i.e. ε = +∞, one has

R+∞,d(N) = O( 1
N ).

Figure 2 (resp. 1) display in log-log plot the decay of Rε,d(N) with N , and
allows to compare on a single plot the influence of d (resp. ε) for a fixed ε (resp.
d) on each plot.

From these experiments, one can conclude on this distribution ξ that:

• Wc,ε(µ, ν) ≥ 0 (more on this in the following section).

• Rε,d(N) as a polynomial decay of the form 1/Nκε,d .

• One recovers the known rates κ0,d = p/d (here for p = 3/2) and κ∞,d = 1.

• Small values of ε < 1 have rates κε,d close to the rate of OT κ0,d.
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Figure 2: Influence of the dimension d on the sample complexity rate for differ-
ence d. The plot displays log10(Rε,d(N)) as a function of log(N). The shaded
bar display the confidence interval at ±Sε,d(N).

• Large values of ε > 1 have rates κε,d matching almost exactly the rate of
MMD κ+∞,d = 1.

• The variance S2
ε,d(N) is significantly smaller for small values of ε (i.e. close

to OT).

Note that similar conclusion are obtained when testing on other distributions ξ
(e.g. a Gaussian).

1.2 Positivity

For ε ∈ {0,+∞}, both OT and MMD are distances, so that W̄ε,c(µ, ν) = 0 if
and only if µ = ν. It not known whether this property is true for 0 < ε < +∞,
and this seems a very difficult problem to tackle. We investigate numerically
this question by looking at small modification of a discrete input measure µ =

1∑
i ai

∑N
i=1 aiδxi

where the xi are i.i.d. points drawn in [0, 1]2 and (ai)i are i.i.d.

number drawn uniformly in [1/2, 1], and perform a small modification

µt
def.
=

1∑
i ai,t

N∑
i=1

aiδxi,t
where

{
ai,t = ai,t + tbi,
xi,t = xi + tzi,

where (bi)i ⊂ R are i.d.d. Gaussian distributed N (0, 1) and where (zi)i ⊂ R2

are i.d.d. Gaussian distributed N (0, Id2).
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Figure 3: Test of the positivity of W̄ε,c(µ, µt) as a function of the perturbation
parameter t.

Figure (3) shows, on a single realization of (ai, xi, bi, zi), that W̄ε,c(µ, µt) > 0
for t 6= 0. Testing for 104 other realizations gives the same results, showing that
experimentally W̄ε,c is locally strictly positive for discrete measures.
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