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Abstract

These supplementary materials present numerical evidence of the low-
sample complexity of Sinkhorn divergence, and of its positivity.

1 Numerical Exploration of the Sinkhorn Diver-
gence

1.1 Sample Complexity

To better grasp the statistical tradeoff offered by the entropic regularization,
we study numerically the so-called sample complexity of these divergence. We
consider
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which are random measures, where the (x;); and (y;); are ponts independently
drawn from the same distribution £. In the numerical experiments, £ is the
uniform distribution on [0, 1] where d € N* is the ambient dimension.

We recall that

Wc,s (Ma V) = 2Wc,£ (M7 V) - Wc,s (Ma /J) - Wc,a(Va V)

where W, (1, ) d;f'/c(%y)d%

where 7, is the unique solution of the entropy-regularization optimal transport
problem between p and v. In the following, we consider c(z,y) = ||z — y||” for
p=3/2 for (x,y) € (RY)2.

As shown in the paper, one has
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Figure 1: Influence of the regularization con the sample complexity rate. The
plot displays log;o(R. q¢(N)) as a function of log(V).

where W), is the Wasserstein-p distance while H§||]25D(p) = [—|lz — y||" d&(z)dE(y)
is the Energy Distance, which is a special case of MMD norm for 0 < p < 2.
The goal is to study numerically the decay rate toward zero of

Rs,d(N) déf' (V_Vc,s(ﬂNy ﬁN))
and also analyze the standard deviation
S2a(N) = E(Wee(fon, ov) = Rea(N)[?).

In these formula, the expectation E with respect to random draws of (x;); and
(yi); is estimated numerically by averaging over 10® drawings. For optimal
transport, i.e. ¢ = 0, it is well-known (we refer to the references given in the
paper) that Ry 4(N) = O(ﬁ), while for MMD norm, i.e. ¢ = 400, one has
Ry a(N) = O(%).

Figure 2 (resp. 1) display in log-log plot the decay of R. 4(N) with N, and
allows to compare on a single plot the influence of d (resp. ¢) for a fixed e (resp.
d) on each plot.

From these experiments, one can conclude on this distribution £ that:

e W, .(u,v) > 0 (more on this in the following section).
e R. 4(N) as a polynomial decay of the form 1/N"=d,
e One recovers the known rates kg q = p/d (here for p = 3/2) and keo,q = 1.

e Small values of ¢ < 1 have rates . 4 close to the rate of OT kg 4.



Figure 2: Influence of the dimension d on the sample complexity rate for differ-
ence d. The plot displays log;,(Re ¢(N)) as a function of log(N). The shaded
bar display the confidence interval at £S5, 4(N).

e Large values of € > 1 have rates k. ¢ matching almost exactly the rate of
MMD Kyooq = 1.

e The variance SEQ, 4(IN) is significantly smaller for small values of € (i.e. close
to OT).

Note that similar conclusion are obtained when testing on other distributions &
(e.g. a Gaussian).

1.2 Positivity

For € € {0, +00}, both OT and MMD are distances, so that Wy (i, ) = 0 if
and only if p = v. It not known whether this property is true for 0 < ¢ < +00,
and this seems a very difficult problem to tackle. We investigate numerically
this question by looking at small modification of a discrete input measure u =
Z% Zil a;0,, where the z; are i.i.d. points drawn in [0, 1]? and (a;); are i.i.d.

number drawn uniformly in [1/2, 1], and perform a small modification
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where (b;); C R are i.d.d. Gaussian distributed A(0,1) and where (2;); C R?
are i.d.d. Gaussian distributed N (0, Ids).
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Figure 3: Test of the positivity of We (1, 11¢) as a function of the perturbation
parameter t.

Figure (3) shows, on a single realization of (a;, x;, b;, 2;), that Wi (11, ) > 0
for t # 0. Testing for 10* other realizations gives the same results, showing that
experimentally W, . is locally strictly positive for discrete measures.



