Learning Generative Models with Sinkhorn Divergences Supplementary Material

Anonymous

October 20, 2017

Abstract

These supplementary materials present numerical evidence of the lowsample complexity of Sinkhorn divergence, and of its positivity.

1 Numerical Exploration of the Sinkhorn Divergence

1.1 Sample Complexity

To better grasp the statistical tradeoff offered by the entropic regularization, we study numerically the so-called sample complexity of these divergence. We consider

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$$
 and $\hat{\nu}_N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$

which are random measures, where the $(x_i)_i$ and $(y_i)_i$ are ponts independently drawn from the same distribution ξ . In the numerical experiments, ξ is the uniform distribution on $[0,1]^d$ where $d \in \mathbb{N}^*$ is the ambient dimension.

We recall that

$$\bar{\mathcal{W}}_{c,\varepsilon}(\mu,\nu) \stackrel{\text{def.}}{=} 2\mathcal{W}_{c,\varepsilon}(\mu,\nu) - \mathcal{W}_{c,\varepsilon}(\mu,\mu) - \mathcal{W}_{c,\varepsilon}(\nu,\nu)$$
where $\mathcal{W}_{c,\varepsilon}(\mu,\nu) \stackrel{\text{def.}}{=} \int c(x,y) d\gamma_{\varepsilon}$

where γ_{ε} is the unique solution of the entropy-regularization optimal transport problem between μ and ν . In the following, we consider $c(x,y) = \|x-y\|^p$ for p=3/2 for $(x,y) \in (\mathbb{R}^d)^2$.

As shown in the paper, one has

$$\mathcal{W}_{c,\varepsilon}(\mu,\nu) \stackrel{\varepsilon \to 0}{\longrightarrow} 2W_p(\mu,\nu)^p$$
 and $\mathcal{W}_{c,\varepsilon}(\mu,\nu) \stackrel{\varepsilon \to +\infty}{\longrightarrow} \|\mu - \nu\|_{\mathrm{ED}(p)}^2$

Figure 1: Influence of the regularization ε on the sample complexity rate. The plot displays $\log_{10}(R_{\varepsilon,d}(N))$ as a function of $\log(N)$.

where W_p is the Wasserstein-p distance while $\|\xi\|_{\mathrm{ED}(p)}^2 = \int -\|x-y\|^p \,\mathrm{d}\xi(x)\mathrm{d}\xi(y)$ is the Energy Distance, which is a special case of MMD norm for 0 .

The goal is to study numerically the decay rate toward zero of

$$R_{\varepsilon,d}(N) \stackrel{\text{\tiny def.}}{=} \mathbb{E}(\bar{\mathcal{W}}_{c,\varepsilon}(\hat{\mu}_N,\hat{\nu}_N))$$

and also analyze the standard deviation

$$S_{\varepsilon,d}^2(N) \stackrel{\text{\tiny def.}}{=} \mathbb{E}(|\bar{\mathcal{W}}_{c,\varepsilon}(\hat{\mu}_N,\hat{\nu}_N) - R_{\varepsilon,d}(N)|^2).$$

In these formula, the expectation \mathbb{E} with respect to random draws of $(x_i)_i$ and $(y_i)_i$ is estimated numerically by averaging over 10^3 drawings. For optimal transport, i.e. $\varepsilon = 0$, it is well-known (we refer to the references given in the paper) that $R_{0,d}(N) = O(\frac{1}{N^{p/d}})$, while for MMD norm, i.e. $\varepsilon = +\infty$, one has $R_{+\infty,d}(N) = O(\frac{1}{N})$.

Figure 2 (resp. 1) display in log-log plot the decay of $R_{\varepsilon,d}(N)$ with N, and allows to compare on a single plot the influence of d (resp. ε) for a fixed ε (resp. d) on each plot.

From these experiments, one can conclude on this distribution ξ that:

- $W_{c,\varepsilon}(\mu,\nu) \geq 0$ (more on this in the following section).
- $R_{\varepsilon,d}(N)$ as a polynomial decay of the form $1/N^{\kappa_{\varepsilon,d}}$.
- One recovers the known rates $\kappa_{0,d} = p/d$ (here for p = 3/2) and $\kappa_{\infty,d} = 1$.
- Small values of $\varepsilon < 1$ have rates $\kappa_{\varepsilon,d}$ close to the rate of OT $\kappa_{0,d}$.

Figure 2: Influence of the dimension d on the sample complexity rate for difference d. The plot displays $\log_{10}(R_{\varepsilon,d}(N))$ as a function of $\log(N)$. The shaded bar display the confidence interval at $\pm S_{\varepsilon,d}(N)$.

- Large values of $\varepsilon > 1$ have rates $\kappa_{\varepsilon,d}$ matching almost exactly the rate of MMD $\kappa_{+\infty,d} = 1$.
- The variance $S^2_{\varepsilon,d}(N)$ is significantly smaller for small values of ε (i.e. close to OT).

Note that similar conclusion are obtained when testing on other distributions ξ (e.g. a Gaussian).

1.2 Positivity

For $\varepsilon \in \{0, +\infty\}$, both OT and MMD are distances, so that $\overline{\mathcal{W}}_{\varepsilon,c}(\mu, \nu) = 0$ if and only if $\mu = \nu$. It not known whether this property is true for $0 < \varepsilon < +\infty$, and this seems a very difficult problem to tackle. We investigate numerically this question by looking at small modification of a discrete input measure $\mu = \frac{1}{\sum_i a_i} \sum_{i=1}^N a_i \delta_{x_i}$ where the x_i are i.i.d. points drawn in $[0,1]^2$ and $(a_i)_i$ are i.i.d. number drawn uniformly in [1/2,1], and perform a small modification

$$\mu_t \stackrel{\text{\tiny def.}}{=} \frac{1}{\sum_i a_{i,t}} \sum_{i=1}^N a_i \delta_{x_{i,t}} \quad \text{where} \quad \left\{ \begin{array}{l} a_{i,t} = a_{i,t} + tb_i, \\ x_{i,t} = x_i + tz_i, \end{array} \right.$$

where $(b_i)_i \subset \mathbb{R}$ are i.d.d. Gaussian distributed $\mathcal{N}(0,1)$ and where $(z_i)_i \subset \mathbb{R}^2$ are i.d.d. Gaussian distributed $\mathcal{N}(0,\mathrm{Id}_2)$.

Figure 3: Test of the positivity of $\bar{\mathcal{W}}_{\varepsilon,c}(\mu,\mu_t)$ as a function of the perturbation parameter t.

Figure (3) shows, on a single realization of (a_i, x_i, b_i, z_i) , that $\bar{\mathcal{W}}_{\varepsilon,c}(\mu, \mu_t) > 0$ for $t \neq 0$. Testing for 10^4 other realizations gives the same results, showing that experimentally $\bar{\mathcal{W}}_{\varepsilon,c}$ is locally strictly positive for discrete measures.