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8 Appendix

A Detailed Proofs

Proof of Proposition 1. When o2 = o for all i € [p], then (4) reduces to:

1€PGIm,+1(F)

which holds trivially by causal minimality since BZ ; > 0 for (1,7) € E. This proves part (i).

Now under (ii), 1/o? — 1/0% < 1,Vi, j € [p]. Also, Bi;/s? > 1 forall (I, j) € E. Thus (4) is satisfied. O

Proof of Lemma 1. Consider the following two SEMs over three nodes, where the noise variances are shown within braces
below each node, and the edge weights are shown on the edges.

D@ DDt
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Both the SEMs make the following conditional independence assertion: X; I X3 | X, and are therefore Markov and

causal minimal to P(X). Set by = ,/1 — L. Then using the formulas derived in Proposition 2 it can be verified that the

full precision matrix and the precision matrix obtained after removing vertex 1 (£2(_y)), for both the SEMs is:
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1 1 1 —b

Q=—x|-f 1+8 b Q)= —x [_b 12} 9)
L 0 —by 1 ! 2

The SEM on the left does not satisfy Assumption 1 because vertex 3 is a non-terminal vertex but 3 € argmin(diag($2)).
The SEM on the right does not satisfy Assumption 1 because after the vertex 1 is removed we have that vertex 2 is a
non-terminal vertex but satisfies 2 € argmin(diag(2(_1))).

Now we construct the subset ép,d withp = 3k fork = 1,2, ..., as follows. We randomly set the DAG structure over nodes
(3t —1), (3¢) and (3¢ + 1) to one of the two configurations shown in the above figure. Therefore we have, §p7d| =2 /s,
We generate matrices B(3) and D(v1, v2) as prescribed. The precision matrix block over the nodes (3¢ — 1), (3¢), and
(3i + 1), for i € [(p—1)/3], is given by (9), and all the other entries of the precision matrix are zeros. This proves our claim.

While the above constructions constructs a family of disconnected DAGs, with d = 1, it is easy to come up with subsets
of DAGs that are connected and still satisfy the statement of the lemma. One such construction is shown below where
d = (p—1)/3. The entries of the first row (and also the first column) of the precision matrix, for i € [(p—1)/3], are as follows:
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As shown before, each triplet of nodes (3i — 1) «— (3i) + (3i+1), fori € [(P—1)/3], can be oriented as (3i — 1) «+ (3i) —
(3i + 1) without changing the block of the precision matrix over the nodes (3¢ — 1), (3¢) and (3 4 1), and the entries €4 .
or 2, 1. ]

Proof of Proposition 2. From (2) we have that (I — B)X = N, and since (I — B) is invertible, X = (I — B)~'N.
Therefore:

S=E[XX"]=E[@I-B)"'NN'I-B) "] =(1-B)"'DI-B)".
From which it follows that @ = (I — B)"D~!(I — B), where D! = Diag(1/s2,...,1/s2). From this the result for the

entries of the precision matrix follows by sparsity pattern of B. O

Proof of Proposition 3. From (5) we have that for a terminal vertex ¢, {; ; = /o2, while for a non-terminal vertex j,
Q= Yo? + 3¢ 6() B} ;/s2. Therefore, by Assumption 1 we have that for all non-terminal vertices j and terminal
vertices 4, £2; 5 > ;.

Now since every DAG has at least one terminal vertex, if ¢ € argmin(diag(£2)), then once again by Assumption 1, we

have that ¢ must be a terminal vertex. O
Proof of Lemma 2. First note that since 4 is a terminal vertex, the autoregression matrix over X _; is simply B_; _;. There-
fore, denoting D’ def Diag(?,...,07 1,07 ,,07) and by Proposition 2 we have:
_ 1
Qy=0-B. )"(D)'T-Bi)=) —a((ej)-i— B _)((ep)Li —B_i;)
je—i J
1 1
= ? ((eJ - B;‘,:*)(e?7 _Bjﬁ*)),i’,i - ? ((el - B;‘,:*)(e? - Bi,*)),i’,i
jep] 7 !
1 or . . 1
=Q -5 B Bi) =9 i —Qi————=Q - —Q,Q
s 0_22 ( s s ) ) 5 Qi,i Q’i,i s Qi,i s s
where in the last line we used the fact that for a terminal vertex €, ; = 1/o? (Proposition 3), and B; _j = —:.-/Q;;
(Proposition 4). O

Proof of Lemma 3. First consider the case when j ¢ wg(4). Then, for any k& € [p]\ {¢,5}. ¢ ¢ (¢c(5) N dc(k)). Therefore,
by Proposition 2, (€(_j));x = €2;x, and by symmetry of the precision matrix ((_j))x,; = Q. Thus, we have that for
any (j, k) if at least one of {4, k} is not in wg(7), then (2(_;));x = ;x, which proves our first claim. Thus, the only
remaining case to consider is when both j, k € mg(i). The are two ways is which the set S((£2(_j));,«) can be larger than
the set S(£2; ), i.e., the support set of the j-th node can increase after deleting the terminal node . The first being when
J, k € mg(¢) and either (j, k) € E or (k, j) € E but ;5 = 0, in which case we have:

Z (Bi,jBik)[o? = Bik/o? + Br.ifo?.
led(d) N ¢ (k)
Then, after removing the terminal node ¢, we have
()i = =Bokfo? = Brifol + Y (BriBri)fot # 0.
Le(p () N (k)\{i})
The other case is when j, k € mg (i), (j, k) ¢ E, (k,j) ¢ Ebut Q; ; = 0, in which case we have:
Z (BijBik)/a? =
led(9) N (k)
Therefore, after removing the terminal node we have:
Qi) = Y BraBun)fo? # 0.
Le(o() N (R)\{i})
Thus, S((R—);.0)  (S(R.)\ {i}) Um(i). O
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Proof of Theorem 1. Let i, be the terminal vertex identified in iteration ¢, Z, def {#1,...,4¢} and R, e [p] \ Z;. Let ;)

be the precision matrix after iteration ¢. The correctness of the algorithm follows from the following loop invariants:

(i) By Lemma 2 we have that, (Q;))®, %, is the correct precision matrix over X, .

(i) The algorithm identifies a correct terminal vertex in iteration ¢, since (2_1))=,_, »,_, is the correct precision
matrix over X, ,,the SEM over X, , satisfies Assumption 1 by definition, and Vi € Z;_1, §2; ; = o0.

(iii) By proposition 3 we have that at the end of round ¢, the sub-matrix Bz, . has been correctly set and that Vi &
Ly, me(i) = S(By ).

To see that the algorithm returns a unique autoregression matrix B, consider the following. If at iteration ¢ there is a unique
minimizer of diag(£2(;—_1)), which implies a single terminal vertex, then the algorithm selects it and the incoming edge
weights of the node is uniquely determined. While, in iteration ¢ if there are multiple terminal vertices, leading to multiple
minimizers of diag(Q(t_l)), then the order in which they are eliminated does not matter. Or in other words, once a vertex
becomes a terminal vertex, for instance after deletion of its children, its edge weights do not change. To see this, assume
that there are two terminal vertices, ¢ and j after iteration ¢ — 1. Then ¢ and j are not in each other’s parent sets. Therefore,
if node i is eliminated in iteration ¢, then by Lemma 3 we have that (Q(;));,x = (Qt—1))jx, Yk € 7(j). Hence, we have
that B is the unique autoregression matrix returned by the algorithm. O

Proof of Lemma 5. Let _;y = (w;);e—i be the true precision matrix over X _; and let Q = (w’)je[p) be the matrix
returned by the function UPDATE. The estimator (_;y = (&;);e—i of £(_;) can be obtained by solving (7) using DI
By Lemma 4, and the facts that X7, ; — ¥ _; _i|o < [E" — Xl and [|Q[[1 < M, we have that [Q_; — ﬁ(_i)| <
4M N,,. Since 4 is a terminal vertex, by Proposition 4 we have WG(i)A: S5\ iz} Further, since S(£2;,.) C S(ﬁj,*),
Vj € [p], we have by Assumption 2 (ii) that, 7¢(i) C 7(i) = S(Q;.) \ {¢} € S. By Lemma 3 and Assumption 2 (ii)
we have that Vj € S, S(w;) C S(Q;, \{i})Umc(i) C S (ﬁj* \ {z}) uz(q) o S,. Or in other words we have

(Q(i))j7§§ = (Q(i))gjgj = 0. Now for j € —i we set (w.;-)gj = w; and (w§)§; = 0, where w; is obtained by solving:

argmin  |[w||,
weR /S|

sub. to zzg_w‘ < A, VE ¢ {05},
= w—1] <A,
7,S;
Since w is a solution to the above linear program, we have that [£"; .’ —e;| < A, and [|w}|1 < [|&;|l1. Therefore,
|2y — ﬁLi’7i| < 4M )\,,. Moreover, by Assumption 2 (ii), and the fact that ﬁ;* = ﬁ;t = 0, we get: S(Q_j)) C
S(€Y). O

Proof of Theorem 2. Let i; denote the terminal vertex identified in iteration ¢ and let Z; def {i1,...,it}. Let Ry def

[p] \ Z; denote the vertices remaining after iteration ¢. Let ﬁ(t) denote the precision matrix at the end of iteration ¢,
ﬁ(Rt) def (ﬁ(t))Rth, and 7y , be the true precision matrix over X,. Since |2%]l1 < M, where M is defined
in (8), we have that A\, > M|E" — ¥*| > [|Q*]|1|¥™ — ¥*|w. Therefore, by Lemma 4 and Assumption 2 (ii),
we have that ‘fl(no) - QE‘RO)LO = | — Q| < 4AM),, and S(Qfz,)) < S(€). Therefore, by Assumption 2
we have that the Algorithm 1 identifies the correct terminal vertex in iteration 1. Therefore, by Lemma 5 we have that

Qr,.) ~ Ur,,)| < 4N, and SRz, ) € Qo).

~

LetE = (g; ;), where ¢; j = Q7 ; — ;. To simplify notation in this paragraph, we will denote the 7; vertex by simply :.
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Then, for any j # ¢, we have that
Qi Oy Q7 (%, —eig) — (%, — &)
(Q;i - 511,1‘)921‘

J

|Bij — By ;| = o
4,4

ﬁ

OF i — O j€ii

( 51‘,1‘)9;1

i — B;jf‘:i,i

Yo? —€ii
AM N, (1 +|Bj )
T Yo — el
where the second and third lines follow from the fact that i is a terminal vertex and therefore, 2}, = 1/0? and ; ; =
—Bij/o?. Therefore, we have that B} , — Bi, +]oo = 4cM (1 + Buax) 020 n-

20)*
Eii — 0; injé‘i’i

o2 —ei4

<4cM(1+ |B;])o7 An,

Next, assume that the algorithm correctly identifies terminal vertices upto round ¢. Then |ﬁ(Rt) — Q’(th) loo < AM N,
S(Qg,) < S(ﬁ(t)), and |BZ, 7, — ﬁL,It| < 4eM (1 + Buax)02 . - Therefore, once again by Assumption 2,
it follows that the algorithm identifies the correct terminal vertex in round ¢ + 1, [Qg,,,) — R, )lc < 4MAy,
S(Q?Rt+ ) € S(ﬁ(H_l)), and [B7, 7. — ]§L+1,L+1| < 4e¢M(1 + Bpax)o max)\ Hence, the ﬁnal claim follows
by induction. The claim that S(B*) C S(B) follows from the fact that S(2*) C S(€2). Finally, since S(B*) C S(B)
implies that T C Tg-. O

Proof of Theorem 3. Given that the data was generated by the SEM (G*, B*, {02}), each X; can be written as follows:
Xi = Z wm— Nj,
JEAG* (7)

for some w; ; # 0.

Sub-Gaussian case. N, is sub-Gaussian with parameter o;v, X; is sub-Gaussian with parameter v /> ca . (i ) w? jaf

and X7, = Z EAc (i) w? 0 o?. Therefore, it follows that Xi/, /S7 is sub-Gaussian with parameter v. From Lemma 1 of
[RWRY11] andATheorem 2 we have that the regularization parameter A, need to satisfy the following bound in order to
guarantee that |B — B*|, < e:

2 2p c
MCyy[=log [ == ) < An < ' !
\n Og(ﬂ) - AM (1 + Binax) 02, a5 "

The above holds in the regime where the number of samples scales as given in the statement of the Theorem.

Bounded moment case. In this case we have:

2m

( Ezi>4m: > w0l > Y (wio)'" an

JE€AG (7) J€AGx (1)

Now, by Rosenthal’s inequality we have:

E [(Xi)4m] <0, Z 4mE N4m + Zw4mvar 2m

JEAGx (?) JEAG~ (1)
< Cm Z w4m 4’me + Z w47n 4m
JEAGx (?) JEAGx (i)
= Cpn (K +1) ) (wi o)™ (12)

JE€AGx ()
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Combining (11) and (12) we have

4m
E ( X) < Ol +1). (13)

i

From the above and invoking Lemma 2 of [RWRY11] we get:

p? 1/2m
=S < O (nm&> , (14)
with probability at least 1 — . From Theorem 2 and (14) we have that the regularization parameter A should satisfy the
following for |B — B*|o < € to hold:

2

MOy (2 1/2m<,\ < < (15)
>\ nmo =" =AM (1 + Brax) 02,y

max
The above holds in the regime where the number of samples scales as given in the statement of the Theorem. O

Proposition 6. Let (G, B, {02}) be an SEM over X with G € G, 4 and precision matrix §2. Let p be the maximum degree
S(Qi )\ {i}| < p* < d, Vi€ [p].

Proof of Proposition 6. For any node i, we will define the following set: Sg(i) = {j € —i | (i,5) ¢ EA (4,7) ¢
E A |€;;] # 0}. Then, from Proposition 2, we have: if j € Sg(i) then Q;; = >,y () (PriPrs)/ot # 0. In other
words, if j € Sg(¢) then ¢ and j have at least one common child, i.e., ¢c (i) Npg(j) # @. Node i can have at most p
children, and each child & € ¢ () can have at most p — 1 parents other than ¢ making them all members of S(¢). Thus,
S(i) < p(p — 1). Therefore, we have that S(€2; ) \ {i} C Ng(i) USg (7). Then, using the inclusion-exclusion principle
we have that:

[S(82:.) \ {i}] < INa(i)] + S6(i)] — N6 (1) NSa ()] = INa(i)| + Se(i)] < p+ p(p — 1) = p*.

The SEM which achieves the above upper bound is precisely the one constructed in the proof, i.e., there exists a node ¢
with exactly p children, each child in turn has p — 1 “other parents” which are all members of Sg(i). O

Proposition 7. Given an SEM (G, B, {0?}) with precision matrix Q, if 02 = O (1) for all i € [p, and B; ; = O (1) for
all (i,§) € E, then the quantity M as defined in (8) is O (d).

def

Proof of Proposition 7. Let o2, = min{c?}. Let ¢;; = ¢(i) N ¢(j) and let C; def {j #1i| ¢i; # @}. Define:

min

.fi(B)ZQL Z ‘BZJ +B]z|+a Z‘Z BlzBl,]’ Z Blz 2 (16)

min ]GN( ) min ]EC l€¢17 l’l'llIl l€¢( l’l'lln

Then by (5) and by definition of M in (8), M < max’_; f;(B). Now, f;(B) is maximized when MB (i) = d. There are
two cases to consider: Case (i), ¢(i) = Vd, (i) = @, C; = d — vV/d and |¢;;| = 1 for all j € C;. In this case, the first
and third term of (16) are O (\/E) while the second term is O (d - \/&), and therefore M = O (d). Case (ii), 7(i) = d

or ¢(i) = d. In this case C; = @ and therefore, the first and third term in (16) dominate and M = O (d). Therefore, in the
worst case M = O (d). O

B Comparison with state-of-the-art methods

B.1 Synthetic experiments

We compared the performance of our method against three other state-of-the-art methods for learning SEMs, viz. MMHC
(max-min hill climbing) [TBAO6], GES (greedy equivalence search) [Chi03], and the PC algorithm [SGS00] on Erd&s-
Rényi random SEMs with sub-Gaussian noise. First, we generated random graphs by sampling Erdés-Rényi undirected
graphs with edge probability ¢, and then generating a random causal ordering of the vertices [p], and finally orienting
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the undirected edges according to the causal order. The edge weights were generated from the uniform distribution
over [—1,—0.5]U[0.5,1]. To generate sub-Gaussian noise, the i-th noise variable was set as N; = o; R, where R is a
Rademacher random variable. We generated 30 random DAGs for each value of p € {50, 100, 150, 200} (and correspond-
ing ¢ € {0.001,0.005,0.0033,0.0025}) and computed the average accuracy, recall and execution time for each method
across the 30 graphs. The number of samples n was set to 100 Uf2 log nJ , where k£ was the size of the maximum Markov

blanket of a sampled DAG, and the regularization parameter for our method was set to 0.54/1°g p/n. The PC and MMHC
algorithm take a parameter «, the target nominal type-I error rate of the conditional independence tests, and was set to 0.05.
We performed two sets of experiments: in the first set of experiments we enforced the identifiability condition (Assumption
1) on the sampled SEMs, and in the second set of experiments we did not enforce the identifiability condition.

Method \ Accuracy Recall Seconds Edges \ Accuracy Recall Seconds Edges
p=50 p=100
Ours 1.00 £ 0.00 1.00 +0.00 0.12+£0.01 12.07 | 1.00£0.00 1.00+0.00 0.92+0.01 2530
MMHC | 0.53 £0.03 0.554+0.03 025+£0.01 1250 | 0.53+£0.02 0.57+£0.02 0.95+0.02 24.67
GES 024+£0.02 032£0.02 032+001 13.07 | 0.20+£0.01 0.34+£0.02 0.53+£0.01 22.67
PC 0.56 £0.01 1.00£0.00 0.18+0.00 1253 | 0.52+0.01 0.99+0.01 0.41=+0.01 2297
p =100 p =200
Ours 1.00 £ 0.00 1.00 +£0.00 3.16£0.02 37.10 | 1.00 £0.00 1.00+0.00 9.22+0.03 47.77
MMHC | 0.46 +£0.02 0.53+£0.02 2.17+£0.03 37.33 | 049+0.01 059=£001 3.83+£0.04 50.30
GES 0.18£0.01 035£0.02 0.75+0.01 3730 | 0.16 £0.01 0.34+0.01 1.07£0.02 50.53
PC 0.51£0.01 098+£0.00 0.88+0.02 3723 | 049+0.01 098+0.00 136=£0.01 49.33

Table 1: Performance of our method vis-a-vis other state-of-the-art methods on Erdés-Rényi random DAGs that satisfy the
identifiability condition given in Assumption 1.

Identifiable case. To enforce identifiability of generated SEMs we simply set all the noise variances to o2 = 0.8. Note
that this is a sufficient condition for indentifiability (Proposition 1). Table 1 shows the mean accuracy, recall, execution
time in seconds, and the average number of edges for each of the method. Our algorithm recovers the structure perfectly
as is evident from the accuracy and recall scores while being comparable in speed to the other methods. Among the other
methods, the PC algorithm has a recall score that is close to one indicating that it recovers the skeleton correctly most of
the time. However, its poor accuracy, hovering at a mere 50%, indicates that it fails to orient most of the edges even though
the true SEM is identifiable. Note the number of edges recovered by all the methods are very close to each other indicating
that the hyper-parameters of the methods were set correctly. MMHC and GES, which are heuristic algorithms, perform
very poorly.

Method \ Accuracy Recall Seconds Edges \ Accuracy Recall Seconds Edges
p=50 p=100
Ours 097 £0.01 097+0.01 0.124+0.01 1230 | 0.95+0.01 0.96+0.01 093+£0.01 2497
MMHC | 0.53 £0.03 0.56+0.03 0.25+0.01 1237 | 0.54+0.02 0.59£0.02 096+0.02 25.53
GES 027+£0.02 036+0.03 0314001 12.03 | 020+£0.01 0.34+£0.02 0.54+0.01 2537
PC 0.55+0.01 1.00£0.00 0.19+0.00 13.60 | 0.54+0.01 0.99+0.01 0.41+0.01 24.90
p=100 p =200
Ours 0.96 £0.01 096=+0.01 3244002 3640 | 0.96+0.01 0.96+0.00 9.44+0.04 47.80
MMHC | 049 £0.01 0.56+0.02 212+0.02 3623 | 046+0.01 056=£0.01 3.74+0.03 47.23
GES 0.18£0.01 033£0.01 0.74+0.01 3693 | 0.14+0.01 0.31+0.01 1.04=£0.02 48.63
PC 0.53£0.01 099 +0.00 0.81+001 3877 | 050+0.01 0.98+0.00 1.38+0.01 50.30

Table 2: Performance of our method vis-a-vis other state-of-the-art methods on Erd6s-Rényi random DAGs.

Non-identifiable case. In this case, we sampled the noise variances o2 from the uniform distribution over [0.5,1]. It
is easy to show that in this regime, where both the noise variances and the absolute edge weights are drawn from the
uniform distribution over [0.5, 1], the sampled SEMs do not satisfy the identifiability condition (Assumption 1) globally.
Table 2 shows the mean accuracy, recall, execution time and average number of edges for the four methods, across 30
randomly sampled SEMs. As expected, our method is no-longer able to recover the graph perfectly. However, our method
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still achieves close-to-perfect structure recovery as is evidenced by its accuracy and recall scores, which are close to one.
Also note that, while the PC algorithm has slightly better recall than our method, its accuracy is very poor. Therefore, our
method is to be preferred over the PC algorithm Other methods, on the other hand, achieve performance similar to that of
the indentifiable case.

B.2 Real-world experiments

Dataset Disease # Samples  # Variables # Sampled Variables
GSE13294  Colon cancer 155 54,675 124.0
GSE1476 Colon cancer 150 59,381 120.0
GSE17951 Prostate cancer 154 54,675 123.0
GSE18105 Colon cancer 111 54,675 88.0
GSE18638 Colon cancer 98 235,826 78.0
GSE1898 Liver cancer 182 21,794 145.0
GSE22219  Breast cancer 216 24,332 172.0

Table 3: Gene expression data sets.
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Figure 2: The mean negative log likelihood of each method, on the test set, computed across 10 bootstrap runs.

Finally, we compared the performance of our algorithm with the three state-of-the-art methods on 7 real-world gene ex-
pression data sets. The various attributes of the data sets, which are publicly available at the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/), are shown in Table 3. In order to avoid a high-dimensional regime we
selected the |0.8n | highest variance genes for analysis, as was done in [PB14]. We computed the average test negative-
log-likelihood of each method on the 7 data sets across 10 bootstrap runs. In each bootstrap run, we created a training set
by sampling n samples, with replacement, from the original data set and held out the remaining samples (those that were
not picked in the sampling) as the test set. For our method, the regularization parameter was set to 0.014/10gp/n, while for
PC and MMHC the parameter o was set to 0.05. GES takes no parameters. We used the implementation of the MMHC
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Figure 3: The mean speed-up of our method vs. other state-of-the-art methods.

algorithm provided by the bnlearn R package, while the pcalg R package provided the implementations of the GES and PC
algorithm. We implemented our method, along with the CLIME algorithm for inverse covariance estimation, in Python.

Figure 2 shows the mean test negative-log-likelihood, along with standard errors, of each method on the 7 gene expression
data sets. Our method achieves the lowest test negative-log-likelihood on all seven data sets. This is noteworthy since
MMHC and GES explicitly try to find the highest scoring structure while our method does not try to maximize any score.
Further, unlike PC, MMHC, and GES, which return a PDAG, our method always returns a DAG.

Figure 3 shows the speed-up of our method with respect to the other three methods. On the largest and third largest data
set (GSE22219) our method is close to 2 times faster than MMHC, 72 times faster than PC and around 10 times faster than
GES. On five out of seven data sets our method achieves speed up of around 10 as compared to GES.

C Computational Complexity

In the population setting, i.e., given the true precision matrix, our algorithm can be implemented by storing the diago-
nal of the precision matrix separately and sorting it once which takes O (plogp) time. In each iteration, updating the
precision matrix in line 5 takes O (d) time since €2, ; and €2; . are d-sparse. Updating the diagonal takes O (dlogp)
time, while searching for the minimum diagonal element takes O (logp) time. Therefore, Algorithm 1 computes the
B matrix in O (p(d + dlogp)) time. In the population setting, the computational complexity of [LB13]’s algorithm is
O (p22(wHtD(wtd)) "where w is the tree-width of the DAG structure of the true SEM and d = max{|N(7)|}. Note that
the population version of our algorithm can still be used in the finite sample setting if the precision matrix is estimated
accurately enough.

In the finite sample setting, the computational complexity of our algorithm is dominated by the steps for estimating and
updating the precision matrix — the latter depends on how well the sparsity pattern of the precision matrix is estimated.
First, we analyze the computational complexity of our algorithm assuming exact support recovery, then we analyze the
worst-case performance of our algorithm without assuming sparsity of the estimated precision matrix. Estimating the pre-
cision matrix can be done by solving p linear programs in 2p-dimension and with 4p constraints. The smoothed complexity
of this step is O (p3 log(p/ cr)) when using interior point LP solvers [DST11], where o2 is variance of the Gaussian pertur-

bations 2. Next observe that [2* — Q|,, < [B* — B|o. < . By thresholding € at the level ¢, each time the precision
matrix is updated, we can ensure exact support recovery in each iteration. Thus, in the UPDATE function 7(i) = mg~ (%)

>The worst-case complexity of interior point methods for solving LPs is O (psL) where L “ is a parameter measuring the precision
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and |§J| < d < p. Therefore, the UPDATE function takes O (d4 log(d/o)) operations, leading to an overall complexity

~

of O (p3 + pd4). In the worst case, i.e., without any thresholding, €2 can be dense. Therefore, the UPDATE function
might re-estimate the full precision matrix over p — ¢ variables in iteration ¢, which takes O ((p —t)? log((p—t)/g)) op-
erations, leading to an overall complexity of O (p5). Thus, in the finite sample setting the complexity of our algorithm

is between O (p3 + pd4) and O (p5). Note that [LB13]’s analysis of the computational complexity of their algorithm
assumes perfect support recovery of the precision matrix. In this regime, the computational complexity of their method
is O (p22(w+1)(“’+d) + p?’), including the step to estimate the precision matrix using graphical Lasso [FHT08], where w
is the tree-width of the true DAG. However, without thresholding the output of graphical Lasso can be dense leading to a
worst-case computational complexity that is exponential in p.

D Discussion

Our Techniques. Our algorithm for learning linear SEMs differs conceptually from previous test-based, score-based
or inverse-covariance-estimation-based methods. We are therefore able to get rid of many of the shortcomings of ex-
isting methods like requirement of strict non-Gaussianity of noise [SIS™11], homoscedasticity [PB14], and faithfulness
[LB13, KP0O7]. We do so my obtaining and exploiting various properties of terminal vertices in linear SEMs. We obtain
our sample complexity results by using various properties of sub-Gaussian and bounded-moment variables and using con-
centration results for the empirical covariance matrix under the aforementioned noise conditions. Lastly, we improve the
computational complexity of our algorithm by exploiting the sparsity structure of the precision matrix to obtain solutions
of “larger” LPs (size O (p)) by solving much “smaller” LPs (size O (d?)).

Inverse covariance estimation. A popular approach for inverse covariance estimation, under high-dimensional settings,
is the ¢;-penalized Gaussian maximum likelihood estimate (MLE) studied by [YLO07], [BGd08], and [FHTO08], among
others. The ¢;-penalized Gaussian MLE estimate of the inverse covariance matrix has attractive theoretical guarantees as
shown by [RWRY 11]. However, the elementwise ¢, guarantees for the inverse covariance estimate obtained by [RWRY11]
require an edge-based mutual incoherence condition that is quite restrictive. Many algorithms have been developed in the
recent past for solving the ¢;-penalized Gaussian MLE problem [HSD' 13, HBDR12, RRG*12, JJR12]. While, techni-
cally, these algorithms can be used in conjunction with our algorithm for learning SEMs, in this paper we use the method
called CLIME, developed by [CLL11]. The primary motivation behind using CLIME is that the theoretical guarantees
obtained by [CLL11] does not require the edge-based mutual incoherence condition. Further, CLIME is computationally
attractive because it computes {2 columnwise by solving p independent linear programs. Even though the CLIME estimator
€2 is not guaranteed to be positive-definite (it is positive-definite with high probability) it is suitable for our purpose.

needed to perform the arithmetic operations exactly” and grows as 2 (p) [ST03]. However, interior-point methods work much more
efficiently in practice and have an average complexity of O (p‘j log p) (see [STO03] and the references therein).
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