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Abstract

The problem of learning structural equation mod-

els (SEMs) from observational data is a fun-

damental problem in causal inference. We de-

velop a new algorithm — which is computation-

ally and statistically efficient and works in the

high-dimensional regime — for learning linear

SEMs from purely observational data with arbi-

trary noise distribution. We consider three as-

pects of the problem: identifiability, computa-

tional efficiency, and statistical efficiency. We

show that when data is generated from a linear

SEM over p nodes and maximum Markov blan-

ket size d, our algorithm recovers the directed

acyclic graph (DAG) structure of the SEM under

an identifiability condition that is more general

than those considered in the literature, and with-

out faithfulness assumptions. In the population

setting, our algorithm recovers the DAG structure

in O(p(d+ log p)) operations. In the finite sam-

ple setting, if the estimated precision matrix is

sparse, our algorithm has a smoothed complexity

of

eO �
p

3

+ pd

4

�
, while if the estimated precision

matrix is dense, our algorithm has a smoothed

complexity of

eO �
p

5

�
. For sub-Gaussian and

bounded (4m-th, m being a positive integer) mo-

ment noise, our algorithm has a sample complex-

ity of O(

d4

"2 log(

pp
�
)) and O(

d4

"2 (
p2

� )

1/m
) resp.,

to achieve " element-wise additive error with re-

spect to the true autoregression matrix with prob-

ability at least 1� �.
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1 Introduction

Motivation. Elucidating causal relationship between dif-

ferent entities or variables is a fundamental task in various

scientific disciplines such as finance, genetics, medicine,

neuroscience, artificial intelligence, among others. Struc-

tural equation models (SEMs) is a commonly employed

mathematical machinery for performing causal inference.

Conditions under which SEMs can be uniquely identi-

fied from observational data have been recently character-

ized. Unfortunately, for linear SEMs, identifiability condi-

tions have been rather limited, and existing structure learn-

ing algorithms are inefficient. In this paper, we consider

the problem of learning linear SEMs over p variables and

bounded-degree d, from purely observational data, with ar-

bitrary noise distributions having bounded second moment

— including but not limited to the Gaussian distribution.

We generalize existing identifiability conditions for learn-

ing linear SEMs, and present computationally and statisti-

cally efficient algorithms for learning the structure of linear

SEMs when identifiable. The paper makes the following

contributions.

Our contributions. We present a new identifiability con-

dition for learning linear SEMs from observational data

that generalizes the homoscedastic Gaussian noise (equal

noise variance) case considered by [PB14]. Our algorithm

also works for the case when the noise variances are known

up to a constant factor — a sufficient condition under which

linear SEMs are identifiable as shown by [LB13]. This dis-

proves an earlier conjecture by [LB13] that "variance scal-

ing or non-Gaussianity is necessary in order to guarantee

identifiability" of linear SEMs. Moreover, we show that our

identifiability condition is necessary for ensuring identifia-

bility of linear SEMs, in the sense that, if the identifiability

condition is violated then there exist an exponential number

of DAGs which induce the same covariance and precision

matrix, and specify distributions that have the same condi-

tional independence structures.

To the best of our knowledge, ours is the first method for
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learning SEMs with element-wise `1 guarantees for re-

covering the autoregression matrix — the matrix of (di-

rected) edge weights of the SEM. In contrast, score based

approaches [VDGB13, LB13] have guarantees on the score

of the learned DAG structure. An unfortunate consequence

of this is that, in order for these methods to recover the true

DAG structure by finding the highest scoring DAG struc-

ture on the sample data set, the “score gap” between the

true structure and the next best structure must scale as ⌦ (p)

(see Equation 27 in [LB13]), which is unreasonable since

the best DAG structure and the next best DAG structure

might only differ on a constant number of edges, in which

case the scores might differ by o(p).

Our method is fully non-parametric, works for both Gaus-

sian and non-Gaussian noise, and, to the best of our knowl-

edge, the most efficient algorithm available for learning lin-

ear SEMs with provable guarantees. Given the inverse co-

variance (or precision) matrix, our method, which resem-

bles a Cholesky factorization, can recover the structure and

parameters of the SEM exactly in O(p(d+log p)) floating-

point operations. In contrast [LB13]’s algorithm takes

O �
p2

2(w+1)(w+d
)

�
time in the population setting, where w

is the tree-width and d is the maximum degree of the graph.

In the finite sample setting, our method involves estimating

the precision matrix, which can be done by solving p linear

programs (LPs) and then performing p iterations to learn

the structure and parameters of the SEM by identifying and

removing terminal (sink) vertices. If the estimated preci-

sion matrix is sparse, then each iteration involves solving

at most d linear programs in at most d dimensions, lead-

ing to an overall smoothed complexity of

eO �
p

3

+ pd

4

�
.

When the estimated precision matrix is dense our method

has a smoothed complexity of

eO �
p

5

�
. This is significantly

better than [PB14]’s algorithm for learning linear Gaussian

SEMs as well as [LB13]’s algorithm for learning SEMs

with known noise variance. While the former is is expo-

nential in p, the latter is exponential in d and the tree-width

of the SEM when the estimated precision matrix is sparse

and exponential in p for the dense case.

Our algorithm also works in the high-dimensional regime,

when n ⌧ p and d = o(p), and has a sample complex-

ity of O(

d4

"2 log(

pp
�
)) and O(

d4

"2 (
p2

� )

1/m
) for sub-Gaussian

noise and noise with bounded 4m-th moment respectively,

for recovering the autoregression matrix of the SEM up to

✏ additive error with probability at least 1 � �. The sam-

ple complexity of our algorithm for sub-Gaussian noise is

better than [LB13]’s algorithm, which has a sample com-

plexity of O �
p

2

log p

�
, and is therefore unsuitable for the

high-dimensional regime. Moreover, unlike [LB13]’s algo-

rithm, and other methods that use conditional independence

tests, for instance, the PC algorithm for learning Gaussian

SEMs [KP07], our algorithm does not require any faith-

fulness conditions, and only requires a weaker causal min-

imality condition. The PC algorithm and [LB13]’s algo-

rithm can fail to recover the correct DAG for distributions

that are not faithful to the DAG structure. Our results have

the following significant yet hitherto unknown implication

for learning Gaussian Bayesian networks. Given data gen-

erated from a Gaussian Bayesian network that is causal

minimal to the true DAG structure, one can recover the

DAG structure in polynomial time and sample complex-

ity from a finite number of samples, under more general

identifiability conditions than homoscedastic noise.

Lastly, we obtain several useful results about the theory of

linear SEMs en route to developing our main algorithm for

learning linear SEMs.

2 Related Work

We start our discussion of existing literature by first pre-

senting known identifiability conditions for learning SEMs

and Bayesian networks. [PMJS14] proved identifiability

of distributions drawn from a restricted SEM with addi-

tive noise, where in the restricted SEM the functions are

assumed to be non-linear and thrice continuously differen-

tiable. Linear SEMs are identifiable if (a) the noise vari-

ables are non-Gaussian [SHHK06], (b) the noise variances

are known up to a constant factor [LB13], and (c) noise

variables are Gaussian and have the same variance [PB14]

(homoscedastic noise). [PR17] introduced Quadratic Vari-

ance Function (QVF) DAG models — a class of Bayesian

networks in which the conditional variance of a variable is

a quadratic function of its conditional mean — and proved

identifiability of the models from observational data. How-

ever, QVF DAG models cannot be expressed as SEMs in

general, and the quadratic variance property holds for a

handful of conditional distributions which includes Bino-

mial, Poisson, Exponential, Gamma, and a few others.

The computational and statistical complexity landscape of

learning linear SEMs is peppered by inefficient algorithms.

This is in part justified by various hardness results known

in the literature for learning DAGs from observational data

[Chi96, Das99]. Algorithms for learning DAGs can be di-

vided into two categories: independence test based meth-

ods and score based methods. Score based methods use a

score function, typically penalized log-likelihood, to find

the best scoring DAG among the space of all DAGs. Since

the number of DAGs and degree-bounded DAGs is expo-

nential in p [Rob77, GH17a] brute force methods, and ex-

isting score-based methods are exponential time. A pop-

ular score function for learning Gaussian SEMs is the

`

0

-penalized Gaussian log-likelihood score proposed by

[VDGB13]. [PB14] proposed using `

0

-penalized Gaussian

log-likelihood score for learning homoscedastic noise lin-

ear Gaussian SEMs along with a heuristic greedy search

algorithm which is not guaranteed to find the correct

(highest-scoring) solution. [LB13] showed that under a

faithfulness assumption, the sparsity pattern of the preci-
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sion matrix corresponds to the edge structure of the moral

graph of the underlying DAG. They exploit this prop-

erty to devise an algorithm that searches for the highest-

scoring DAG, using dynamic programming, that has the

same moral graph as that given by the sparsity pattern of

the precision matrix. Independence test based methods on

the other hand require restrictive faithfulness conditions to

guarantee structure recovery. [KP07] proposed using the

PC algorithm, which was originally proposed by [SGS00]

and has a computational complexity of O �
p

d
�
, for learn-

ing Gaussian SEMs and proved asymptotic uniform con-

sistency of the algorithm for recovering the Markov equiv-

alence class, i.e., a CPDAG. However the PC algorithm

is only efficient for learning very sparse Gaussian SEMs.

Among computationally efficient algorithms, the Direct-

LiNGAM algorithm [SIS

+

11], which strictly requires non-

Gaussianity of the noise variables, needs an infinite number

of samples to guarantee structure recovery. This is because

of the use of independence testing between a variable and

its residuals to detect exogenous variables (variables with

no parents). For the same reason, the correctness of RESIT

[PMJS14], which is a computationally efficient algorithm

for learning non-linear SEMs, is only guaranteed in the

population setting. [GH17b] proposed a polynomial time

algorithm, similar to the one proposed in this paper, for

learning Gaussian SEMs (or Gaussian Bayesian networks)

with a sample complexity of O �
d

4

log p

�
. However, their

method, theoretical guarantees and proofs crucially rely on

the Gaussianity of the data distribution.

Other authors have proposed various approximation algo-

rithms and heuristic methods for learning Bayesian net-

works, which can be used to learn Gaussian SEMs by using

appropriate score functions. Popular heuristic methods are

max-min hill climbing (MMHC) algorithm by [TBA06],

and the Greedy Equivalence Search (GES) algorithm pro-

posed by [Chi03]. [JSG

+

10] proposed an LP-relaxation

based method for learning Bayesian networks which is an

approximation algorithm.

3 Preliminaries

We begin this section by introducing our notations and

definitions before formalizing the problem of learning lin-

ear SEMs from observational data. We will let [p]

def

=

{1, . . . , p}. Vectors and matrices are denoted by lower-

case and uppercase bold faced letters respectively. For

any two non-empty index sets sr, sc ✓ [p], the matrix

Asr,sc 2 R|sr|⇥|sc|
denotes the submatrix of A 2 Rp⇥p

obtained by selecting the sr rows and sc columns of A.

With a slight abuse of notation, we will allow the index

sets sr and sc to be a single index, e.g., i, and we will de-

note the index set of all rows (or columns) by ⇤. For any

matrix A (equivalently for vectors), we will denote its sup-

port set by: S(A) = {(i, j) 2 [p]⇥ [p] |Ai,j 6= 0}. Vector

`p norms are denoted by k ·kp. For matrices, k ·kp denotes

the induced (or operator) `p-norm and | · |p denotes the ele-

mentwise `p norm, i.e., |A|p def

= (

P
i,j |Ai,j |p)1/p. For two

matrices A and B, A �B denotes the Hadamard product

of A and B, while diag(A) denotes the vector formed by

taking the diagonal of A. For a vector v, Diag(v) denotes

the diagonal matrix with v in the diagonal. Finally, we de-

fine the set �i def= [p] \ {i}.

Let G = ([p],E) be a directed acyclic graph (DAG) where

[p] is the vertex set and E ⇢ [p] ⇥ [p] is the set of di-

rected edges. An edge (i, j) 2 E implies the edge i  
j. We denote by ⇡G(i) and �G(i) the parent set and the

set of children of the i-th node respectively, in the graph

G; and drop the subscript G when the clear from con-

text. The set of neighbors of the i-th node is denoted by

NG(i) = ⇡G(i)[�G(i). A node j is a descendant of i in

G if there exists a (directed) path from i to j in G. We

will denote the set of descendants of i by DG(i). Sim-

ilarly, we will denote the set of ancestors of i — nodes

j such that there is a path from j to i in G — by the

set AG(i). The Markov blanket of a node is defined as:

MBG(i) = NG(i)[{k 2 ⇡G(j) | j 2 �G(i)}.

A vertex i 2 [p] is a terminal vertex in G if �G(i) = ?.

For each i 2 [p] we have a random variable Xi 2 R, X =

(X

1

, . . . , Xp) 2 Rp
is the p-dimensional vector of random

variables, and x = (x

1

, . . . , xp) is a joint assignment to

X . Every DAG G = ([p],E) defines a set of topological

orderings TG over [p] that are compatible with the DAG G,

i.e., TG = {⌧ 2 Sp | ⌧(j) < ⌧(i) if (i, j) 2 E}, where Sp

is the set of all possible permutations of [p].

The random vector X follows a linear structural equation

model (SEM), if each variable can be written as a linear

combination of the variables in its parent set as follows:

Xi =

X

j2⇡G(i)

Bi,jXj +Ni (8i 2 [p]), (1)

where G = ([p],E) is a DAG, N = (N

1

, . . . , Np) are the

noise variables, and Ni??X

1

, . . . , Xi�1

. Without loss of

generality, we assume that E [Xi] = E [Ni] = 0, 8i 2
[p]. As is typically the case in the literature of SEMs, we

further assume that the noise variables Ni have bounded

second moments and are independent. Thus Cov [N ] =

E
⇥
NN

T
⇤
= Diag(�

2

1

, . . . ,�

2

p). We can then write (1) in

vector form as follows:

X = BX +N, (2)

where B = (Bi,j) is referred to as the autoregression ma-

trix and S(B) = E. Therefore, we will denote an SEM by

the triple (G,B, {�2

i }) 1

.

1

An SEM is fully characterized by G, B and the distribution of

the exogenous variables. However, since we are concerned with

learning SEMs using second moments only, our notation captures

all the required information.
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Given an SEM (G,B, {�2

i }), the joint distribution P(X)

is completely determined and factorizes according to the

DAG structure G:

P(X;G) =
pY

i=1

Pi(Xi|X⇡G(i);G), (3)

where Pi is the conditional distribution of the Xi. We

then say that the distribution P is Markov with respect

to the DAG G, i.e., Xi satisfies the Markov condition:

Xi??Xj | X⇡(i), 8i 2 [p], 8j 2 [p] \ (D(i)[⇡(i)[{i}).
Thus an SEM is equivalent to a Bayesian network. Specifi-

cally, if the noise variables are Gaussian, then P is a Gaus-

sian Bayesian network (GBN), where the joint distribu-

tion P and the conditional distributions Pi are Gaussian.

We obtain our theoretical results for the class of DAGs

with Markov blanket at most d: Gp,d
def

= {G | G =

([p],E) is a DAG and |MBG(i)|  d, 8i 2 [p]}.

Next, we define the notion of causal minimality, introduced

by [ZS08], which is important for ensuring identifiability of

linear SEMs considered in this paper.

Definition 1 (Causal Minimality). Given a DAG G, a dis-

tribution P(X), that is Markov with respect to G, is causal

minimal if P is not Markov with respect to a proper sub-

graph of G.

Our assumption of S(B) = E, ensures that Lemma 4 of

[PMJS14] holds for all SEMs (G,B, {�2

i }). This in turn

implies that the joint distribution P(X) determined by the

SEM (G,B, {�2

i }) is causal minimal with respect to G (see

Proposition 2 in [PMJS14]). Therefore, the SEMs consid-

ered in the paper are causal minimal. Causal minimality

is much weaker than faithfulness which requires that the

distribution P(X) contain only those conditional indepen-

dence assertions that are implied by the d-separation crite-

ria of the DAG [SGS00]. However, faithfulness cannot be

tested from data in full generality [ZS08] and algorithms

that infer the DAG structure from a finite number of sam-

ples must require strong faithfulness [ZS02], which is a re-

strictive assumption.

The problem of learning the structure of an SEM is as fol-

lows. Given an n ⇥ p data matrix X = (x

1

, . . . ,xp),

with xi 2 Rn
, drawn from an SEM (G⇤

,B

⇤
, {�2

i }) with

G⇤ 2 Gp,d, we want to learn an SEM (

bG, b
B, {b�2

i }) from X

such that G⇤
=

bG.

4 Learning SEMs with Unknown Error
Variances

We start with presenting our main results for learning

SEMs when the error variances are unknown. Our algo-

rithm for learning SEMs works by constructing the SEM

in a bottom-up fashion. The algorithm has p iterations. In

each iteration it identifies and removes a terminal vertex,

learning its parent set and edge weights along the way. We

show that, under a certain identifiability condition which

generalizes other identifiability conditions known in the lit-

erature, e.g., homoscedastic errors, and without assuming

faithfulness of the distribution to the DAG, each of these

steps can be performed efficiently using only the precision

matrix or an estimator of it.

4.1 Identifiability

The following assumption gives a sufficient condition un-

der which the structure and parameters of an SEM can be

uniquely recovered from observational data using Algo-

rithm 1. The assumption is defined in terms of subgraphs

of G obtained by removing terminal vertices sequentially.

For any ⌧ 2 TG, we will consider sequence of graphs

G[m, ⌧ ] = (V[m, ⌧ ],E[m, ⌧ ]), indexed by (m, ⌧), where

G[m, ⌧ ] is the induced subgraph of G over the first m ver-

tices in the topological ordering ⌧ , i.e., V[m, ⌧ ]

def

= {i 2
[p] | ⌧(i)  m} and E[m, ⌧ ]

def

= {(i, j) 2 E | i 2
V[m, ⌧ ] ^ j 2 V[m, ⌧ ]}.

Assumption 1 (Identifiability condition). Given an SEM

(G,B, {�2

i }) with G 2 Gp,d, then 8(i, j) 2 V[m, ⌧ ] ⇥
V[m, ⌧ ],m 2 [p], and 8⌧ 2 TG, such that �G[m,⌧ ](i) =

? ^ �G[m,⌧ ](j) 6= ?:

(�

2

i )
�1

< (�

2

j )
�1

+

X

l2�G[m,⌧](j)

(�

2

l )
�1

B

2

l,j , (4)

As we will show later, Assumption 1 essentially lays down

a condition under which terminal vertices, and subse-

quently the causal order, can be identified from the pre-

cision matrix. From Assumption 1, we immediately get the

following special cases for identifiability of linear SEMs,

where the first one is the homoscedastic case known in the

literature, while the second case is new.

Proposition 1 (Sufficient conditions for identifiability).
Let (G,B, {�2

i }) be an SEM satisfying Assumption 1, with

precision matrix ⌦. Then, either of the following two con-

ditions are sufficient for uniquely identifying the autore-

gression matrix B and the DAG G from ⌦:

(i) 8i 2 [p], �i = �, for some � > 0,

(ii) 1 < �i  B

min

(8i 2 [p]), where B

min

def

=

min{|Bi,j | | (i, j) 2 E}

For detailed proofs, see Appendix A. At this point one

might ask if the above assumption is necessary for identifi-

ability of linear SEMs. We answer this question in affirma-

tive in the following lemma, which states that if Assump-

tion 1 is violated, then there exists an exponential number

of DAGs structures that induce the same covariance and

precision matrix, and determine joint distributions P(X)
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that are causal minimal and Markov to the DAG struc-

tures. In the following lemma we will equivalently denote

an SEM by (G,B,D) where D is a diagonal matrix with

Di,i = �

2

i .

Lemma 1. There exists

eGp,d ⇢ Gp,d with |eGp,d| = 2

⇥(p)
,

autoregression matrices B(�) parameterized by �, and di-

agonal matrices D(v

1

, v

2

) parameterized by v

1

, v

2

, such

that for each � 2 (�1,1) and v

1

2 (0,1) and v

2

> v

1

,

the SEMs {(G,B(�),D(v

1

, v

2

)) | G 2 eGp,d}, do not sat-

isfy Assumption 1, induce the same covariance and preci-

sion matrix, and distribution P(X) that has the same con-

ditional independence structure.

Given that the true SEM can come from the aforementioned

family, no algorithm, that uses only conditional indepen-

dence tests and second moments, can consistently recover

the true DAG structure if Assumption 1 is not satisfied.

Next, we present a series of results building towards our

main result for learning SEMs from precision matrix. In the

following proposition we characterize the precision matrix

of linear SEMs.

Proposition 2. Let (G,B, {�2

i }) be an SEM over X , then

the precision matrix is given as: ⌦ = (I�B)

T
D

�1

(I�B),

where D = Diag(�

2

1

, . . . ,�

2

p). The entries of the precision

matrix is given as:

⌦i,i = (�

2

i )
�1

+

X

l2�(i)

(�

2

l )
�1

B

2

l,i, (5)

⌦i,j = �(�2

i )
�1

Bi,j � (�

2

j )
�1

Bj,i +

X

l2�(i)\�(j)

(�

2

l )
�1

Bl,iBl,j .

The above characterization of the precision matrix moti-

vates our indentifiability condition given by Assumption 1,

and also provides a recipe for identifying terminal vertices

from the precision matrix as is formalized by the following

proposition.

Proposition 3. Let (G,B, {�2

i }) be a SEM over X with

precision matrix ⌦, that satisfies the identifiability condi-

tion given by Assumption 1. Then, i is a terminal vertex in

G if and only if i 2 argmin(diag(⌦)). Further, if i is a

terminal vertex then �

2

i =

1

/⌦i,i.

The next proposition, which follows directly from Propo-

sition 3 and (5), states that for a terminal vertex the parent

set and edge weights can be conveniently “read off” from

the precision matrix. This is the key result which helps us

avoid the faithfulness condition.

Proposition 4. Let (G,B, {�2

i }) be an SEM over X with

precision matrix ⌦. If i is a terminal vertex in G, then

Bi,⇤ = �⌦i,⇤
/⌦i,i and ⇡G(i) = S(⌦i,⇤) \ {i}.

The following lemma is a useful result about linear SEMs

with arbitrary noise distribution, that generalizes a result so

far known only for the Gaussian distribution — for a termi-

nal vertex i, the precision matrix over X�i can be obtain

by performing a Schur complement update of the precision

matrix over X . While, the result for the Gaussian distribu-

tion holds for all variables, the analogous result for general

SEMs holds only for terminal vertices.

Lemma 2. Let (G,B, {�2

i }) be an SEM over X with pre-

cision matrix ⌦. Let i be a terminal vertex in the G,

then the precision matrix over X�i, ⌦

(�i), is given as:

⌦

(�i) = ⌦�i,�i � ⌦

�1

i,i ⌦�i,i⌦i,�i.

Finally, the following lemma characterizes the entries of

the precision matrix over X�i and will be very useful in

developing our finite-sample algorithm for learning SEMs.

Lemma 3. Let (G,B, {�2

i }) be a SEM over X with preci-

sion matrix ⌦. Let i be a terminal vertex in the G and let

⌦

(�i) denote the precision matrix over X�i. Then,

(⌦

(�i))j,k = ⌦j,k, (8(j, k) 2 �i⇥�i | {j, k}*⇡G(i)),

S((⌦
(�i))j,⇤) ✓ (S(⌦j,⇤) \ {i})[⇡G(i) (8j 2 ⇡G(i)).

With the required results in place, we are now ready to

present our main algorithm, detailed in Algorithm 1, for

learning SEMs from the precision matrix. The role of the

diagonal matrix D will become clear in the next section

where we focus on the problem of learning SEMs with

known error variances. For now we simply set D to the

identity matrix I. The following theorem proves the cor-

rectness of our algorithm in the population setting.

Algorithm 1 SEM structure learning algorithm.

Input: Precision matrix ⌦, diagonal matrix D.

Output: bG, b
B.

1:

b
B 0.

2: for t 2 [p] do
3: i argmin(diag(⌦ �D)).

4: Bi,⇤  �⌦i,⇤
/⌦i,i, Bi,i  0.

5: ⌦ ⌦� 1

⌦i,i
⌦⇤,i⌦i,⇤.

6: ⌦i,i  1.

7: end for
8:

bG ([p],S(bB)).

Algorithm 2 Updating a precision matrix, after removing

a terminal vertex, using CLIME.

1: function UPDATE(

b
⌦, i,�n)

2: b⇡(i) S(b⌦i,⇤) \ {i}.

3: for j 2 b⇡(i) do
4:

bSj  
⇣
S(b⌦j,⇤) \ {i}

⌘
[ b⇡(i).

5: Compute

¯!j by solving (7) for ⌃

n
bSj ,bSj

.

6:

b
⌦j,bSj

=

b
⌦bSj ,j

 ¯!j

7: end for
8:

b
⌦i,⇤  0 and

b
⌦⇤,i  0.

9: return b
⌦.

10: end function
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Theorem 1. Let (G,B, {�2

i }) be an SEM over X , with

precision matrix ⌦, satisfying Assumption 1. Then, given

(⌦, I) as input, Algorithm 1 returns a unique (

bG, b
B) such

that

bG = G and

b
B = B.

As a consequence of the above theorem we have the fol-

lowing corollary about identifiability of linear SEMs.

Corollary 1. An SEM (G,B, {�2

i }) satisfying Assumption

1 is identifiable, and can be uniquely identified from the

precision matrix ⌦.

4.2 Statistical Guarantees for Estimation

Algorithm 1 can be used to learn a SEM given an estimate

of the precision matrix, computed from a finite number of

samples, with a slight modification. In line 5 instead of

using the Schur complement update, we use Algorithm 2

to update the precision matrix after a terminal vertex has

been identified (and removed). The rationale behind this

is that even if the estimated precision matrix is close to

the true precision matrix, the Schur updates could still re-

sult in errors accumulating in the precision matrix. In or-

der to ensure that our algorithm is statistically efficient, we

need more control over those errors, which in turns calls

for some sort of penalization for estimating from a finite

number of samples.

Inverse covariance matrix estimation. In the finite sam-

ple setting, our algorithm involves estimating the inverse

covariance matrix, and subsequently updating the inverse

covariance matrix after removing a terminal vertex. Due

in part to its role in undirected graphical model selection,

the problem of inverse covariance matrix estimation has

received significant attention and many algorithms have

been developed for the problem. In this paper we use the

CLIME algorithm, proposed by [CLL11], to estimate the

inverse covariance matrix and propose a modification of

the CLIME algorithm for efficiently computing the inverse

covariance matrix over the variables remaining after elim-

inating a terminal vertex in Algorithm 2. For a discussion

on why CLIME was preferred over other methods, see Ap-

pendix D.

The CLIME estimator,

b
⌦, of the inverse covariance matrix

⌦ is obtained as follows. First, we compute a potentially

non-symmetric estimate

¯

⌦ = (!̄i,j) by solving the follow-

ing:

¯

⌦ = argmin

⌦2Rp⇥p

|⌦|
1

s.t. |⌃n
⌦� I|1  �n, (6)

where �n > 0 is the regularization parameter, ⌃

n def

=

(

1

/n)XT
X is the empirical covariance matrix, and |·|

1

(respectively |·|1) denotes elementwise `

1

(respectively

`1) norm. Finally, the symmetric estimator is obtained

by selecting the smaller entry among !̄i,j and !̄j,i, i.e.,

b
⌦ = (b!i,j), where b!i,j = !̄i,j1 [|!̄i,j | < |!̄j,i|] +
!̄j,i1 [|!̄j,i|  |!̄i,j |]. It is easy to see that (6) can be de-

composed into p linear programs as follows. Let

¯

⌦ =

(

¯!
1

, . . . ,

¯!p), then

¯!i = argmin

!2Rp
k!k

1

s.t. |⌃n! � ei|1  �n, (7)

where ei = (ei,j) such that ei,j = 1 for j = i and ei,j = 0

otherwise. The main result about the CLIME estimator that

we use from [CLL11] is given by the following lemma,

which is a minor reformulation of Theorem 6 in [CLL11]:

Lemma 4 ([CLL11]). Let (G,B, {�2

i }) be an SEM over

X , with covariance and precision matrix ⌃ and ⌦ re-

spectively. Let

b
⌦ be the estimator of ⌦ obtained by solv-

ing the optimization problem given by 7. Then if �n �
k⌦k

1

|⌃�⌃

n|1, then |⌦� b
⌦|1  4k⌦k

1

�n. Further, if

min{|⌦i,j | | (i, j) 2 [p]⇥ [p] ^ |⌦i,j | 6= 0} > 4k⌦k
1

�n,

then S(⌦) ✓ S(b⌦).

Next we state out finite sample identifiability condition.

This differs from the population version in that we re-

quire a “gap” between the diagonal entries of the preci-

sion matrix for terminal and non-terminal vertices. This

gap, as we show later, must scale as ⌦

⇣
d

p
log p

/n

⌘
and

⌦

⇣
d(p)

1/m
/

p
n

⌘
for sub-Gaussian noise and bounded mo-

ment noise respectively. Condition (ii) of the below

assumption also restricts how fast the “minimum” non-

diagonal entry of the precision matrix must decay. Note

that our conditions are weaker than those of [LB13] due to

which we are able to achieve better sample complexity than

their algorithm.

Assumption 2 (Finite Sample Identifiability Condition).
Let (G,B, {�2

i }) be an SEM with inverse covariance ma-

trix ⌦. Let ⌦

(m,⌧) denote the inverse covariance matrix

over XV[m,⌧ ], and

M

def

= max{k⌦
(m,⌧)k1 | m 2 [p], ⌧ 2 TG}. (8)

Then, we have that

(i) 8(i, j) 2 V[m, ⌧ ] ⇥ V[m, ⌧ ],m 2 [p], and ⌧ 2 TG,

such that �G[m,⌧ ](i) = ? ^ �G[m,⌧ ](j) 6= ?:

1

�

2

i

<

1

�

2

j

+

X

l2�G[m,⌧](j)

B

2

l,j

�

2

l

� 8M�n,

(ii) min{|(⌦
(m,⌧))i,j | | (⌦

(m,⌧))i,j 6= 0, (i, j) 2
V[m, ⌧ ]⇥ V[m, ⌧ ],m 2 [p], ⌧ 2 TG} > 4M�n,

(iii) for all i 2 [p], �

2

i 2 o(

1

/4M�n).

The following lemma proves the correctness of Algorithm

2 which updates the precision matrix, after removing a ter-

minal vertex.
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Lemma 5. Let (G,B, {�2

i }) be an SEM over X with pre-

cision matrix ⌦. Let

b
⌦ be an estimator of ⌦ such that

|⌦ � b
⌦|1  4M�n, and S(⌦) ✓ S(b⌦), where M

is defined in (8). Let i be a terminal vertex in the G,

⌦

(�i) be the true precision matrix over X�i, and let

b
⌦

0

be the matrix returned by the function UPDATE. Then,

|⌦
(�i) � b

⌦

0
�i,�i|1  4M�n and S(⌦

(�i)) ✓ S(b⌦0
).

Theorem 2. Let (G⇤
,B

⇤
, {�2

i }) be the true SEM, with co-

variance and precision matrix ⌃

⇤
and ⌦

⇤
, respectively,

from which a data set X of n samples is drawn. If the reg-

ularization parameter satisfies �n � M |⌃n � ⌃

⇤|, then

under Assumption 2, the Algorithm 1, with D set to I, re-

turns an estimator

b
B such that |B⇤ � b

B|  c4M(1 +

B

max

)�

2

max

�n, S(B⇤
) ✓ S(bB), and TbG ✓ TG⇤

, where

c  �2
min/(1�4M�n�

2
min) is a constant.

Next, we use known concentration results for the empirical

covariance matrix to obtain finite sample results for noise

distributions satisfying the following conditions.

Assumption 3 (Noise conditions). For all i 2 [p], we have

(i) Sub-Gaussian noise:

Ni
/�i is sub-Gaussian with pa-

rameter ⌫.

(ii) Bounded-moment noise: (E [

Ni
/�i])

4m  Km, for a

positive integer m and positive constant Km.

Theorem 3 (Sample complexity). If �n � ⌘

1

(n, p, �) and

n � ⌘

2

(p, ", �), then |bB�B

⇤|  ", with probability 1� �,

where

(i) for sub-Gaussian noise (Assumption 3(i)):

⌘

1

(n, p, �) = MC

1

p
(

2

/n) log (2p/
p
�)

⌘

2

(p, ", �) = 2(

C1C
/")

2

log (

2p
/

p
�) ,

(ii) for bounded moment noise (Assumption 3(ii)):

⌘

1

(n, p, �) = MC

2

�
p2
/(nm�)

�1/2m

⌘

2

(p, ", �) = (

C2C
/")

2

(

p2
/�)

1/m

with C = c4M

2

(1 + B

max

)�

2

max

, C

1

=

p
128(1 +

4⌫

2

)(maxi ⌃
⇤
i,i), C2

= 2(maxi ⌃
⇤
i,i)(Cm(Cm(Km+1)+

1))

1/2m
, and c is defined in Theorem 2. Further, thresh-

olding

b
B at the level " we get that S(bB) = S(B⇤

) and

bG = G⇤
.

5 Learning SEMs with Known Error
Variances

Next, we focus our attention on the problem of learning

SEMs when the error variances are known upto a con-

stant factor. We will consider SEMs (G,B, {↵�2

i }) where

{�2

i }pi=1

are known (to the learner) and ↵ > 0 is some un-

known constant. Identifiability of this class of SEMs was

proved by [LB13] under a faithfulness assumption. How-

ever, we will merely assume that (G,B, {↵�2

i }) is causal

minimal, i.e., S(B) = E — this ensures that the distribu-

tion P(X) defined by the SEM is causal minimal to the

DAG G = ([p],E). An immediate consequence of Proposi-

tion 2 is the following observation about terminal vertices:

Proposition 5. Let (G,B, {↵�2

i }) be an SEM over X

with precision matrix ⌦, {�2

i }pi=1

known and ↵ > 0 is

some unknown constant. Then, i is a terminal vertex in

G if and only if i 2 argmindiag(⌦ �D), where D =

Diag(�

2

1

, . . . ,�

2

p).

Thus, when the error variances are known upto a con-

stant factor, Algorithm 1 can be used to learn SEMs, un-

der the assumption of causal minimality, by setting D =

Diag(�

2

1

, . . . ,�

2

p). Consequently, we have the following

result about learning SEMs with known error variances:

Theorem 4. Let (G,B, {↵�2

i }) be an SEM over X ,

with precision matrix ⌦ and {�2

i }pi=1

known. Then,

if (G,B, {↵�2

i }) is causal minimal and given ⌦, D =

Diag(�

2

1

, . . . ,�

2

p) as input, Algorithm 1 returns a unique

(

bG, b
B) such that

bG = G and

b
B = B.

Misspecified Error Variances. Our algorithm can also

be used to learn SEMs with misspecified error variances

as considered by [LB13]. For instance, if the true SEM

is (G,B, {�2

i }) while the diagonal matrix passed to Algo-

rithm 1 is D = Diag((�

0
1

)

2

, . . . , (�

0
p)

2

), then it is straight-

forward to verify that the following condition is sufficient

to ensure that Algorithm 1 still recovers the structure and

parameters of the SEM correctly:

X

l2�G[m,⌧](j)

B

2

l,j >
↵

max

↵

min

� 1,

(8j 2 V[m, ⌧ ] ^ �G[m,⌧ ](j) 6= ?,m 2 [p], ⌧ 2 T ),

where ↵

max

def

= max{(�0
i)

2
/�2

i | i 2 [p]} (similarly ↵

min

).

Next, we obtain statistical guarantees for our algorithm for

learning SEMs with known error variances.

5.1 Statistical Guarantees for Estimation

In order to learn SEMs with known error variances from a

finite number of samples, we make the following assump-

tions:

Assumption 4. Given an SEM (G,B, {↵�2

i }) with preci-

sion matrix ⌦ and {�2

i }pi=1

known, let ⌦

(m,⌧) denote the

inverse covariance matrix over XV[m,⌧ ]. Then,

(i) 8i 2 V[m, ⌧ ],m 2 [p], and ⌧ 2 TG, such that

�G[m,⌧ ](i) 6= ?:

X

l2�G[m,⌧](i)

✓
�

2

i

�

2

l

◆
B

2

l,i > 8↵M�n,
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Figure 1: (Left) Probability of correct structure

recovery vs. number of samples, where the lat-

ter is set to Cd2 log p with C being the control

parameter and d being the maximum Markov

blanket size. (Right) The maximum absolute

difference between the true parameters and the

learned parameters vs. number of samples.

(ii) min{|(⌦
(m,⌧))i,j | | (⌦

(m,⌧))i,j 6= 0, (i, j) 2
V[m, ⌧ ]⇥ V[m, ⌧ ],m 2 [p], ⌧ 2 TG} > 4M�n,

(iii) for all i 2 [p], �

2

i 2 o(

1

/4↵M�n).

Using CLIME to estimate and update the precision ma-

trix, it is easy to verify that Theorem 3 holds for SEMs

with known error variances satisfying Assumption 4, with

�

2

max

and �

2

min

replaced by ↵�

2

max

and ↵�

2

min

, respectively.

Thus, given a data set of n samples drawn from an SEM sat-

isfying Assumption 4, with autoregression matrix B

⇤
and

DAG structure G⇤
= ([p],E⇤

), we have the following re-

sults for sub-Gaussian and bounded-moment noise:

Remark 1. If �n � ⌘

1

(n, p, �), and n � ⌘

2

(p, ", �), then,

under Assumption 4, Algorithm 1 with D = Diag({�2

i })
returns an estimator

b
B such that |bB � B

⇤|1  ", with

probability at least 1 � �, where for sub-Gaussian noise

⌘

1

(n, p, �) = O
⇣
(

d
/

p
n)

p
log(

p
/

p
�)

⌘
and ⌘

2

(p, ", �) =

O �
(

d4
/"2) log(p/

p
�)

�
, while for bounded moment noise

⌘

1

(n, p, �) = O �
(

d
/

p
n)(p/

p
�)

1/m
�

and ⌘

2

(p, ", �) =

O �
(

d4
/"2)(p

2
/�)

1/m
�
. Further, thresholding

b
B at the level

", we have S(bB) = E⇤
.

The above remark follows from the fact that M = O (d)

which follows from Proposition 7 in Appendix A.

6 Experiments

Simulation Experiments. In this section, we validate

our theoretical results through simulation experiments. We

generate random SEMs by first sampling Erd

˝

os-Rényi ran-

dom DAGs and then set all the noise variances to �

2

= 0.8.

Note this is a sufficient condition for ensuring identifia-

bility (Proposition 1). We sample edge weights from the

uniform distribution over [�1,�0.5][[0.5, 1]. To generate

sub-Gaussian noise, we set the noise variables Ni = �iRi,

where Ri’s are independent Rademacher random variables.

We set the regularization parameter according to Theorem

3 and varied the number of samples as Cd

2

log p, with C

being the control parameter. Figure 1 shows the probabil-

ity of correct structure recovery and the maximum absolute

difference between the true edge weights and the learned

edge weights, across 30 randomly sampled SEMs. Note

that Theorem 3 indeed bears out in practice, and the results

show a phase transition behavior for structure recovery.

Comparison with State-of-the-art Methods on Syn-
thetic Data. We also compared the performance of our

algorithm against three other state-of-the-art methods for

learning SEMs, viz. MMHC [TBA06], GES [Chi03], and

the PC algorithm [SGS00] on randomly generated SEMs.

In the identifiable regime our method achieved perfect

structure recovery (100% accuracy and recall). In the non-

identifiable regime, where noise variances are uniformly

generated between [0.5, 1], our method manages to recover

the structure almost perfectly achieving accuracy and recall

values of around 96%. The next best method, which is the

PC algorithm, only manages around 50% accuracy in both

the regimes. See Appendix B.1 for more details.

Comparison with State-of-the-art Methods on Real-
world Data Sets. Lastly, we also compared the perfor-

mance of our method against the aforementioned methods

on 7 real-world gene-expression data sets. Our method

achieves the lowest average negative-log-likelihood, on the

test set, across 10 bootstrap runs for all 7 data sets. Our

method is also significantly faster. See Appendix B.2 for

more details.

7 Discussion and Concluding Remarks

In the population setting, i.e., given the true preci-

sion matrix, our algorithm computes the

b
B matrix in

O (p(d+ d log p)). In the finite sample setting, if the es-

timated precision matrix is sparse, which can be accom-

plished by thresholding, then our algorithm has a smoothed

complexity of

eO �
p

3

+ pd

4

�
using interior-point methods.

In the dense case the complexity is

eO �
p

5

�
. See Appendix

C for more details.

One interesting possible line of future work would be to

explore if some of the ideas developed herein can be ex-

tended to binary or discrete Bayesian networks. We believe

our strategy of identifying terminal vertices can be incorpo-

rated into score-based methods to restrict the search space

when the objective is to find the highest scoring structure

on the sample data set.
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