Frank-Wolfe Splitting via Augmented Lagrangian Method

Gauthier Gidel

Fabian Pedregosa

Simon Lacoste-Julien

MILA, DIRO Université de Montréal

UC Berkeley & ETH Zurich

MILA, DIRO Université de Montréal

Abstract

Minimizing a function over an intersection of convex sets is an important task in optimization that is often much more challenging than minimizing it over each individual constraint set. While traditional methods such as Frank-Wolfe (FW) or proximal gradient descent assume access to a linear or quadratic oracle on the intersection, splitting techniques take advantage of the structure of each sets, and only require access to the oracle on the individual constraints. In this work, we develop and analyze the Frank-Wolfe Augmented Lagrangian (FW-AL) algorithm, a method for minimizing a smooth function over convex compact sets related by a "linear consistency" constraint that only requires access to a linear minimization oracle over the individual constraints. It is based on the Augmented Lagrangian Method (ALM), also known as Method of Multipliers, but unlike most existing splitting methods, it only requires access to linear (instead of quadratic) minimization oracles. We use recent advances in the analysis of Frank-Wolfe and the alternating direction method of multipliers algorithms to prove a sublinear convergence rate for FW-AL over general convex compact sets and a linear convergence rate over polytopes.

1 Introduction

The Frank-Wolfe (FW) or conditional gradient algorithm has seen an impressive revival in recent years, notably due to its very favorable properties for the optimization of sparse problems (Jaggi, 2013) or over

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

structured constraint sets (Lacoste-Julien and Jaggi, 2015). This algorithm assumes knowledge of a linear minimization oracle (LMO) over the set of constraints. This oracle is inexpensive to compute for sets such as the ℓ_1 or trace norm ball. However, inducing complex priors often requires to consider multiple constraints, leading to a constraint set formed by the intersection of the original constraints. Unfortunately, evaluating the LMO over this intersection may be challenging even if the LMOs on the individual sets are inexpensive.

The problem of minimizing over an intersection of convex sets is pervasive in machine learning and signal processing. For example, one can seek for a matrix that is both sparse and low rank by constraining the solution to have both small ℓ_1 and trace norm (Richard et al., 2012) or find a set of brain maps which are both sparse and piecewise constant by constraining both the ℓ_1 and total variation pseudonorm (Gramfort et al., 2013). Furthermore, some challenging optimization problems such as multiple sequence alignment are naturally expressed over an intersection of sets (Yen et al., 2016a) or more generally as a linear relationship between these sets (Huang et al., 2017).

The goal of this paper is to describe and analyze FW-AL, an optimization method that solves convex optimization problems subject to multiple constraint sets, assuming we have access to a LMO on each of the set.

Previous work. The vast majority of methods proposed to solve optimization problems over an intersection of sets rely on the availability of a projection operator onto each set (see e.g. the recent reviews (Glowinski et al., 2017; Ryu and Boyd, 2016), which cover the more general proximal splitting framework). One of the most popular algorithms in this framework is the alternating direction method of multipliers (ADMM), proposed by Glowinski and Marroco (1975), studied by Gabay and Mercier (1976), and revisited many times; see for instance (Boyd et al., 2011; Yan and Yin, 2016). On some cases, such as constraints on the trace norm (Cai et al., 2010) or the latent group lasso (Obozinski et al., 2011), the projection step can be a time-consuming operation, while the Frank-Wolfe

LMO is much cheaper in both cases. Moreover, for some highly structured polytopes such as those appearing in alignment constraints (Alayrac et al., 2016) or Structured SVM (Lacoste-Julien et al., 2013), there exists a fast and elegant dynamic programming algorithm to compute the LMO, while there is no known practical algorithm to compute the projection. Hence, the development of splitting methods that use the LMO instead of the proximal operator is of key practical interest. Yurtsever et al. (2015) proposed a general algorithm (UniPDGrad) based on the Lagrangian method which, with some work, can be reduced to a splitting method using only LMO as a particular case. We develop the comparison with FW-AL in App. B.2.

Recently, Yen et al. (2016a) proposed a FW variant for objectives with a linear loss function over an intersection of polytopes named Greedy Direction Method of Multipliers (GDMM). A similar version of GDMM is also used in (Yen et al., 2016b; Huang et al., 2017) to optimize a function over a Cartesian product of spaces related to each other by a linear consistency constraint. The constraints are incorporated through the augmented Lagrangian method and its convergence analysis crucially uses recent progress in the analysis of ADMM by Hong and Luo (2017). Nevertheless, we argue in Sec. C.1 that there are technical issues in these analysis since some of the properties used have only been proven for ADMM and do not hold in the context of GDMM. Furthermore, even though GDMM provides good experimental results in these papers, the practical applicability of the method to other problems is dampened by overly restrictive assumptions: the loss function is required to be linear or quadratic, leaving outside loss functions such as logistic regression, and the constraint needs to be a polytope, leaving outside domains such as the trace norm ball.

Contributions. Our main contribution is the development of a novel variant of FW for the optimization of a function over product of spaces related to each other by a linear consistency constraint and its rigorous analysis. We name this method Frank-Wolfe via Augmented Lagrangian method (FW-AL). With respect to Yen et al. (2016a,b); Huang et al. (2017), our framework generalizes GDMM by providing a method to optimize a general class of functions over an intersection of an arbitrary number of compact sets, which are not restricted to be polytopes. Moreover, we argue that the previous proofs of convergence were incomplete: in this paper, we prove a new challenging technical lemma providing a growth condition on the augmented dual function which allows us to fix the missing parts.

We show that FW-AL converges for any smooth objective function. We prove that a standard gap measure

converges linearly (i.e., with a geometric rate) when the constraint sets are polytopes, and sublinearly for general compact convex sets. We also show that when the function is strongly convex, the sum of this gap measure and the feasibility gives a bound on the distance to the set of optimal solutions. This is of key practical importance since the applications that we consider (e.g., minimization with trace norm constraints) verify these assumptions.

The paper is organized as follows. In Sec. 2, we introduce the general setting, provide some motivating applications and present the augmented Lagrangian formulation of our problem. In Sec. 3, we describe the algorithm FW-AL and provide its analysis in Sec. 4. Finally, we present illustrative experiments in Sec. 5.

2 Problem Setting

We will consider the following minimization problem,

$$\underset{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(k)}}{\text{minimize}} f(\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(k)}),
\text{s.t. } \boldsymbol{x}^{(k)} \in \mathcal{X}_k, \ k \in [K], \ \sum_{k=1}^K A_k \boldsymbol{x}^{(k)} = 0,$$
(OPT)

where $f: \mathbb{R}^m \to \mathbb{R}$ is a convex differentiable function and for $k \in [K]$, $\mathcal{X}_k \subset \mathbb{R}^{d_k}$ are convex compact sets and A_k are matrices of size $d \times d_k$. We will call the constraint $\sum_{k=1}^K A_k \boldsymbol{x}^{(k)} = 0$ the linear consistency constraint, motivated by the marginalization consistency constraints appearing in some of the applications of our framework as described in Sec. 2.1. One important potential application is the **intersection of multiple sets**. The simple K=2 example can be expressed with $A_1=I$ and $A_2=-I$. We assume that we have access to the linear minimization oracle $\mathrm{LMO}_k(\boldsymbol{r}) \in \arg\min_{\boldsymbol{s} \in \mathcal{X}_k} \langle \boldsymbol{s}, \boldsymbol{r} \rangle$, $k \in [K]$. We denote by \mathcal{X}^* the set of optimal points of the optimization problem (OPT) and we assume that this problem is feasible, i.e., the set of solutions is non empty.

2.1 Motivating Applications

We now present some motivating applications of our problem setting, including examples where special case versions of FW-AL were used. This previous work provides additional evidence for the practical significance of the FW-AL algorithm.

Multiple sequence alignment and motif discovery (Yen et al., 2016a) are problems in which the domain is described as an intersection of alignment constraints and consensus constraints, two highly structured polytopes.

The LMO on both sets can be solved by dynamic programing whereas there is no known practical algorithm to project onto. A factorwise approach to the dual of the structured SVM objective (Yen et al., 2016b) can also be cast as constrained problem over a Cartesian product of polytopes related to each other by a linear consistency constraint. As often in structured prediction, the output domain grows exponentially, leading to very high dimensional polytopes. Once again, dynamic programming can be used to compute the linear oracle in structured SVMs at a lower computational cost than the potentially intractable projection. The algorithms proposed by Yen et al. (2016a) and Yen et al. (2016b) are in fact a particular instance of FW-AL, where the objective function is respectively linear and quadratic.

Finally, simultaneously sparse (ℓ_1 norm constraint) and low rank (trace norm constraint) matrices (Richard et al., 2012) is another class of problems where the constraints consists of an intersection of sets with simple LMO but expensive projection. This example is a novel application of FW-AL and is developed in Sec. 5.

2.2 Augmented Lagrangian Reformulation

It is possible to reformulate (OPT) into the problem of finding a saddle point of an augmented Lagrangian (Bertsekas, 1996), in order to split the constraints in a way in which the linear oracle is computed over a product space. We first rewrite (OPT) as follows:

$$\min_{\boldsymbol{x}^{(k)} \in \mathcal{X}_k, k \in [K]} f(\boldsymbol{x}) \quad \text{s.t.} \quad M\boldsymbol{x} = 0 , \qquad (1)$$

where $\boldsymbol{x} := (\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(K)})$ and $M := [A_1, \dots, A_k]$ is such that,

$$Mx = 0 \Leftrightarrow \sum_{k=1}^{K} A_k x^{(k)} = 0.$$
 (2)

We can now consider the augmented Lagrangian formulation of (1), where y is the dual variable:

$$\begin{array}{l}
\underset{(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(K)})}{\text{minimize}} \max_{\boldsymbol{y} \in \mathbb{R}^d} \mathcal{L}(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(K)},\boldsymbol{y}) \\
\text{s.t.} \quad \boldsymbol{x}^{(k)} \in \mathcal{X}_k, \quad k \in \{1,\ldots,K\} \\
\mathcal{L}(\boldsymbol{x},\boldsymbol{y}) := f(\boldsymbol{x}) + \langle \boldsymbol{y}, M \boldsymbol{x} \rangle + \frac{\lambda}{2} \|M \boldsymbol{x}\|^2.
\end{array}$$
(OPT2)

We note $\mathcal{X} := \mathcal{X}_1 \times \cdots \times \mathcal{X}_K \subset \mathbb{R}^{d_1 + \cdots + d_K} = \mathbb{R}^m$ for notational simplicity. This formulation is the one onto which our algorithm FW-AL is applied.

Notation and assumption. In this paper, we denote by $\|\cdot\|$ the ℓ_2 norm for vectors (resp. spectral

norm for matrices) and $\operatorname{dist}(\boldsymbol{x},\mathcal{C}) := \inf_{\boldsymbol{x}' \in \mathcal{C}} \|\boldsymbol{x} - \boldsymbol{x}'\|$ its associated distance to a set. We assume that f is L-smooth on \mathbb{R}^m , i.e., differentiable with L-Lipschitz continuous gradient:

$$\|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{x}')\| \le L\|\boldsymbol{x} - \boldsymbol{x}'\| \quad \forall \boldsymbol{x}, \boldsymbol{x}' \in \mathbb{R}^m.$$
 (3)

This assumption is standard in convex optimization (Nesterov, 2004). Notice that the FW algorithm does not converge if the objective function is not at least continuously differentiable (Nesterov, 2016, Example 1). In our analysis, we will also use the observation that $\frac{\lambda}{2} ||M \cdot ||^2$ is generalized strongly convex. We say that a function h is generalized strongly convex when it takes the following general form:

$$h(\boldsymbol{x}) := g(A\boldsymbol{x}) + \langle \boldsymbol{b}, \boldsymbol{x} \rangle, \quad \forall \boldsymbol{x} \in \mathbb{R}^m,$$
 (4)

where $A \in \mathbb{R}^{d \times m}$ and g is μ_g -strongly convex w.r.t. the Euclidean norm on \mathbb{R}^d with $\mu_g > 0$. Recall that a μ_g -strongly (differentiable) convex function $g : \mathbb{R}^d \to \mathbb{R}$ is one such that, $\forall x, x' \in \mathbb{R}^d$,

$$g(\boldsymbol{x}) \ge g(\boldsymbol{x}') + \langle \boldsymbol{x} - \boldsymbol{x}', \nabla g(\boldsymbol{x}') \rangle + \frac{\mu_g}{2} \|\boldsymbol{x} - \boldsymbol{x}'\|^2$$
.

3 FW-AL Algorithm

Our algorithm takes inspiration from both Frank-Wolfe and the augmented Lagrangian method. The augmented Lagrangian method alternates a primal update on \boldsymbol{x} (approximately) minimizing² the augmented Lagrangian $\mathcal{L}(\cdot, \boldsymbol{y}_t)$, with a dual update on \boldsymbol{y} by taking a gradient ascent step on $\mathcal{L}(\boldsymbol{x}_{t+1},\cdot)$. The FW-AL algorithm follows the general iteration of the augmented Lagrangian method, but with the crucial difference that Lagrangian minimization is replaced by one Frank-Wolfe step on $\mathcal{L}(\cdot, \boldsymbol{y}_t)$. The algorithm is thus composed by two loops: an outer loop presented in (6) and an inner loop noted \mathcal{FW} which can be chosen to be one of the FW step variants described in Alg. 1 or 2.

FW steps. In FW-AL we need to ensure that the \mathcal{FW} inner loop makes sufficient progress. For general sets, we can use one iteration of the classical Frank-Wolfe algorithm with line-search (Jaggi, 2013) as given in Algorithm 2. When working over polytopes, we can get faster (linear) convergence by taking one *non-drop* step (defined below) of the away-step variant of the FW

¹This notion has been studied by Wang and Lin (2014) and in the Frank-Wolfe framework by Beck and Shtern (2016) and Lacoste-Julien and Jaggi (2015).

²An example of approximate minimization is taking one proximal gradient step, as used for example, in the Linearized ADMM algorithm (Goldfarb et al., 2013; Yang and Yuan, 2013).

Algorithm 1 Away-step Frank-Wolfe (one non-drop step): (Lacoste-Julien and Jaggi, 2015)

```
(\varphi is the objective)
  1: input: (\boldsymbol{x}, \mathcal{S}, \mathcal{A}, \varphi)
  2: drop_step ← true (initialization of the boolean)
  3: while drop_step = true do
                 s \leftarrow \text{Lmo}\left(\nabla \varphi(\boldsymbol{x})\right)
               \begin{array}{l} \boldsymbol{v} \in \arg\max_{\boldsymbol{v} \in \mathcal{S}} \left\langle \nabla \varphi(\boldsymbol{x}), \boldsymbol{v} \right\rangle \\ g^{FW} \leftarrow \left\langle \nabla \varphi(\boldsymbol{x}), \boldsymbol{x} - \boldsymbol{s} \right\rangle & (\textit{Frank-Wolfe gap}) \\ g^A \leftarrow \left\langle \nabla \varphi(\boldsymbol{x}), \boldsymbol{v} - \boldsymbol{x} \right\rangle & (\textit{Away gap}) \\ \textbf{if} \quad g^{FW} \geq g^A \ \textbf{then} & (\textit{FW direction is better}) \end{array}
  6:
  7:
  8:
                      \boldsymbol{d} \leftarrow \boldsymbol{s} - \boldsymbol{x} and \gamma_{\text{max}} \leftarrow 1
  9:
                                                                            (Away direction is better)
10:
                       d \leftarrow x - v and \gamma_{\text{max}} \leftarrow \alpha_v / (1 - \alpha_v)
11:
12:
                \begin{array}{l} \text{Compute } \gamma \! \in \! \arg \min_{\gamma \in [0,\gamma_{\max}]} \varphi \left( \boldsymbol{x} + \gamma \boldsymbol{d} \right) \\ \text{if } \gamma < \gamma_{\max} \text{ then} \qquad (\textit{first non-drop step}) \end{array}
13:
                 if \gamma < \gamma_{\max} then
14:
                      \texttt{drop\_step} \gets \texttt{false}
15:
                 end if
16:
                 Update x \leftarrow x + \gamma d
17:
                 Update \alpha_v according to (5)
18:
                 Update S \leftarrow \{ v \in A \text{ s.t. } \alpha_v > 0 \}
19:
                                                                                                                      (active set)
20: end while
21: return: (x, S)
```

Algorithm 2 FW(one step): (Frank and Wolfe, 1956)

```
1: input: (\boldsymbol{x}, \varphi)

2: Compute \boldsymbol{s} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{s} \in \mathcal{X}} \langle \boldsymbol{s}, \nabla \varphi(\boldsymbol{x}) \rangle

3: \gamma \in \operatorname*{arg\,min}_{\gamma \in [0,1]} \varphi(\boldsymbol{x} + \gamma(\boldsymbol{s} - \boldsymbol{x}))

4: Update \boldsymbol{x} \leftarrow (1 - \gamma)\boldsymbol{x} + \gamma\boldsymbol{s}

5: return: \boldsymbol{x}
```

algorithm (AFW) (Lacoste-Julien and Jaggi, 2015), as described in Algorithm 1. Other possible variants are discussed in Appendix A. We denote by x_t and y_t the iterates computed by FW-AL after t steps and by A_t the set of atoms previously given by the FW oracle (including the initialization point). If the constraint set is the convex hull of a set of atoms A, the iterate x_t has a sparse representation as a convex combination of the first iterate and the atoms previously given by the FW oracle. The set of atoms which appear in this expansion with non-zero weight is called the active set S_t . Similarly, since y_t is by construction in the cone generated by $\{Mx_s\}_{s\leq t}$, the iterate y_t is in the span of MA_t , that is, they both have the sparse expansion:

$$\boldsymbol{x}_t = \sum_{\boldsymbol{v} \in \mathcal{S}_t} \alpha_{\boldsymbol{v}}^{(t)} \boldsymbol{v}, \quad \text{and} \quad \boldsymbol{y}_t = \sum_{\boldsymbol{v} \in \mathcal{A}_t} \xi_{\boldsymbol{v}}^{(t)} M \boldsymbol{v}, \quad (5)$$

When we choose to use the AFW Alg. 1 as inner loop algorithm, it can choose an *away* direction to remove mass from "bad" atoms in the active set, i.e. to reduce $\alpha_v^{(t)}$ for some v (see L11 of Alg. 1), thereby avoiding the zig-zagging phenomenon that prevents

FW Augmented Lagrangian method (FW-AL)

At each iteration $t \geq 1$, we update the primal variable blocks x_t with a Frank-Wolfe step and then update the dual multiplier y_t using the updated primal variable:

$$\begin{cases} x_{t+1} = \mathcal{F}W(x_t; \mathcal{L}(\cdot, y_t)), \\ y_{t+1} = y_t + \eta_t M x_{t+1}, \end{cases}$$
 (6)

where $\eta_t > 0$ is the step size for the dual update and \mathcal{FW} is either Alg. 1 or Alg. 2 (see more in App. A).

FW from achieving a faster convergence rate (Lacoste-Julien and Jaggi, 2015). On the other hand, the maximal step size for an away step can be quite small $(\gamma_{\text{max}} = \alpha_v^{(t)}/1 - \alpha_v^{(t)})$, where $\alpha_v^{(t)}$ is the weight of the away vertex in (5)), yielding to arbitrary small suboptimality progress when the line-search is truncated to such small step-sizes. A step removing an atom from the active set is called a drop step (this is further discussed in Appendix A), and Alg. 1 loops until a non-drop step is obtained. It is important to be able to upper bound the cumulative number of drop-steps in order to guarantee the termination of the inner loop Alg. 1 (Alg. 1 ends only when it performs a non-drop step). In App. A.1 we prove that the cumulative number of drop-steps after t iterations cannot be larger than t+1.

4 Analysis of FW-AL

Solutions of (OPT2) are called saddle points, equivalently a vector $(\boldsymbol{x}^*, \boldsymbol{y}^*) \in \mathcal{X} \times \mathbb{R}^d$ is said to be a saddle point if the following is verified for all $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X} \times \mathbb{R}^d$,

$$\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{y}) \le \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{y}^*) \le \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}^*)$$
. (7)

Our assumptions (convexity of f and \mathcal{X} , feasibility of $M\mathbf{x} = 0$, and crucially boundedness of \mathcal{X}) are sufficient for strong duality to hold (Boyd and Vandenberghe, 2004, Exercise 5.25(e)). Hence, the set of saddle points is not empty and is equal to $\mathcal{X}^* \times \mathcal{Y}^*$, where \mathcal{X}^* is the set of minimizer of (OPT) and \mathcal{Y}^* the set of maximizers of the augmented dual function d:

$$d(\mathbf{y}) := \min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \mathbf{y}) . \tag{8}$$

One of the issue of ALM is that it is a non-feasible method and thus the function suboptimality is no longer a satisfying convergence criterion (since it can be negative). In the following section, we explore alternatives criteria to get a sufficient condition of convergence.

4.1 Convergence Measures

Variants of ALM (also known as the methods of multipliers) update at each iteration both the primal variable and the dual variable. For the purpose of analyzing the popular ADMM algorithm, Hong and Luo (2017) introduced two positive quantities which they called primal and dual gaps that we re-use in the analysis of our algorithm. Let x_t and y_t be the current primal and dual variables after t iterations of the FW-AL algorithm (6), the dual gap is defined as

$$\Delta_t^{(d)} := d^* - d(\boldsymbol{y}_t)$$
 where $d(\boldsymbol{y}_t) := \min_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}_t)$ (9)

and $d^* := \max_{\boldsymbol{y} \in \mathbb{R}^d} d(\boldsymbol{y})$. It represents the dual suboptimality at the t-th iteration. On the other hand, the "primal gap" at iteration t is defined as

$$\Delta_t^{(p)} := \mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_t) - d(\boldsymbol{y}_t), \quad t \ge 0. \tag{10}$$

Notice that $\Delta_t^{(p)}$ is *not* the suboptimality associated with the primal function $p(\cdot) := \max_{\boldsymbol{y} \in \mathbb{R}^d} \mathcal{L}(\cdot, \boldsymbol{y})$ (which is infinite for every non-feasible \boldsymbol{x}). In this paper, we also define the shorthand,

$$\Delta_t := \Delta_t^{(p)} + \Delta_t^{(d)} . \tag{11}$$

It is important to realize that since ALM is a non-feasible method, the standard convex minimization convergence certificates could become meaningless. In particular, the quantity $f(x_t) - f^*$ might be negative since x_t does not necessarily belong to the constraint set of (OPT). This is why it is important to consider the feasibility $||Mx||^2$.

In their work, Yen et al. (2016a,b); Huang et al. (2017) only provide a rate on both gaps (9) and (10) which is not sufficient to derive guarantees on either how close an iterate is to the optimal set or how small is the suboptimality of the closest feasible point. In this paper, we also prove the additional property that the feasibility $||Mx||^2$ converges to 0 as fast as Δ_t . But even with these quantities vanishing, the suboptimality of the closest feasible point can be significantly larger than the suboptimality of a point ϵ -close to the optimum. Concretely, let $x \in \mathcal{X}$ and let \tilde{x} be its projection onto $\{x \in \mathcal{X} \mid Mx = 0\}$, since f is L-smooth we know that,

$$|f(\tilde{\boldsymbol{x}}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \tilde{\boldsymbol{x}} - \boldsymbol{x} \rangle| \le \frac{L}{2} ||\boldsymbol{x} - \tilde{\boldsymbol{x}}||^2.$$
 (12)

On one hand, if the gradient is large and its angle with $\tilde{x} - x$ is not too small, $f(\tilde{x})$ may be significantly larger than f(x). On the other hand, if $\nabla f(x)$ is not too large, we can upper bound the suboptimality at \tilde{x} . Concretely, by (12) we get,

$$f(\tilde{x}) \le f(x) + \|\nabla f(x)\| \|x - \tilde{x}\| + \frac{L}{2} \|x - \tilde{x}\|^2$$
. (13)

Moreover, since \tilde{x} is the projection of x onto the nullspace of M we have that,

$$\frac{\|M\boldsymbol{x}\|}{\sigma_{\max}(M)} \le \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| \le \frac{\|M\boldsymbol{x}\|}{\sigma_{\min}(M)}.$$
 (14)

Then, if $||M\boldsymbol{x}|| \leq \epsilon$ and $f(\boldsymbol{x}) \leq \epsilon$ we have that

$$f(\tilde{x}) \le (1 + \frac{\|\nabla f(x)\|}{\sigma_{\min}(M)} + \frac{L\epsilon}{2\sigma_{\min}(M)^2})\epsilon$$
. (15)

The bound (15) is not practical when the function appears to have gradients with large norms (which can be the case even close to the optimum for constrained optimization) or when M appears to have small nonzero eigenvalues. This is why we also consider the case where f is strongly convex, allowing us to provide a bound on the distance to the optimum \boldsymbol{x}^* (unique due to strong convexity).

4.2 Properties of the augmented Lagrangian dual function

The augmented dual function plays a key role in our convergence analysis. One of our main technical contribution is the proof of a new property of this function which can be understood as a growth condition. This property is due to the smoothness of the objective function and the compactness of the constraint set. We will need an additional technical assumption called *interior qualification* (a.k.a *Slater's conditions*).

Assumption 1.
$$\exists x^{(k)} \in \text{Relint}(\mathcal{X}_k), k \in [K] \text{ s.t.}$$

 $\sum_{k=1}^{K} A_k x^{(k)} = 0.$

Recall that $x \in \text{Relint}(\mathcal{X})$ if and only if x is an interior point relative to the affine hull of \mathcal{X} . This assumption is pretty standard and weak in practice. It is a particular case of constraint qualifications (Holmes, 1975; Gowda and Teboulle, 1990). With this assumption, we can deduce a global property on the dual function that can be summarized as a quadratic growth condition on a ball of size $L_{\lambda}D^2$ and a linear growth condition outside of this ball. The optimization literature named such properties error bounds (Pang, 1997).

Theorem 1 (Error bound). Let d be the augmented dual function (8), if f is a L-smooth convex function, \mathcal{X} a compact convex set and if Assump. 1 holds, then there exist a constant $\alpha > 0$ such that for all $\mathbf{y} \in \mathbb{R}^d$,

$$d^* - d(\boldsymbol{y}) \ge \frac{\alpha^2}{2} \min \left\{ \frac{\operatorname{dist}(\boldsymbol{y}, \mathcal{Y}^*)^2}{L_{\lambda} D^2}, \operatorname{dist}(\boldsymbol{y}, \mathcal{Y}^*) \right\}, (16)$$

where $D := \max_{(\boldsymbol{x}, \boldsymbol{x}') \in \mathcal{X}^2} \|\boldsymbol{x} - \boldsymbol{x}'\|$ is the diameter of \mathcal{X} and $L_{\lambda} := L + \lambda \|M^{\top}M\|$.

This theorem, proved in App. C.1, is crucial to our analysis. In our *descent lemma* (25), we want to relate the gap decrease to a quantity proportional to the gap. A consequence of (16) is a lower bound of interest: (26).

Issue in previous proofs. In previous work, Yen et al. (2016a, Theorem 2) have a constant called R_Y in the upper bound of Δ_t which may be infinite and lead to the trivial bound $\Delta_t \leq \infty$. Actually, R_Y is an upper bound on the distance of the dual iterate y_t to the optimal solution set \mathcal{Y}^* of the augmented dual function. Since this quantity is not proven to be bounded, an element is missing in the convergence analysis. In their convergence proof, Yen et al. (2016b) and Huang et al. (2017) use Lemma 3.1 from Hong and Luo (2012) (which also appears as Lemma 3.1 in the published version (Hong and Luo, 2017)). This lemma states a result not holding for all $y \in \mathbb{R}^d$ but instead for $(y_t)_{t \in \mathbb{N}}$, which is the sequence of dual variables computed by the ADMM algorithm used in (Hong and Luo, 2017). This sequence cannot be assimilated to the sequence of dual variables computed by the GDMM algorithm since the update rule for the primal variables in each algorithm is different: the primal variable are updated with FW steps in one algorithm and with a proximal step in the other. The properties of this proximal step are intrinsically different from the FW steps computing the updates on the primal variables of FW-AL. To our knowledge, there is no easy fix (details in App. B.1) to get a similar result as the one claimed in (Yen et al., 2016b, Lem. 4) and (Huang et al., 2017, Lem. 4).

4.3 Specific analysis for FW-AL

Convergence over general convex sets. When \mathcal{X} is a general convex compact set and f is L-smooth, Algorithms 1 and 2 are able to perform a decrease on the objective value proportional to the square of the suboptimality (Jaggi, 2013, Lemma 5), (Lacoste-Julien and Jaggi, 2015, (31)), we will call this a *sublinear decrease* since it leads to a sublinear rate for the suboptimality: for any $x \in \mathcal{X}, y \in \mathbb{R}^d$ they compute $x^+ := \mathcal{FW}(x; \mathcal{L}(\cdot, y))$, such that for all $\gamma \in [0, 1]$,

$$\mathcal{L}(\boldsymbol{x}^+\!,\boldsymbol{y})\!-\!\mathcal{L}(\boldsymbol{x},\boldsymbol{y}) \leq \gamma(d(\boldsymbol{y})-\mathcal{L}(\boldsymbol{x},\boldsymbol{y}))\!+\!\frac{\gamma^2L_{\lambda}D^2}{2},\!(17)$$

where L_{λ} is the Lipschitz constant of $\nabla \mathcal{L}$ and D the diameter of \mathcal{X} . Recall that $d(y) := \min_{x' \in \mathcal{X}} \mathcal{L}(x', y)$. Note that setting $\gamma = 0$ gives $\mathcal{L}(x^+, y) \leq \mathcal{L}(x, y)$ and optimizing the RHS respect to γ yields a decrease proportional to $(d(y) - \mathcal{L}(x, y))^2$. The GDMM algorithm of Yen et al. (2016a,b); Huang et al. (2017) relies on the assumption of \mathcal{X} being polytope, hence we obtain under this general assumption of sublinear decrease a new result on ALM with FW. This result covers the case of the simultaneously sparse and low rank matrices (33) where the trace norm ball is not a polytope.

Theorem 2 (Rate of FW-AL with Alg. 2). Under Assumption 1, if \mathcal{X} is a convex compact set and f is a L-smooth convex function and M has the form

described in (2), then using any algorithm with sublinear decrease (17) as inner loop in FW-AL (6) and $\eta_t := \min\left\{\frac{2}{\lambda}, \frac{\alpha^2}{2\delta}\right\} \frac{2}{t+2}$, we have that there exists a bounded $t_0 \geq 0$ such that $\forall t \geq t_1 \geq t_0$,

$$\Delta_t \le \frac{4\delta(t_0 + 2)}{t + 2}, \min_{t_1 \le s - 1 \le t} ||M\boldsymbol{x}_s||^2 \le \frac{O(1)}{t - t_1 + 1}$$
 (18)

where $D := \max_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{X}} \|\boldsymbol{x} - \boldsymbol{x}'\|$ is the diameter of \mathcal{X} , $L_{\lambda} := L + \lambda \|M^{\top}M\|$ the Lipschitz constant of $\nabla \mathcal{L}$, $\delta := L_{\lambda}D^2$ and α is defined in Thm. 1.

In App. D.2, we provide an analysis for different step size schemes and explicit bounds on t_0 .

Convergence over Polytopes. On the other hand, if \mathcal{X} is a polytope and f a generalized strongly convex function, recent advances on FW proposed global linear convergence rates using FW with away steps (Lacoste-Julien and Jaggi, 2015; Garber and Meshi, 2016). Note that in the augmented formulation, $\lambda > 0$ and thus $\frac{1}{2} \| M \cdot \|^2$ is a generalized strongly convex function, making $\mathcal{L}(\cdot, \boldsymbol{y})$ a generalized strongly convex function for any $\boldsymbol{y} \in \mathbb{R}^d$ (see App. A.3 for details). We can then use such linearly convergent algorithms to improve the rate of FW-AL. More precisely, we will use the fact that Algorithm 1 performs a geometric decrease (Lacoste-Julien and Jaggi, 2015, Theorem 1): for $\boldsymbol{x}^+ := \mathcal{FW}(\boldsymbol{x}; \mathcal{L}(\cdot, \boldsymbol{y}))$, there exists $\rho_A < 1$ such that for all $\boldsymbol{x} \in \mathcal{X}$ and $\boldsymbol{y} \in \mathbb{R}^d$,

$$\mathcal{L}(\boldsymbol{x}^+, \boldsymbol{y}) - \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) \leq \rho_A \left[\min_{\boldsymbol{x}' \in \mathcal{X}} \mathcal{L}(\boldsymbol{x}', \boldsymbol{y}) - \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) \right]. (19)$$

The constant ρ_A (Lacoste-Julien and Jaggi, 2015) depends on the smoothness, the generalized strong convexity of $\mathcal{L}(\cdot, \boldsymbol{y})$ (does not depend on \boldsymbol{y} , but depends on M) and the condition number of the set \mathcal{X} depending on its geometry (more details in App. A.3).

Theorem 3 (Rate of FW-AL with inner loop Alg. 1). Under the same assumptions as in Thm. 2 and if more-over \mathcal{X} is a polytope and f a generalized strongly convex function, then using Alg 1 as inner loop and a constant step size $\eta_t = \frac{\lambda \rho_A}{4}$, the quantity Δ_t decreases by a uniform amount for finite number of steps t_0 as,

$$\Delta_{t+1} - \Delta_t \le -\frac{\lambda \alpha^2 \rho_A}{8} \,, \tag{20}$$

until $\Delta_{t_0} \leq L_{\lambda}D^2$. Then for all $t \geq t_0$ we have that the gap and the feasibility violation decrease linearly as,

$$\Delta_t \le \frac{\Delta_{t_0}}{(1+\rho)^{t-t_0}}, \|M\boldsymbol{x}_{t+1}\|^2 \le \frac{16}{\lambda \cdot \rho_A} \frac{\Delta_{t_0}}{(1+\rho)^{t-t_0}},$$

where $\rho := \min\left\{\frac{\rho_A}{2}, \frac{\rho_A \lambda \alpha^2}{8L_\lambda D^2}\right\}$ and $L_\lambda := L + \lambda \|M^\top M\|$.

Strongly convex functions. When the objective function f is strongly convex, we are able to give a convergence rate for the distance of the primal iterate to the optimum. As argued in Sec. 4.1, an iterate close to the optimal point lead to a "better" approximate solution than an iterate achieving a small gap value.

Theorem 4. Under the same assumptions as in Thm. 2, if f is a μ -strongly convex function, then the set of optimal solutions \mathcal{X}^* is reduced to $\{x^*\}$ and for any $t \geq t_1 \geq 8t_0 + 14$,

$$\min_{t_1+1 \le s \le t+1} \|\boldsymbol{x}_t - \boldsymbol{x}^*\|^2 \le \frac{4}{\mu} \frac{O(1)}{t - t_1 + 1} \ . \tag{21}$$

Moreover, if \mathcal{X} is a compact polytope, and if we use Alg. 1, then the distance of the current point to the optimal set vanishes as (with ρ as defined in Thm. 3):

$$\|\boldsymbol{x}_{t+1} - \boldsymbol{x}^*\|^2 \le \frac{2\Delta_{t_0}(\sqrt{2}+1)}{\mu(\sqrt{1+\rho})^{t-t_0}} + \frac{O(1)}{(1+\rho)^{t-t_0}} \ . \tag{22}$$

This theorem is proved in App. D (Cor. 2 and Cor. 3). For an intersection of sets, the three theorems above give stronger results than (Yen et al., 2016b; Huang et al., 2017) since we prove that the distance to the optimal point as well as the feasibility vanish linearly.

Proof sketch of Thm 2 and 3. Our goal is to obtain a convergence rate on the sum gaps (9) and (10). First we show that the dual gap verifies

$$\Delta_{t+1}^{(d)} - \Delta_t^{(d)} \le -\eta_t \langle M \boldsymbol{x}_{t+1}, M \hat{\boldsymbol{x}}_{t+1} \rangle \tag{23}$$

where $\hat{x}_{t+1} := \arg\min_{x \in \mathcal{X}} \mathcal{L}(x, y_{t+1})$. Similarly, we prove the following inequality for the primal gap

$$\Delta_{t+1}^{(p)} - \Delta_{t}^{(p)} \leq \eta_{t} ||M \boldsymbol{x}_{t+1}||^{2}
+ \mathcal{L}(\boldsymbol{x}_{t+2}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1})
- \eta_{t} \langle M \boldsymbol{x}_{t+1}, M \hat{\boldsymbol{x}}_{t+1} \rangle .$$
(24)

Summing (23) and (24) and using that $||M\boldsymbol{x}_{t+1}|| - M\hat{\boldsymbol{x}}_{t+1}||^2 \le \frac{2}{\lambda} \left(\mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\hat{\boldsymbol{x}}_{t+1}, \boldsymbol{y}_{t+1})\right)$, we get the following fundamental descent lemma,

$$\Delta_{t+1} - \Delta_{t} \leq \mathcal{L}(\boldsymbol{x}_{t+2}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) + \frac{2\eta_{t}}{\lambda} \left(\mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\hat{\boldsymbol{x}}_{t+1}, \boldsymbol{y}_{t+1}) \right) - \eta_{t} \|M\hat{\boldsymbol{x}}_{t+1}\|^{2}.$$
(25)

We now crucially combine (16) in Thm. 1 and the fact that $\Delta_t^{(d)} \leq \operatorname{dist}(\boldsymbol{y}^t, \mathcal{Y}^*) \| M \hat{\boldsymbol{x}}_{t+1} \|$ to obtain,

$$\frac{\alpha^2}{2L_{\lambda}D^2}\min\{\Delta_{t+1}^{(d)}, L_{\lambda}D^2\} \le \|M\hat{\boldsymbol{x}}_{t+1}\|^2, \qquad (26)$$

and then,

$$\Delta_{t+1} - \Delta_{t} \leq \mathcal{L}(\boldsymbol{x}_{t+2}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) + \frac{2\eta_{t}}{\lambda} \left(\mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\hat{\boldsymbol{x}}_{t+1}, \boldsymbol{y}_{t+1}) \right) - \eta_{t} \frac{\alpha^{2}}{2L_{\lambda}D^{2}} \min\{\Delta_{t+1}^{(d)}, L_{\lambda}D^{2}\}.$$
(27)

Now the choice of the algorithm to get x_{t+2} from x_{t+1} and y_{t+1} is decisive:

If \mathcal{X} is a polytope and if an algorithm with a geometric decrease (19) is used, setting $\eta_t = \frac{\lambda \cdot \rho_A}{4}$ we obtain

$$\Delta_{t+1} - \Delta_t \le -\frac{\rho_A}{2} \left(\mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\hat{\boldsymbol{x}}_{t+1}, \boldsymbol{y}_{t+1}) \right) - \frac{\lambda \cdot \rho_A}{4} \|M \boldsymbol{x}_{t+1}\|^2.$$

Since $\mathcal{L}(x_{t+2}, y_{t+1}) \leq \mathcal{L}(x_{t+1}, y_{t+1})$ (L13), we have

$$\Delta_{t+1}^{(p)} \le \mathcal{L}(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) - \mathcal{L}(\hat{\boldsymbol{x}}_{t+1}, \boldsymbol{y}_{t+1}),$$
 (28)

leading us to a geometric decrease for all $t \geq t_0$,

$$\Delta_{t+1} \le \frac{\Delta_t}{1+\rho} \text{ where } \rho := \frac{\rho_A}{2} \min\left\{1, \frac{\lambda \alpha^2}{8L_{\lambda}D^2}\right\}.$$
 (29)

Additionally we can deduce from (25) that,

$$\eta_t ||M\hat{x}_{t+1}||^2 \le \Delta_t \text{ and } \eta_t ||Mx_{t+1}||^2 \le 4\Delta_t.$$
 (30)

If \mathcal{X} is not a polytope, we can use an algorithm with a sublinear decrease (17) to get from (27) that $\forall t \geq 0$,

$$\Delta_{t+1} - \Delta_t \le -a\eta_t \min\{\Delta_{t+1}, \delta\} + (a\eta_t)^2 \frac{C}{2},$$
 (31)

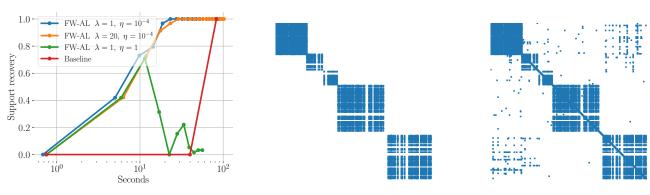
where a, δ and C are three positive constants. Setting $\eta_t = \frac{2}{a(t+2)}$ we can prove that there exists $t_0 \geq \frac{C}{\delta}$ s.t.,

$$\Delta_{t+1} \le \frac{4\delta(2+t_0)}{(t+2)}, \quad \forall t \ge t_0 \ .$$
 (32)

Providing the claimed convergence results.

5 Illustrative Experiments

Recovering a matrix that is simultaneously low rank and sparse has applications in problems such as covariance matrix estimation, graph denoising and link prediction (Richard et al., 2012). We compared FW-AL with the proximal splitting method on a covariance matrix estimation problem. We define the $\|\cdot\|_1$ norm of a matrix S as $\|S\|_1 := \sum_{i,j} |S_{i,j}|$ and its trace norm as $\|S\|_* := \sum_{i=1}^{\operatorname{rank}(S)} \sigma_i$, where σ_i are the singular values of S in decreasing order. Given a symmetric positive definite matrix $\hat{\Sigma} \in \mathbb{R}^{d \times d}$ we use the square loss as



- (a) Fraction of the support recovered.
- (b) Matrix recovered with FW-AL.
- (c) Matrix recov. with the baseline.

Figure 1: Fig. 1a represent the fraction of the support of Σ recovered as a function of time ($d^2 = 1.6 \cdot 10^7$ and the matrix computed is thresholded at 10^{-2}). The baseline is the generalized forward backward algorithm. FW-AL requires a small enough step size η to recover the support otherwise it diverges (green curve) and does not require a lot of tuning for λ (blue and orange curve). Fig 1b and 1c compare the matrices recovered for $d^2 = 10^6$ after one minute of computation.

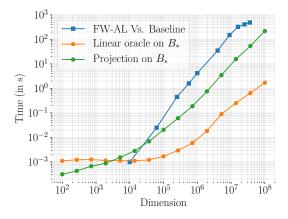


Figure 2: Time complexity of the LMO vs. the projection on the trace norm ball. The blue curve represents the time spent by the generalized forward backward algorithm to reach a better point than the one computed by FW-AL.

strongly convex objective for our optimization problem,

$$\min_{S \succeq 0, \|S\|_1 \le \beta_1, \|S\|_* \le \beta_2} \|S - \hat{\Sigma}\|_2^2.$$
 (33)

The linear oracle for $\mathcal{X}_1 := \{S \succeq 0, ||S||_1 \leq \beta_1\}$ is

$$\mathrm{LMO}_{\mathcal{X}_1}(D) := \beta_1 \tfrac{E_{ij} + E_{ji}}{2}, \ (i,j) \in \mathop{\arg\min}_{(i,j) \in [d] \times [d]} D_{i,j} + D_{j,i}$$

where (E_{ij}) is the standard basis of $\mathbb{R}^{d \times d}$. The linear oracle for $\mathcal{X}_2 := \{ S \succeq 0, ||S||_* \leq \beta_2 \}$ is

$$LMO_{\mathcal{X}_2}(D) := \beta_2 \cdot U_1^{\top} U_1 , \qquad (34)$$

where $D = [U_1, \dots, U_d] \operatorname{diag}(\sigma_1, \dots, \sigma_d) [U_1, \dots, U_d]^{\top}$. For this problem, the matrix D is always symmetric because the primal and dual iterates are symmetric as well as the gradients of the objective function. Eq. (34) can be computed efficiently by the Lanczos

algorithm (Paige, 1971; Kuczyński and Woźniakowski, 1992) whereas the forward backward splitting which is the standard splitting method to solve (33) needs to compute projections over the trace norm ball via a complete diagonalization which is $O(d^3)$. For large d, the full diagonalization becomes untractable, while the Lanczos algorithm is more scalable and requires less storage (see Fig. 2).

The experimental setting is done following Richard et al. (2012): we generated a block diagonal covariance matrix Σ to draw *n* vectors $\boldsymbol{x}_i \sim \mathcal{N}(0, \Sigma)$. We use 5 blocks of the form $\boldsymbol{v}\boldsymbol{v}^{\top}$ where $\boldsymbol{v} \sim \mathcal{U}([-1,1])$. In order to enforce sparsity, we only kept the entries (i, j) such that $|\Sigma_{i,j}| > .9$. Finally, we add a gaussian noise $\mathcal{N}(0,\sigma)$ on each entry x_i and observe $\hat{\Sigma} = \sum_{i=1}^n x_i x_i^T$. In our experiment $n = d, \sigma = 0.6$. We apply our method, as well as the the generalized forward backward splitting used by Richard et al. (2012). This algorithm is the baseline in our experiments. It has been originally introduced by Raguet et al. (2013), to optimize (33) performing projections over the constraint sets. The results are presented in Fig. 1 and 2. We can say that our algorithm performs better than the baseline for high dimensional problems for two reasons: in high dimensions, only one projection on the trace norm ball B_* can take hours (green curve in Fig. 2) whereas solving a LMO over B_* takes few seconds. Moreover, the iterates computed by FW-AL are naturally sparse and low rank, so we then get a better estimation of the covariance matrix at the beginning of the optimization as illustrated in Fig. 1b and 1c.

Acknowledgments

We thank an anonymous reviewer for valuable comments which enabled us to improve the proofs. This research was partially supported by the Canada Excellence Research Chair in "Data Science for Realtime Decision-making", by the NSERC Discovery Grant RGPIN-2017-06936 and by the European Union's Horizon 2020 research and innovation program under the Marie Skłodorowska-Curie grant agreement 748900.

References

- J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic, and S. Lacoste-Julien. Unsupervised learning from narrated instruction videos. In CVPR, 2016.
- H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.
- A. Beck and S. Shtern. Linearly convergent awaystep conditional gradient for non-strongly convex functions. *Math. Program.*, 2016.
- D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Athena Scientific, 1996.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 2011.
- J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 2010.
- D. J. M. Danskin. The directional derivative. In The Theory of Max-Min and Its Application to Weapons Allocation Problems. Springer Berlin Heidelberg, 1967.
- M. Frank and P. Wolfe. An algorithm for quadratic programming. *Naval Research Logistics*, 1956.
- D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. *Computers & Mathematics with Applications*, 1976.
- D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. In NIPS, 2016.
- R. Glowinski and A. Marroco. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis, 1975.

- R. Glowinski, S. J. Osher, and W. Yin. Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, 2017.
- D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing the sum of two convex functions. *Mathematical Programming*, 2013.
- M. S. Gowda and M. Teboulle. A comparison of constraint qualifications in infinite-dimensional convex programming. SIAM Journal on Control and Optimization, 1990.
- A. Gramfort, B. Thirion, and G. Varoquaux. Identifying predictive regions from fMRI with TV-L1 prior. In *International Workshop on Pattern Recognition in Neuroimaging*. IEEE, 2013.
- R. B. Holmes. Geometric functional analysis and its applications. Springer, 1975.
- M. Hong and Z.-Q. Luo. On the linear convergence of the alternating direction method of multipliers. arXiv:1208.3922, 2012.
- M. Hong and Z.-Q. Luo. On the linear convergence of the alternating direction method of multipliers. *Math. Program.*, 2017.
- X. Huang, I. E.-H. Yen, R. Zhang, Q. Huang, P. Ravikumar, and I. Dhillon. Greedy direction method of multiplier for MAP inference of large output domain. In AISTATS, 2017.
- M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In *ICML*, 2013.
- H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition. 2016.
- J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM. J. Matrix Anal. & Appl., 1992.
- S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In NIPS, 2015.
- S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. In *ICML*, 2013.
- S. Łojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations aux dérivées partielles, 1963.
- Y. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Springer US, 2004.
- Y. Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective function. CORE Discussion Paper, 2016.

- G. Obozinski, L. Jacob, and J.-P. Vert. Group lasso with overlaps: the latent group lasso approach. arXiv:1110.0413, 2011.
- C. C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis, University of London, 1971.
- J.-S. Pang. A posteriori error bounds for the linearlyconstrained variational inequality problem. *Mathe*matics of Operations Research, 1987.
- J.-S. Pang. Error bounds in mathematical programming. *Math. Program.*, 1997.
- B. T. Polyak. Gradient methods for minimizing functionals. Zh. Vychisl. Mat. Mat. Fiz., 1963.
- H. Raguet, J. Fadili, and G. Peyré. A generalized forward-backward splitting. SIAM Journal on Imaging Sciences, 2013.
- E. Richard, P.-A. Savalle, and N. Vayatis. Estimation of simultaneously sparse and low rank matrices. In *ICML*, 2012.
- R. T. Rockafellar. *Convex analysis*. Princeton university press, 1970.
- R. T. Rockafellar and R. J. Wets. Variational analysis. Springer, 1998.
- E. Ryu and S. Boyd. Primer on monotone operator methods. *Appl. Comput. Math*, 2016.
- S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. *Mach. Learn.*, 2010.
- P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex optimization. *Journal of Machine Learning Research*, 2014.
- M. Yan and W. Yin. Self equivalence of the alternating direction method of multipliers. In *Splitting Methods in Communication, Imaging, Science, and Engineering*. Springer, 2016.
- J. Yang and X. Yuan. Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization. *Mathematics of computation*, 2013.
- I. Yen, X. Huang, K. Zhong, R. Zhang, P. Ravikumar, and I. Dhillon. Dual decomposed learning with factorwise oracle for structural SVM with large output domain. In NIPS, 2016b.
- I. E.-H. Yen, X. Lin, J. Zhang, P. Ravikumar, and I. Dhillon. A convex atomic-norm approach to multiple sequence alignment and motif discovery. In *ICML*, 2016a.
- A. Yurtsever, Q. T. Dinh, and V. Cevher. A universal primal-dual convex optimization framework. In NIPS, 2015.