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Appendices
A Generative models and empirical

moments

Spherical Gaussian Mixtures The spherical Gaussian
mixture model posits that the data matrix, X ∈ RD×N ,
consists of N data points represented as D dimensional
vectors. The generative process for the nth data point, xn,
is

hn ∼ Multinomial(1,πππ),

xn|hn,A ∼ N (ahn , σ
2).

where ahn
is the (hn)

th column (topic) in the topics matrix
A ∈ RD×K , and πππ ∈ RK represents the probability of data
points to be drawn from each topic (

∑K
k=1 πk = 1). A

schematic illustration is presented in Figure 1.

Hsu and Kakade [2013] showed that if we estimate the
variance of the Gaussians, σ2, as the smallest eigenvalue of
the covariance matrix, E[x⊗ x]−E[x]⊗E[x], the empirical
estimates

Ŝ = E[x⊗ x]− σ2I (1)

T̂ = E[x⊗ x⊗ x]− σ2
D∑
i=1

(E[x]⊗ ei ⊗ ei

+ ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]), (2)

converge to the theoretical moments of the model -

S =
∑
k

πkakaTk , (3)

T =
∑
k

πkak ⊗ ak ⊗ ak. (4)

Gamma-Poisson Model The second model we will fo-
cus on is the the gamma-Poisson (GP) generative model
described in Podosinnikova et al. [2015]. The GP model

Figure 1: Schematic illustration of the gamma-Poisson and
mixture of Gaussians generative models.

is closely related to latent Dirichlet allocation (LDA) [Po-
dosinnikova et al., 2015]. In addition to its popular use for
modeling text corpora [Blei et al., 2003], the GP model is
also relevant for capturing structure in applications where
not all counts may be recorded (such as what parts of the
genome are sequenced in genomics). A schematic illustra-
tion is presented in Figure 1.

Formally, we represent the data as a matrix X ∈ ND×N0

(that is, the data X is a matrix of non-negative integers),
with every column xn sampled according to

αnk ∼ Gamma(ck, b),
xd|αn,A ∼ Poisson([Aαααn]d).

Here, the global topics matrix A ∈ RD×K+ can be inter-
preted as the collection of rates of word d in topic k; fol-
lowing Podosinnikova et al. [2015] and without loss of
generality we constrain the columns in A to sum to 1. The
observation-specific vector αn ∈ RK determines the rel-
ative contribution of each of the K topics for a particular
observation n. The parameters b and c ∈ RK are constants
that encode our prior about both the length and relative
popularities of the topics. In the context of text modeling,
every element xdn can be thought of as representing the
number of times the dth word in the vocabulary appears in
the nth document, with the mean document length being
L =

∑
k ck/b.

In this work, we will use the following second and third or-
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der tensors, first introduced by Podosinnikova et al. [2015]:

Ŝ = cov(x, x)− diag(E(x)) (5)

T̂d1,d2,d3 = cum(xd1 , xd2 , xd3) + 2δd1d2d3E(xd1)
− δd2d3cov(xd1 , xd2)− δd1d3cov(xd1 , xd2)
− δd1d2cov(xd1 , xd3) (6)

where δ is the Kronecker delta and the second and third
cumulants are defined as

cov(xd1 , xd2) = E[(xd1 − E[xd1 ])(xd2 − E[xd2 ])],
cum(xd1 , xd2 , xd3) = E[(xd1 − E[xd1 ])

(xd2 − E[xd2 ])(xd3 − E[xd3 ])].

These empirical tensors Ŝ and T̂ will converge to

S =
∑
k

skakaTk , (7)

T =
∑
k

tkak ⊗ ak ⊗ ak. (8)

where ak is the kth column of A, sk = var(αk) and tk =
cum(αk, αk, αk).

Note that we use the moments for the Gaussian mixtures,
while for the GP model we calculate the central moments.

B Estimation of variance for Gaussian
mixtures

When applying the WTPM to Gaussian mixtures, some
attention must be paid to correctly estimating the variance
of the mixtures. If the estimate for cov(x, x) is exact, its
D −K smallest eigenvalues are equal to σ2, while all other
eigenvalues are strictly larger than σ2. Therefore Hsu and
Kakade [2013] suggest using the smallest eigenvalue of
cov(x, x) as an estimate for the variance of the Gaussians.
In practice, we find that the mean of the D −K smallest
eigenvalues yields better estimate, and that the quality of
inference is very sensitive to this estimate.

Furthermore, poorly estimated moments lead to a large es-
timation error for σ2, and therefore to perform the WTPM
on Gaussian mixtures, we first calculate the variance of the
Dc−K smallest eigenvalues of cov(xc, xc), where xc is the
data vector containing only the Dc complete dimensions.

Adopting the interpretation of weighting the moments esti-
mates as a rescaling of the dimensions, such rescaling would
deform the spherical Gaussian mixtures into elliptical Gaus-
sians. In appendix C we show that a weighting of the form
given in 6 naturally leads to the correct form of the moments,
and therefore once σ2 is calculated, no further modification
is needed to apply the WTPM to Gaussian mixtures.

C Moments for elliptical Gaussian mixtures

In this appendix we discuss the modifications to the mo-
ments estimates for elliptical Gaussian mixtures. We adopt
the interpretation introduced earlier of viewing the weight-
ing of the moments according to 6 as a rescaling of the
data, x∗dn = xdnwd. Following a similar derivation to that
presented in Hsu and Kakade [2013] for non-spherical Gaus-
sian mixtures, the estimates for the moments of the rescaled
data are

Ŝ∗d1d2 = E[x∗d1x
∗
d2 ]− σ

∗2
d1 I

T̂ ∗d1d2d3 = E[x∗d1x
∗
d2x
∗
d3 ]− σ

∗2
d1E[x

∗
d1 ]δd2δd3

− σ∗2d2 δd1E[x
∗
d2 ]δd3 − σ

∗2
d3 δd1δd2E[x

∗
d3 ],

where σ∗2d is the standard deviation of the rescaled dimen-
sion d. The difficulty in applying the tensor decomposition
method to non-spherical Gaussian mixtures lies in the fact
that we don’t know of a straight forward way compute σ∗2d ,
whereas in the case of spherical mixtures (σ2

d = σ2 for all
d), the variance is simply the smallest eigenvalue of the ma-
trix E[x⊗ x]− E[x]⊗ E[x]. However, if we know that the
original data is generated by a spherical Gaussian mixture
with standard deviation σ2, the standard deviation of every
dimension after rescaling by wd is σ∗2d = w2

dσ
2.

This implies that the rescaled moments can be written as

Ŝ∗d1d2 = wd1wd2 Ŝd1d2

T̂ ∗d1d2d3 = wd1wd2wd3 T̂d1d2d3 .

This result, similar to equations 4 and 5 implies that the same
weighting scheme used in our algorithm can be applied to
Gaussian mixtures as well.

D Insensitivity to structure of topics

In this appendix we demonstrate that our results are insen-
sitive to the exact structure of the topics. In Figure 2 we
show results similar to the results shown in Figure 4 for ex-
periments performed with randomly generated topics. Each
data point is an average over 25 experiments, where for each
experiment A ∈ RD×K+ was generated by sampling each
of the K = 4 columns in A from Dir(1). The qualitative
effect of a transition between the full dimensionality method
to the partial dimensionality method being optimal is still
observed, as well as the ability of the WTPM to perform at
least as well as the better of the two methods for the entire
range of parameter space studied.

E Optimal weights for minimization of
inference error

Gamma-Poisson model We wish to find the weights
wd which minimize the topics reconstruction error. Us-



Figure 2: Reconstruction error for the complete dimensions
of synthetic data, εc, vs. N , where every incomplete di-
mension has a different probability, pd, to be observed. A
different topics matrix, A, is sampled for each test. Each
data point is an average over 25 runs.

ing results from Anandkumar et al. [2012], Podosin-
nikova et al. [2015] showed that the inference error is
bounded by the sum of two contributions, one originat-
ing in the uncertainty in estimating Ŝ, which scales as
E
[
||Ŝ− S||F

]
/(σK(A)L)2, and one from T̂, which scal-

ing as E
[
||T̂− T||F

]
/(σK(A)L)3, where σK(A) is the

K-th largest singular value of A.

In the following we shall make the assumption that D is
significantly larger than K and thus the singular values of
the topics matrix will be well approximated by the dimen-
sions with no missing values, that is, we may treat σK(A)
as constant with respect to our choice of weights.

We derive weights that minimize an upper bound of
E
[
||Ŝ− S||F

]
/L2. The same set of weights wd ∝ pd ap-

proximately minimize E
[
||T̂− T||F

]
/L3, and the deriva-

tion is similar. Thus, we minimize an a quantity that is
bounded away from the actual inference error by the sum of
the Jensen gaps:

E
[
||Ŝ− S||F

]
<

√
E
[
||Ŝ− S||2F

]
,

E
[
||T̂− T||F

]
<

√
E
[
||T̂− T||2F

]
.

We first observe that the weighting of Ŝ rescales the Frobe-

nius error in the following way:

E
[
||Ŝ∗ − S∗||F

]
<

√
E
[
||Ŝ∗ − S∗||2F

]

=

√√√√√E

 D∑
d1,d2=1

(Ŝ∗d1d2 − S
∗
d1d2

)2



=

√√√√√E

 D∑
d1,d2=1

w2
d1
w2
d2
(Ŝd1d2 − Sd1d2)2


=

√√√√ D∑
d1,d2

w2
d1
w2
d2
E
[
(Ŝd1d2 − Sd1d2)2

]

We observe that the uncertainty in Ŝ scales as 1
Nd1d2

, where
Nd1d2 is the number of times an estimate for Sd1d2 can
be calculated from the data, i.e. the number of samples for
which both xd1n and xd2n are observed -Nd1d2 = Npd1pd2 .
Thus, we can choose γd1,d2 such that

E
[(

Ŝ− S
)2
d1,d2

]
≤ γd1,d2
Npd1pd2

.

Note that γd1,d2 is independent of the weighting. We can
then write:

E
[
||Ŝ
∗
− S∗||F

]
≤

√√√√ D∑
d1,d2

γd1,d2w
2
d1
w2
d2

Npd1pd2
≡ E∗S .

The mean document length, L = E
[∑D

d1
E [X]d1

]
, is also

rescaled by the weights:

L∗ = E

[
D∑
d1

E [X]
∗
d1

]

= E

[
D∑
d1

wd1E [X]d1

]
= bw>Ac

The goal is to minimizeE∗S/(L
∗)2, which is an upper bound

for E
[
||Ŝ
∗
− S∗||F

]
/(L∗)2, over the closed unit hypercube

in RD.

In general, we observe that E∗S/(L
∗)2 (and respectively

E∗T /(L
∗)3) may not be convex in the choice of weights,

thus an analytic derivation for the optima may not be feasi-
ble. However, under our existing assumptions, we see that
E∗S/(L

∗)2 (and respectively E∗T /(L
∗)3) is coordinate-wise

convex and hence we may seek local minima by computing
the stationary points of E∗S/(L

∗)2:



0 =
∂

∂wd∗

(
E∗S

(L∗)2

)

=
∂

∂wd∗


√∑D

d1,d2

γd1,d2
w2

d1
w2

d2

Npd1pd2

bw>Ac

 .

Differentiating, we get

0 =

4

(
D∑

d1=1

γd1,d∗w
2
d1
wd∗

Npd1pd∗

)

2bw>Ac

√∑D
d1,d2

γd1,d2
w2

d1
w2

d2

Npd1pd2

−
b [Ac]d∗

√∑D
d1,d2

γd1,d2
w2

d1
w2

d2

Npd1pd2

(bw>Ac)
2

which simplifies to

wd∗

pd∗
=
[Ac]d∗

w>Ac


∑D
d1,d2

γd1,d2
w2

d1
w2

d2
Npd1pd2

2

D∑
d1=1

γd1,d∗w
2
d1

Npd1

 .

For a high dimensional problem, choosing D to be suffi-
ciently large, we may consider the contributions from wd∗

in RHS of the above negligible—in the numerator there are
D terms including wd∗ in a sum of D2 terms and in the de-
nominator there is one term out of D. Therefore for large D
the expression within the RHS brackets can be considered
constant. Thus, we obtain the scaling w∗d ∝ p∗d.

Should we make an additional choice of a constant γ such
that [

Ŝ− S
]
d1,d2

≤ γ

Npd1pd2
,

reflecting disregard for the structure in the data, we obtain
the following expression for E∗S/(L

∗)2

E∗S/(L
∗)2 =

√
γ
N

∑
d

w2
d√
pd

(bw>Ac)2
.

The above formulation of E∗S/(L
∗)2 is convex and yields a

globally optimal weighting with the choice: wd ∝
√
pd.

In experimentations we find that the two choices of weights,
wd ∝

√
pd and wd ∝ pd perform indistinguishably.

Generalization to other models In our approach, we ex-
pect the optimal weights to depend on the specific model
used. Computing the optimal weights for different mod-
els requires complexity bounds results to determine how

the inference error depends on the moments estimation er-
ror and any other parameters which might change with the
weighting (an equivalent result to the ε ∼ E[||Ŝ− S||F ]/L2

scaling presented in the beginning of this appendix). Given
these model dependent results, the optimal wrights for ev-
ery moment can be easily computed by following the same
straight-forward method used in this appendix, namely cal-
culating the scaled inference errors and differentiating with
respect to the weights.
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