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Appendix

A Proofs of theoretical results

A.1 Theorem 1

Proof. We can explicitly write down the acceptance probability function as:

aθ,φ(z|x, T ) = e−[lθ,φ(z|x,T )]+

=
eT pθ(x, z)

eT pθ(x, z) + qφ(z|x)

From the above equation, it is easy to see that as T →∞, we get an acceptance probability close to 1, resulting
in an approximate posterior close to the original proposal, qφ(z|x), whereas with T → −∞, the acceptance

probability degenerates to a standard rejection sampler with acceptance probability close to eT pθ(x,z)
qφ(z|x) , but with

potentially untenable efficiency. Intermediate values of T can interpolate between these two extremes.

To prove monotonicity, we first derive the partial derivative of the KL divergence with respect to T as a covariance
of two random variables that are monotone transformations of each other. To get the derivative, we use the
fact that the gradient of the KL divergence is the negative of the ELBO gradient derived in Theorem 1. Recall
that the ELBO and the KL divergence add up to a constant independent of T , and that the expressions for the
gradients with respect to T and φ are functionally the same. We have:

∇T KL(Rθ,φ(z|x, T )‖Pθ(z|x)) = −COVR (A(z),∇T log γr(z)) ,

where:

A(z) = log pθ(x, z)− log γr(z)

= log pθ(x, z)− log qφ(z|x)

+ [log qφ(z|x)− log pθ(x, z)− T ]
+

= [lθ,φ(z|x, T )]+ − lθ,φ(z|x, T )− T.

For the second term in the covariance, we can use the expressions from Eq. (4) and Eq. (6) to write:

∇T log γr(z) = −∇T [lθ,φ(z|x, T )]+

= −σ(lθ,φ(z|x, T ))∇T lθ,φ(z|x, T )

= σ(lθ,φ(z|x, T )),

where σ(x) , 1/(1 + e−x) is the sigmoid function. Putting the two terms together, we have:

∇T KL(Rθ,φ(z|x, T )‖Pθ(z|x)) =

− COVR([lθ,φ(z|x, T )]+ − lθ,φ(z|x, T )− T, σ(lθ,φ(z|x, T ))).

To prove that the two random variables, [lθ,φ(z|x, T )]+ − lθ,φ(z|x, T ) − T and σ(lθ,φ(z|x, T )) are a monotone
transformation of each other, we can use the identity [x]+− x = log(1 + ex)− x = − log σ(x) to rewrite the final
expression for the gradient of the KL divergence as:

∇T KL(Rθ,φ(z|x, T )‖Pθ(z|x)) = COVR (log σ(lθ,φ(z|x, T )) + T, σ(lθ,φ(z|x, T )))

The inequality follows from the fact that the covariance of a random variable and a monotone transformation
(the logarithm in this case) is non-negative.

A.2 Theorem 2

Before proving Theorem 2, we first state and prove an important lemma3.

3We assume a discrete and finite state space in all proofs below for simplicity/clarity, but when combined with the
necessary technical conditions required for the existence of the corresponding integrals, they admit a straightforward
replacement of sums with integrals.
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Lemma 1. Suppose p(x) = γp(x)/Zp and r(x) = γr(x)/ZR are two unnormalized densities, where only R depends

on φ (the recognition network parameters), but both P and R can depend on θ.4 Let A(x) , log γp(x)− log γr(x).
Then the variational lower bound objective (on logZP ) and its gradients with respect to the parameters θ, φ are
given by:

ELBO(θ, φ) , ER [A(x)] + logZR

∇φELBO(θ, φ) = COVR (A(x),∇φ log γr(x))

∇θELBO(θ, φ) = ER [∇θ log γp(x)]

+ COVR (A(x),∇θ log γr(x)) .

Note that the covariance is the expectation of the product of (at least one) mean-subtracted version of the two

random variables. Further, we can also write: KL(R‖P ) = log
(
ER
[
e−Ā(x)

])
, where Ā(x) , A(x) − ER [A(x)]

is the mean subtracted version of the learning signal, A(x).

Proof. The equation for the ELBO follows from the definition. For the gradients, we can write: ∇φELBO(θ, φ) =
D2 −D1 +D3, where:

D1 = ∇φER [log γr(x)]

D2 = ∇φER [log γp(x)]

D3 = ∇φ logZR

Simplifying D1, D2, and D3, we get:

D1 = ∇φER [log γr(x)]

=
∑
x

∇φ [r(x) log γr(x)]

=
∑
x

(
r(x)

γr(x)
∇φγr(x) + log γr(x) ∇φr(x)

)
=

1

ZR
∇φZR +

∑
x

r(x) log γr(x)∇φ log r(x)

= D3 + ER [log γr(x)∇φ log r(x)]

D2 = ∇φER [log γp(x)]

= ∇φ
∑
x

r(x) log γp(x)

=
∑
x

log γp(x)∇φr(x)

=
∑
x

log γp(x)r(x)∇φ log r(x)

= ER [log γp(x)∇φ log r(x)]

which implies:

∇φELBO(θ, φ) = D2 − (D1 −D3)

= ER [(log γp(x)− log γr(x))∇φ log r(x)] .

Next, observe that ER [∇φ log r(x)] = 0, Therefore, using the fact that the expectation of the product of two ran-
dom variables is the same as their covariance when at least one of the two random variables has a zero mean, we

4The dependence for R on θ can happen via some resampling mechanism that is allowed to, for example, evaluate γp
on the sample proposals before making its accept/reject decisions, as in our case.
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get ∇φELBO(θ, φ) = COVR (A(x),∇φ log r(x)). Next note that we can add an arbitrary constant to either ran-
dom variable without changing the covariance, therefore this is equal to COVR (A(x),∇φ log r(x)−∇φ logZR) =
COVR (A(x),∇φ log γr(x)).

The derivation for the gradient with respect to θ is analogous, except for D2, which has an additional term
ER [∇θ log γp(x)] which did not appear in the gradient with respect to φ because of our assumption on the lack
of dependence of log γp(x) on the recognition parameters φ. For the identity on the KL divergence, we have:

KL(R‖P ) = logZP − logZR + ER [log γr(x)− log γp(x)]

= log

(∑
x

γp(x)

ZR

)
+ ER [log γr(x)− log γp(x)]

= log

(
ER
[
γp(x)

γr(x)

])
+ ER [log γr(x)− log γp(x)]

= log
(
ER
[
e−A(x)

])
+ ER [A(x)]

= log
(
ER
[
e−Ā(x)

])
.

Using the above lemma, we provide a proof for Theorem 2 below.

Proof. We apply the result of Theorem 1, which computes the ELBO corresponding to the two unnormal-
ized distributions on the latent variable space z (for fixed x, T ), with log γp(.) , log pθ(z,x) and log γr(.) ,
log qφ(z|x) − [lθ,φ(z|x, T )]

+
. This gives: ∇φR-ELBO(θ, φ) = COVR (Aθ,φ(z|x, T ),∇φ log γr(z)). We can then

evaluate ∇φ log γr(z) = (1− σ(lθ,φ(z|x, T )))∇φ log qφ(z|x), where σ() is the sigmoid function. Note that this is
a consequence of the fact that the derivative of the softplus, log(1 + ex), is the sigmoid function, 1/(1 + e−x).
Similarly for the θ gradient, we get:

∇θR-ELBO(θ, φ) = EQ [∇θ log pθ(x, z)]

+ COVR (Aθ,φ(z|x, T ),∇θ log γr(z))

where:

∇θ log γr(z) = ∇θ [lθ,φ(z|x, T )]
+

= σ(lθ,φ(z|x, T ))∇θlθ,φ(z|x, T )

= −σ(lθ,φ(z|x, T ))∇θ log pθ(x, z).

B Experimental details

B.1 Synthetic

To construct the target distribution, we transform a Poisson distribution of rate λ∗ > 0, denoted Poi(λ∗) by
removing probability mass near 0. More precisely, this transformation forces a negligible uniform mass, ε ≈ 0, on
0 ≤ z < c. This leaves the distribution unnormalized, although this fact is not particularly relevant for subsequent
discussion. The approximate proposal is parameterized as Qφ , Poi(eφ), where φ is an unconstrained scalar, and
denotes a (unmodified) Poisson distribution with the (non-negative) rate parameter, eφ. Note that for Poi(eφ) to
explicitly represent a small mass on z < c would require φ→∞, but this would be a bad fit for points just above
c. As a result, {Qφ} does not contain candidates close to the target distribution in the sense of KL divergence,
even while it may be possible to approximate well with a simple resampling modification that transforms the
raw proposal Qφ into a better candidate, R.

The target distribution was set with an optimal parameter φ∗ = log(10.0) (i.e., the rate parameter is 10.0), and
c = 5. The optimizer used was SGD with momentum using a mass of 0.5. We observed that the gradients were
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consistently positive while initialized at a parameter setting less than the true value (as shown in the plots)
and similarly consistently negative when initialized to a parameter more than the true value (which we did not
present in the paper) due to the consistency of the correlation between the two terms in the covariance specific
to this toy example. For resampling, plots show results with learning rate set to 0.01 and T = 50. For VIMCO,
plots show results with learning rate set to 0.005 and k = 100.

B.2 MNIST

We consider the standard 50, 000/10, 000/10, 000 train/validation/test split of the binarized MNIST dataset. For
a direct comparison with prior work, both the generative and recognition networks have the same architecture of
stochastic layers. No additional deterministic layers were used for SBNs trained using VRS. The batch size was
50, the optimizer used is Adam with a learning rate of 3e−4. We ran the algorithm for 5, 000, 000 steps updating
the resampling thresholds after every 100, 000 iterations based on the threshold selection heuristic corresponding
to the top γ quantile. We set S = 5 for the unbiased covariance estimates for gradients. The lower bounds on
the test set are calculated based on importance sampling with 25 samples for IS or resampling with 25 accepted
samples for RS.


