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Abstract

Group regularized learning problems (such
as group Lasso) are important in machine
learning. The asynchronous parallel stochas-
tic optimization algorithms have received huge
attentions recently as handling large scale
problems. However, existing asynchronous
stochastic algorithms for solving the group
regularized learning problems are not scal-
able enough simultaneously in sample size
and feature dimensionality. To address this
challenging problem, in this paper, we pro-
pose a novel asynchronous doubly stochas-
tic proximal gradient algorithm with vari-
ance reduction (AsyDSPG+). To the best of
our knowledge, AsyDSPG+ is the first asyn-
chronous doubly stochastic proximal gradi-
ent algorithm, which can scale well with the
large sample size and high feature dimension-
ality simultaneously. More importantly, we
provide a comprehensive convergence guaran-
tee to AsyDSPG+. The experimental results
on various large-scale real-world datasets not
only confirm the fast convergence of our new
method, but also show that AsyDSPG+ scales
better than the existing algorithms with the
sample size and dimension simultaneously.

1 Introduction

Group regularized learning problems are important in
machine learning. Take group Lasso [Roth and Fischer]
2008| as an example, when the features are partitioned
into groups, the group lasso penalty (also called ¢1 /{5
penalty) tends to select features in a grouped manner.
Formally, given a partition {Gy,- - ,Gx} of n features
(i.e., coordinates) of x, we can write the group regular-

ized penalty function g(z) as g(z) = 2521 gg,;(zg,). In
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this paper, we focus on the composite group regularized
optimization problem as follows:

min F(z) = f(z) + g(2) (1)
where f(z) = %22:1 fi(x), fi : R™ = R is a smooth,
possibly non-convex function. g : R" — R U {co} is
a block separable, closed, convex, and extended real-
valued function as defined above. The formulation
covers an extensive number of group regularized learn-
ing problems, such as group Lasso [Roth and Fischer]
2008], block dictionary learning [Chi et al., 2013]) and
sparse multi-class classification [Blondel et al., |2013].

In the current big data era, asynchronous parallel algo-
rithms for stochastic optimization have received huge
successes in theory and practice recently. Specifically,
for the problem (1)) with g(x) = 0, Recht et al. [Recht
et al. 2011] proposed the first asynchronous parallel
stochastic gradient descent (SGD) algorithm known as
Hogwild!. |Zhao and Li| [2016], [Huo and Huang] [2017]
proposed asynchronous parallel SGD algorithms with
the SVRG variance reduction technique. Mania et al.
[2015] proposed a perturbed iterate framework to an-
alyze the asynchronous parallel algorithms of SGD,
stochastic coordinate descent (SCD). For the problem
with g(z) = 1||z||?, Hsieh et al.| [2015] proposed
an asynchronous parallel stochastic dual coordinate
descent algorithm. For the problem with a separa-
ble function g(z) in coordinate, Liu and Wright| [2015]
proposed an asynchronous stochastic coordinate de-
scent (SCD) algorithm. These works are summarized
in Table[l}] From Table [1] it is easy to find that these
asynchronous stochastic algorithms cannot solve the
composite group regularized problem .

To the best of our knowledge, there are several (asyn-
chronous parallel) stochastic algorithms can solve the
problem . These works are summarized in Table
Specifically, [Hong et al| [2013] proposed a batch
randomized block coordinate descent method which
runs with full gradient on the randomized block co-
ordinates. [Zhao et al|[2014] proposed a accelerated
double stochastic proximal gradient algorithm (DSPG)
with the SVRG variance reduction technique, which is
stochastic on samples and coordinates simultaneously
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Table 1: Representative (asynchronous) stochastic algorithms.

Reference g(x) Stochastic Asynchronous | Accelerated | Solve (Il[)

~ |Recht et al. [2011] 0 Samples Yes No No
Zhao and Li [2016] 0 Samples Yes Yes No
Mania et al.| [2015] 0 Samples/Coordinates Yes No No
Hsieh et al.| [2015] 1|2 Coordinates Yes No No
Liu and Wright|[2015] Separable Coordinates Yes No No
~ [Hong et al|[2013] | Block Separable | Block coordinates No No Yes
Zhao et al. [2014] | Block Separable | Samples+Coordinates No Yes Yes

Li et al.[]2013] 2016] g(x) Samples Yes No Yes
Meng et al.| [2016] g(x) Samples Yes Yes Yes
o Our Block Separable | Samples+Coordinates Yes Yes Yes

for each iteration. [Li et al.| [2013] and [Li et al. [2016]
proposed asynchronous parallel stochastic proximal op-
timization algorithms. [Meng et al|[2016] proposed an
asynchronous parallel stochastic proximal optimization
algorithm with the SVRG variance reduction technique.

However, existing (asynchronous parallel) stochastic
algorithms as mentioned above are not scalable enough
simultaneously in sample size and feature dimensional-
ity, for solving the group regularized learning problem
. In the big data era, a lot of machine learning appli-
cations (such as the movie recommendation [Diao et al.|
2014], the advertisement recommendation [Joachims
and Swaminathan, [2016], the computer aided diag-
nostic [Bi et all [2006] and so on) need to solve the
large-scale optimization problems, where both of the
sample size and dimension could be huge at the same
time. As shown in Table [1, most of existing (asyn-
chronous parallel) stochastic algorithms are stochastic
either on samples or block coordinates. Thus, these
(asynchronous parallel) stochastic algorithms |[Hong
et al 2013, [Li et al. 2013|2016, Meng et al.l 2016]
cannot scale well in sample size and dimensionality
simultaneously. Note that, although |Zhao et al.| [2014]
proposed a doubly stochastic proximal gradient algo-
rithm to solve the problem , they did not utilize the
asynchronous parallel computation technique which is
extremely important for the large-scale optimization.
Due to the inconsistent reading and writting induced
by asynchronous parallel computation, it is not trivial
to give the asynchronous doubly stochastic proximal
gradient algorithm with the corresponding theoretical
guarantee.

To address this challenging problem, we propose an
asynchronous doubly stochastic proximal gradient al-
gorithm with the SVRG variance reduction technique
(AsyDSPG+). To the best of our knowlege, AsyDSPG+
is the first asynchronous doubly stochastic proximal
gradient algorithm, which can scale well with the large
sample size and high feature dimensionality simulta-
neously. More importantly, we prove that AsyDSPG+

achieves a linear convergence rate when the function f
has the optimal strong convexity property, and a sub-
linear rate when f is with the general convexity or with
the non-convexity. The experimental results on various
large-scale real-world datasets not only confirm the fast
convergence of our new method, but also show that
AsyDSPG+ scales better than the existing algorithms
with the sample size and dimension simultaneously. We
also used AsyDSPG+ to implement large scale sparse
kernel learning [Bin Gul, [2018b].

Notations. To make the paper easier to follow, we

give the following notations.

e A, denote the zero vector in R™ except that the
block coordinates indexed by the set G;.

| - || denotes the Euclidean norm.

Vf(x) is the gradient of function f(-) at the point
x.

Pj,g;(x") is the blockwise proximal operator as
Pjg, (') = argmin,, 5[lz — 2'|[* + 1 ((2)g, )-

Ps(x) is the Euclidean-norm projection of a vector x
onto a given set S as Pg(z) = argminyes ||y — z||*.

2 AsyDSPG+ Algorithm

In this section, we first give a brief discussion on the
existing algorithms for solving the group regularized
problem , and then propose our AsyDSPG+ algo-
rithm.

2.1 Brief Discussion on Existing Algorithms

As shown in Table[I} existing algorithms for solving the
group regularized problem did not utilize the tech-
niques of doubly stochastic gradient, variance reduction
and asynchronous parallel computation, which are the
important techniques for large-scale optimization.
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Doubly stochastic gradient: Most of existing algo-
rithms are single stochastic on samples or coordinates
which cannot scale well in sample size and dimension-
ality simultaneously. The only algorithm with doubly
stochastic gradient is the work of [Zhao et al., 2014].

Accelerated technique of variance reduction:
For stochastic gradient algorithms, the large variance
on gradient is the fundamental reason of slow conver-
gence rate. Thus, various accelerated techniques of
variance reduction have been used to accelerate the
stochastic gradient algorithms. For solving , the
works of |Zhao et al. 2014] and [Meng et al.l [2016]
used the SVRG variance reduction technique.

Asynchronous parallel computation: The parallel
computation as the basic big data technique can be
roughly divided into synchronous and asynchronous
models according to whether the reading or writing lock
is used. The asynchronous computation is much more
efficient than the synchronous computation, because
it keeps all computational resources busy all the time.
For solving , the works of [Li et al.; 2013}, 2016} Meng
et al.l [2016] used the asynchronous parallel technique.

In this paper, we want to design a new algorithm for
solving the group regularized problem by utilizing
the above techniques comprehensively.

2.2 Our AsyDSPG+ Algorithm

AsyDSPG+ is designed for the parallel environment
with shared memory, such as multi-core processors and
GPU-accelerators, but it can also work in the parallel
environment with distributed memory.

In the parallel environment with shared memory, all
cores in CPU or GPU can read and write the vector
z in the shared memory simultaneously without any
lock. Besides randomly choosing a sample set and a
block of coordinates, AsyDSPG+ is also accelerated
by the variance reduction. Thus, AsyDSPG+ has two-
layer loops. The outer layer is to parallelly compute
the full gradient Vf(z*) = 1 3°!_| V fi(2*), where the
superscript s denotes the s-th outer loop. The inner
layer is to parallelly and repeatedly update the vector x
in the shared memory. Specifically, all cores repeat the
following steps independently and concurrently without
any lock:

1. Read: Read the vector = from the shared memory
to the local memory without reading lock. We
use Zi ™! to denote its value, where the subscript ¢
denotes the t-th inner loop.

2. Compute: Randomly choose a mini-batch B and a
block Coordinate j from {1, ..., k}, and locally com-

pute 537 = & i (Vo, Fi(3) — Vo, fi(#) +

Vg, [(@°).

3. Update: Update the block j of the vector x in the
shared memory as xfill « P, o gj(( s+1)g1
’Y US+1 max
G

Lmax

) without writing lock.

The detailed description of AsyDSPG+ is summarized
in Algorithm |1} Note that ? ASH computed locally is
the approximation of Vg, f (ASH)

05T on B is equal to Vf
EAs-i-l (2)
= V@) - V@) + V@) = ViET).

Thus, 77! is called an unbiased stochastic gradient of
f(z) at 51

and the expectation

(z5T1) as follows:

of vy

Algorithm 1 Asynchronous Doubly Stochastic Prox-
imal Gradient Algorithm with Variance Reduction
(AsyDSPG+)

Input: The number of outer loop iterations S, the
number of inner loop iterations m, and learning
rate ~y.

Output: z°.

1: Initialize z° € R?, p threads.

2: for s=0,1,2,---,S—1do

3 T« xf

4:  All threads parallelly compute the full gradient
V@) =135 VE)

5. For each thread, do:

6: fort=0,1,2,---,m—1do

7 Randomly sample a mini-batch B from
{1,...,1} with equal probability.

8: Randomly choose a block j(¢) from {1,...,k}
with equal probability

o Compute 55l iy Tep Vo, fil3) -
& ies Vo, (@) + Vg, f).

10: iy = Poypimen (@ SH)%@)

v o~s+1
Lmax vtvgj(t))'
11: end for
. s+1 s+1
12:  x —x,)

13: end for

3 Preliminaries

In this section, we introduce the condition of optimal
strong convexity and three different Lipschitz constants,
and give the corresponding assumptions, which are all
critical to the analysis of AsyDSPG+.

Optimal Strong Convexity: Let F'* denote the
optimal value of , and let S denote the solution
set of F such that F(x) = F*, Vz € S. Firstly, we
assume that S is nonempty (i.e., Assumption, which
is reasonable to the problem .
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Assumption 1. The solution set S of the problem
18 nonempty.

Then, we assume that the convex function f is with
the optimal strong convexity (i.e., Assumption .

Assumption 2 (Optimal strong convexity). The con-
vex function f has the condition of optimal strong con-
vezity with parameter [ > 0 with respect to the optimal
set S, which means that, 3l such that, Vx, we have:
l

F(z) = F(Ps(x)) > Sllz = Ps(@)|” (3)
As mentioned in [Liu and Wright), |2015], the condition
of optimal strong convexity is significantly weaker than
the normal strong convexity condition. Several exam-
ples of optimally strongly convex functions that are

not strongly convex are provided in [Liu and Wright),
2015].

Lipschitz Smoothness: We define the normal Lip-
schitz constant (L), block restricted Lipschitz con-
stant (L,.s) and block coordinate Lipschitz constant
(Lmax) as follows.

Definition 1 (Normal Lipschitz constant). Ly, is the
normal Lipschitz constant for Vf; (Vi€ {1,---,1}) in
, such that, Yx and Yy, we have:

IVfi(x) = Vi)l < Luor|lz =yl - (4)

Definition 2 (Block restricted Lipschitz constant).
L.,cs is the block restricted Lipschitz constant for V f;
(Vi e {1,---,1}) in the problem , such that, Yz, and
Vi e {1, -k}, we have:

IVfi(z+ D) = V(@) < Lyes [[(A))g, ] - (5)

Definition 3 (Block coordinate Lipschitz constant).
Lyax is the block coordinate Lipschitz constant for V f;
(Vi e {1,---,1}) in the problem , such that, Yz, and
Vi e {1, -k}, we have:

max [ VfiGe+ A) = Vi)l < Lo (85, - (6)

The inequality (@ can be re-written as the following
formulation:

fi(l‘ + Aj)

< filz) + <ijfi(x)v (Aj)gj> + Lrgax

(7)
(A, -

Based on Lo, Lyes, and Ly,q. as defined above, we
assume that the function f; (Vi € {1,---,1} is Lipschitz
smooth with Lo, Lyes, and Ly, (i.e., Assumption
. In addition, we define Ayes = £22. Apyy =

Lmax

Lnor

Lmax

Assumption 3 (Lipschitz smoothness). The function
fi (Vi € {1,---,1} is Lipschitz smooth with the nor-
mal Lipschitz constant Ly, block restricted Lipschitz
constant L,.s and block coordinate Lipschitz constant

LI’IIaX M

4 Convergence Analysis

In this section, we prove the convergence rates of
AsyDSPG+. To the best of our knowledge, this is
the first work to prove the convergence rates for the
asynchronous doubly stochastic proximal gradient al-
gorithm.

4.1 Difficulties for the Analysis

We first pointed out there exist two difficulties for prov-
ing the convergence rates of AsyDSPG+. Specifically,
the difficulties are summarized as follows.

1. Normally, the variance of ||z _; —x||? for the doubly
stochastic gradient algorthms is larger than the one
for the single stochastic gradient algorithm. There
would have higher variance of ||z5_; — §||* for our
AsyDSPG+, because the gradient of our AsyDSPG+
is computed on the randomly selected samples and
the randomly selected block of coordinates.

2. AsyDSPG+ runs asynchronously without any lock,
the inconsistent reading and writting could arise to
the vector x in the shared memory, which would
make the values of x in the shared memory and
local memory inconsistent.

Due to the these complications, it is not trivial to
provide the the convergence analysis for AsyDSPG+.
In the following, we will address these two difficulties.

4.1.1 First Difficulty

To address the first challenge, we give a bound to
1Bt (x5, — @))%, Specifically, we first define a new
vector 7§, ; without the stochasticness on coordinates.
Specifically, T{,  is defined as follows.

S ’Y “~S
ol Xry — ——U .
Imax 9 < t Loax t)

Based on Eq. , it is easy to verify that (Z7,,)g

s+1 .
(2311)6,(,,- Thus, we have:

_s  def
Ty = P

(8)

i T

1

Ej (@i, —a7) = % (xfﬂ - mf) (9)

It means that Tj,; — x{ captures the expectation of

x§, 1 — x{ on the coordinates. Based on 77, , we give

an upper bound of E||z5_; — 75| as E||z§_, — 7¢||? <

pE||lzf — Z5 4 ||* (Lemma 7 where p > 1 is a user
defined parameter.

Lemma 1. Let p be a constant that satisfies

_ p%_pT;l

1-p

p > 1, and define the quantities 6y

[N

1 m
p2—p2

" Suppose the mnonnegative
—p2

and 0, =
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step length parameter v > 0 satisfies: v <
; k/2(1—pt)—4 i
M TR e (T 00) + A ror (1902)) ? Th1/242A 000702+ A6y |7

under Assumptions[1], [] and [}, we have

Ellz;_, — % ||* < pEllx; — 74| (10)

The detailed proof of Lemma[l] is omitted here due to
the space limit.

4.1.2 Second Difficulty

Because AsyDSPG+ does not use the reading lock,
the vector 55?"’1 read into the local memory may be
inconsistent to the vector 5! in the shared memory,
which means that some components of Z5 ™! are same
with the ones in 27, but others are different to the
ones in 25T, We call this as inconsistent reading. To
address the challenge of inconsistent reading, we assume
an upper bound to the delay of updating. Specifically,
we define a set K (t) of inner iterations, such that:

s+1 ~s41 s+1 1
=zt Y BtAs (11)
t'eK(t)
, s+1 _
where ¢ < t — 1 (A7 )le) =
s+1 Y s+l _
Po; e w9 (@) g0, Liax vt’vgm/))

(acffrl)gj(t,), (Affl)\gm,) 0, and B! is a di-
agonal matrix with diagonal entries either 1 or 0. It
is reasonable to assume that there exists an upper
bound 7 such that 7 > ¢t — min{t'|t’ € K(¢t)} (i.e.,
Assumption [4).

Assumption 4 (Bound of delay). There exists an
upper bound T such that T >t — min{t'|t' € K(t)} for
all inner iterations t in AsyDSPG+.

In addition, AsyDSPG+ does not use any writing lock.
Thus, in the line 10 of Algorithm[I] § (left side of ‘<)
updated in the shared memory may be inconsistent
with the ideal one (right side of ‘«—’) computed by the
proximal operator. We call this as inconsistent writting.
To address the challenge of inconsistent writting, we use
x{ to denote the ideal one computed by the proximal
operator in the analysis. Same as mentioned in [Mania
et al., 2015, there might not be an actual time the
ideal ones exist in the shared memory, except the first
and last iterates for each outer loop. It is noted that,
xg and z;, are exactly what is stored in shared memory.
Thus, we only consider the ideal x} in the analysis.

4.2 Convergence Rate Analysis

After addressing the above challenges, we provide a
comprehensive convergence guarantee to AsyDSPG+,
based on the basic assumptions (i.e., Assumptions
and. Specifically, we have the following conclusions.

1. If the function f(x) is with the optimal strong con-
vexity, AsyDSPG+ achieves a linear convergence
rate (Theorem [1f).

2. If the function f(z) is general convex, AsyDSPG+
achieves a sublinear convergence rate (Theorem .

3. If the function f(z) is non-convex, AsyDSPG+ con-
verges to a stationary point with a sublinear con-
vergence rate (Theorem .

4.2.1 Convex Setting

Before proving the convergence rates of AsyDSPG+,
we first prove the monotonicity of the expectation of
the objectives EF(x7,,) < EF(z}) (Lemma [2)).
Lemma 2. Let p be a constant that satisfies
AT
1-p

p > 1, and define the quantities 01 =

[N

1 m

and 6y = 'D:*pf. Suppose the mnonnegative
_p2

step length parameter v > 0 satisfies: v <

. EY/2(1—p=1)—4 E1/2
— { AR e (01 + Aor (1402)) * TEI/Z42A 1003+ Aresby | °
Under Assumptions[1], [3 and@ the expectation of the
objective function EF (xf) is monotonically decreasing,

ie., EF(xzf,,) <EF(x}).

The detailed proof of Lemma [2| is omitted here due
to the space limit. Based on Lemma [2| we prove that
the convergence rates of AsyDSPG+ in the convex and
strong convex settings for the function f(x).

Theorem 1. Let p be a constant that satisfies p > 1,
1 741

1 m
L. 2 — 2 2—p2

and define the quantities 6y = E2=L—  fy = ==L
1—p2 1—p2

and 6’ = pT;fp. Suppose the nonnegative step length

parameter v > 0 satisfies:

’77—9/ o 2(Aresel + Anor92)

.
—~7 >0 (12)

1-— Anor/y -

If the optimal strong convexity holds for f with l > 0
(i.e., Assumption @), we have:

Lax 1 ’
EF(:CS) - F < P < m~yl ) ’
g 1+ k(4 Luax)

(|x° CPs@))? + 2 (Fa®) - F*)) (13)

Lmax
If f is a general smooth convex function, we have
EF(x®) — F* (14)

= Fluaela® = Ps(@) | + 29k (F(*) - F7)
- 2vk + 2mrys

Remark 1. Theorem |1 shows that, if the objective
function P(w) is with the optimal strong convexity,
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AsyDSPG+ achieves a linear convergence rate (see
(73)). If the loss function f;(w) is general smooth
convex, AsyDSPG+ achieves a sublinear convergence

rate (see (14])).

Remark 2. The thread number is not explicitly consid-
ered in Theorems , As discussed in [Liu and Wright,
2015)], the parameter T is closely related to the num-
ber of threads that can be involved in the computation,
without degrading the convergence performance of the
algorithm. In other words, if the number of threads
is small enough such that (@ holds, the convergence

eTpressions , do not depend on the number of
threads, tmplying that linear speedup can be expected.

4.2.2 Non-convex Setting

If the function F'(w) is non-convex, the global optimum
point cannot be guaranteed. Thus, the closeness to the
optimal solution (i.e., F(w) — F* and |z — Ps(w)]|)
cannot be used for the convergence analysis. To analyze
the convergence rate of AsyDSPG+ in the non-convex
setting, we define the expectation of a subgradient
¢ € OP(w§) as EVF(w}). Specifically, EVF (w§) can
be written as following.

— e Lmax —
EVF(}) % =2 (o} - i)

(15)

It is easy to verify that E%F(wf) is equal to 0 when
AsyDSPG+ approaches to a stationary point.

Based on EVF (w$), we give the convergence rate of
AsyDSPG+ at the non-convex setting in Theorem

Theorem 2. Let p be a constant that satisfies

1 T+1

p > 1, and define the quantities 67 = %
1 m

and 0 = pi_ip;. Suppose the mnonnegative

step length parameter v > 0 satisfies:
. k21— p=1)—4 El/2

i { TR ree (L1 0) + Aor (1702)) TRI72520 00,051 Ayesfy |-

Let T denote the number of total iterations of AsyD-

SPG+. If f is a smooth non-convex function, we have:

7=

S—1m-—1

~ 2
% S S E HVF(xf) ‘ (16)
s=0 t=0
Y (1 1 2Lporbo+ Lyest \\ ' F(2°) — F*
G- tety) e

Remark 3. Theorem[d shows that, if the function f(z)
is non-conver, AsyDSPG+ converges to a stationary
point with a sublinear convergence rate.

5 Experimental Results

In this section, we first describe the experimental setup,
and then provide our experimental results and discus-
sions.

5.1 Experimental Setup

We describe our experimental setup from the following
four aspects, i.e., the compared methods, the solved
problems, the implementation, and the datasets.

Compared methods: To verify the scalability of our
AsyDSPG+, we compare the convergence of objective
function of our AsyDSPG+ with the state-of-the-art
(asynchronous) stochastic algorithms which can solve
(1). Specifically, as mentioned in Table [l we com-
pare with the double stochastic block proximal descent
method (DSPG) |Zhao et al.| [2014] and asynchronous
stochastic proximal optimization algorithm with the
SVRG variance reduction technique (AsySPVR) [Meng
et al.|[2016]. Note that DSPG and AsySPVR are the
accelerated versions of the batch randomized block
coordinate descent method [Hong et all 2013] and
the asynchronous stochastic proximal optimization al-
gorithm [Li et al., 2013, |2016] respectively, we only
compare with DSPG and AsySPVR. Specifically, the
compared methods are

1. DSPG: DSPG |Zhao et al.,[2014] is the non-parallel
version of our AsyDSPG+-.

2. AsySPVR: AsySPVR [Meng et al. 2016] with the
mini-batch size is 1.

3. AsySPVR mb = 100: AsySPVR [Meng et al., 2016]
with the mini-batch size 100.

4. AsyDSPG+: Our AsyDSPG+ with the mini-batch
size 1.

5. AsyDSPG+ mb = 100: Our AsyDSPG+ with the
mini-batch size 100.

To show a near-linear speedup obtained by asyn-
chronous parallel computation, we also test the speedup
of our AsyDSPG+.

Problems: In the experiments, we consider both
binary classification and regression problems. Let
S = {(ai,b;)}._, be a training set, where a; € R",
b; € {+1,—1} is for binary classification, b; € R is for
regression. For the function f;(x) in the problem ,
we consider the logistic loss, the sigmoid loss, and the
least square loss as presented in Table [2| where the
logistic loss and sigmoid loss are for binary classifica-
tion, the square loss is for regression. Note that the
sigmoid loss is non-convex. In the experiments, we use
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Figure 1: Convergence of objective value vs. running time for different algorithms. (a)-(c) Logistic loss. (d)-(f)
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Table 2: The learning problems used in our experiments (BC=binary classification, R=regression).

Type of function | Name of loss| Type of task|The loss func-| Group regularization term
tion
Logistic loss BC log(1 + e’b””T‘“)
Convex Square loss R (b; — 2T a;)? A Zle lzg, 2
Non-convex Sigmoid loss BC L

1+ebizTai

the group regularization term )\2521 lzg,|l2 as the
block separable function g(z) in the problem ().

Implementation: Our experiments are performed
on a 32-core two-socket Intel Xeon EB5-2699 ma-
chine where each socket has 16 cores. We also
call each core as worker in the experiment. We
implement our AsyDSPG+ using C++4, where the
shared memory parallel computation is handled via
OpenMP. We also implement batch randomized
block coordinate descent method (BRBCD) and asyn-
chronous stochastic block coordinate descent method
(AsySPVR) in C++. In each experiment, the learn-
ing rate v for all compared methods is selected from
{10%,10,1,1071,1072,1072,107*,107°}. In the exper-
iments, all results are the average of 5 trials.

Datasets: Table [3| summarizes the five large-scale
real-world datasets used in our experiment&ﬂ They are
the Covtype_B, RCV1, SUSY, Covtype_ M and MNIST
datasets, where Covtype B and Covtype M are from

!The datasets are from https://www.csie.ntu.edu. tw/
~cjlin/libsvmtools/datasets/.

a same source. Covtype_M and MNIST are originally
for multi-class classification. Note that, to obtain high
dimensional data with group constraints, we duplicate
the features of the Covtype B, SUSY and Covtype M
datasets 100 times with noise from N(0,2). We treat
the features duplicated from a feature of original sample
as a group. For the RCV1 dataset, we partition the
features into 48 groups. Note that, all datasets used
in the experiments are with large scale both in sample
size and feature dimensionality simultaneously.

5.2 Experimental Results and Discussion

Figure [1] presents the convergence of objective values
of DSPG, AsySPVR, AsySPVR mb = 100, AsyD-
SPG+ and AsyDSPG+ mb = 100 on the datasets
of Covtype B, RCV1, SUSY, Covtype.M and MNIST.
The results confirm that our AsyDSPG+ is much faster
than DSPG and AsySPVR. Because all the datasets
used in the experiments are with large scale both in
sample size and feature dimensionality simultaneously,
Figures [ID] and [I¢| show that our AsyDSPG+ scales


https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 3: Summary of large-scale real-world datasets in our experiments.

Task Dataset Class Features Samples Sparsity
Covtype_B 2 54 581,012 22 %
Classification RCV1 2 47,236 677,399 0.16 %
SUSY 2 18 5,000,000 100 %
Regression Covtype.M 7 54 581,012 22 %
MNIST 10 784 1,000,000 100 %
102 ‘ ‘ ‘ for solving the composite group regularized optimiza-
——#Workers=1 tion problem cannot scale well in sample size and
fo _miﬁiilj dimensionality simultaneously. To address this chal-
o :i&’zlﬁ:z% lenging problem, in this paper, we propose a novel
#Workers—16 asynchronous doubly stochastic proximal gradient al-

Objective Value Gap

0 200 400 600 800 1000 1200 1400
Time (s)

(a) Objective value with different number of workers.

14 + = = [deal Speedup 7
== AsyDSPG+ s’

Speedup

# Workers

(b) Speedup results on MNIST dataset.

Figure 2: Speedup results of AsyDSPG+ on the MNIST
dataset.

well with the simultaneously increasing of sample size
and feature dimensionality.

To estimate the scalability of our AsyDSPG+, we per-
form AsyDSPG+ on 1, 2, 4, 8, 12 and 16 workers
(i.e., cores) to observe the speedup. Figure [2| presents
the speedup results of AsyDSPG+ on MNIST dataset,
which show that AsyDSPG+ can have a near-linear
speedup on a parallel system with shared memory. Be-

cause we do not use any lock in the implementation of
AsyDSPG+.

6 Conclusion

Existing (asynchronous) stochastic algorithms [Hong
et all [2013, [Li et all [2013, |2016| [Meng et al., [2016]

gorithm with the SVRG variance reduction technique
(AsyDSPG+). To the best of our knowlege, AsyDSPG—+
is the first asynchronous doubly stochastic proximal
gradient algorithm, which can scale well with the large
sample size and high feature dimensionality simulta-
neously. We prove that AsyDSPG+ achieves a linear
convergence rate when the function f has the optimal
strong convexity property, and a sublinear rate when f
is with the general convexity or with the non-convexity.
The experimental results on various large-scale real-
world datasets not only confirm the fast convergence of
our new method, but also show that AsyDSPG+ scales
better than the existing algorithms with the sample
size and dimension simultaneously. Meanwhile, a near-
linear speedup of our AsyDSPG+ on a parallel system
with shared memory can be observed.

In the future, we want to extend our asynchronous
doubly stochastic proximal gradient algorithm and the
theoretical analysis to the overlapping group regular-
ized learning problems [Yuan et al., 2011], inexact
proximal gradients descent algorithms [Bin Gul, 2018a]
and composition problems [Zhouyuan Huol [2018].

Acknowledgements

The work was partially supported by the following
grants: NSF-IIS 1302675, NSF-IIS 1344152, NSF-DBI
1356628, NSF-IIS 1619308, NSF-IIS 1633753, NIH RO1
AG049371.

References

Jinbo Bi, Senthil Periaswamy, Kazunori Okada, Toshiro
Kubota, Glenn Fung, Marcos Salganicoff, and
R Bharat Rao. 2006. Computer aided detection via
asymmetric cascade of sparse hyperplane classifiers.
In Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
maning. ACM, 837-844.

Yitan Li, Linli Xu, Xiaowei Zhong, and Qing Ling.
Make workers work harder: Decoupled asynchronous



Bin Gu, Zhouyuan Huo, Heng Huang

proximal stochastic gradient descent. arXiv preprint
arXiv:1605.06619, 2016.

Mathieu Blondel, Kazuhiro Seki, and Kuniaki Uehara.
2013. Block coordinate descent algorithms for large-
scale sparse multiclass classification. Machine learn-
ing 93, 1 (2013), 31-52.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexan-
der J Smola, Jing Jiang, and Chong Wang. 2014.
Jointly modeling aspects, ratings and sentiments for
movie recommendation (jmars). In Proceedings of
the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 193—
202.

Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn,
and Zhi-Quan Luo. 2013. Tteration complexity anal-
ysis of block coordinate descent methods. Mathemat-
ical Programming (2013), 1-30.

Cho-Jui Hsieh, Hsiang-Fu Yu, and Inderjit S Dhillon.
2015. Passcode: Parallel asynchronous stochastic
dual co-ordinate descent. arXiv preprint (2015).

Yu-Tseh Chi, Mohsen Ali, Ajit Rajwade, and Jeffrey
Ho. 2013. Block and group regularized sparse mod-
eling for dictionary learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. 377-382.

Thorsten Joachims and Adith Swaminathan. 2016.
Counterfactual evaluation and learning for search,
recommendation and ad placement. In Proceedings
of the 89th International ACM SIGIR conference on
Research and Development in Information Retrieval.
ACM, 1199-1201.

Ji Liu and Stephen J Wright. 2015. Asynchronous
stochastic coordinate descent: Parallelism and con-
vergence properties. STAM Journal on Optimization
25, 1 (2015), 351-376.

Ji Liu, Stephen J Wright, Christopher Ré, Victor
Bittorf, and Srikrishna Sridhar. 2015. An asyn-
chronous parallel stochastic coordinate descent algo-
rithm. Journal of Machine Learning Research 16,
285-322 (2015), 1-5.

Zhaosong Lu and Lin Xiao. 2015. On the com-
plexity analysis of randomized block-coordinate de-
scent methods. Mathematical Programming 152, 1-2
(2015), 615-642.

Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and
Han Liu. Accelerated mini-batch randomized block
coordinate descent method. In Advances in neural
information processing systems, pages 3329-3337,
2014.

Horia Mania, Xinghao Pan, Dimitris Papailiopou-
los, Benjamin Recht, Kannan Ramchandran, and

Michael T Jordan. 2015. Perturbed iterate analy-
sis for asynchronous stochastic optimization. arXiv
preprint arXiw:1507.06970 (2015).

Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhi-
Ming Ma, and Tie-Yan Liu. Asynchronous stochastic
proximal optimization algorithms with variance re-
duction. arXiv preprint arXiv:1609.08435, 2016.

Atsushi Nitanda. 2014. Stochastic proximal gradient
descent with acceleration techniques. In Advances in
Neural Information Processing Systems. 1574-1582.

Meisam Razaviyayn, Mingyi Hong, Zhi-Quan Luo, and
Jong-Shi Pang. 2014. Parallel successive convex ap-
proximation for nonsmooth nonconvex optimization.
In Advances in Neural Information Processing Sys-
tems. 1440-1448.

Mu Li, David G Andersen, and Alexander Smola. Dis-
tributed delayed proximal gradient methods. In NIPS
Workshop on Optimization for Machine Learning,
2013.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. 2011. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances
in Neural Information Processing Systems. 693-701.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barn-
abas Poczos, and Alex J Smola. 2015. On variance
reduction in stochastic gradient descent and its asyn-
chronous variants. In Advances in Neural Informa-
tion Processing Systems. 2647-2655.

Peter Richtarik and Martin Takac. 2016. Parallel co-
ordinate descent methods for big data optimization.
Mathematical Programming 156, 1-2 (2016), 433—
484.

Volker Roth and Bernd Fischer. 2008. The group-lasso
for generalized linear models: uniqueness of solutions
and efficient algorithms. In Proceedings of the 25th
international conference on Machine learning. ACM,
848-855.

Mark Schmidt, Nicolas Le Roux, and Francis Bach.
2013. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388
(2013).

Shai Shalev-Shwartz. 2016. SDCA without Du-
ality, Regularization, and Individual Convexity.
In Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016. T47-
754. http://jmlr.org/proceedings/papers/v48/
shalev-shwartzal6.html

Shai Shalev-Shwartz and Tong Zhang. 2014. Acceler-
ated Proximal Stochastic Dual Coordinate Ascent for
Regularized Loss Minimization.. In ICML. 64-72.


http://jmlr.org/proceedings/papers/v48/shalev-shwartza16.html
http://jmlr.org/proceedings/papers/v48/shalev-shwartza16.html

Asynchronous Doubly Stochastic Group Regularized Learning

Shirish Krishnaj Shevade and S Sathiya Keerthi. 2003.
A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics 19,
17 (2003), 2246-2253.

Martin Takac. 2014. Randomized coordinate descent
methods for big data optimization. (2014).

Robert Tibshirani. 1996. Regression shrinkage and
selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) (1996), 267-288.

Lin Xiao and Tong Zhang. 2014. A proximal stochastic
gradient method with progressive variance reduction.
SIAM Journal on Optimization 24, 4 (2014), 2057
2075.

Xiyu Yu and Dacheng Tao. 2016. Variance-Reduced
Proximal Stochastic Gradient Descent for Non-
convex Composite optimization. arXiw preprint
arXiv:1606.00602 (2016).

Tong Zhang. 2004. Solving large scale linear predic-
tion problems using stochastic gradient descent al-
gorithms. In Proceedings of the twenty-first interna-
tional conference on Machine learning. ACM, 116.

Shen-Yi Zhao and Wu-Jun Li. 2016. Fast Asynchronous
Parallel Stochastic Gradient Descent: A Lock-Free
Approach with Convergence Guarantee. In Thirtieth
AAAI Conference on Artificial Intelligence.

Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and
Han Liu. 2014. Accelerated mini-batch randomized
block coordinate descent method. In Advances in
neural information processing systems. 3329-3337.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical
Methodology) 67, 2 (2005), 301-320.

Lei Yuan, Jun Liu, and Jieping Ye. Efficient methods
for overlapping group lasso. In Advances in Neu-
ral Information Processing Systems, pages 352—-360,
2011.

Zhouyuan Huo and Heng Huang. 2017. Asynchronous
Mini-Batch Gradient Descent with Variance Reduc-
tion for Non-Convex Optimization. In Proceedings
of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, Cal-
ifornia, USA. 2043-2049.

Bin Gu, Xin Miao, Zhouyuan Huo Heng Huang.
2018b. Asynchronous Doubly Stochastic Sparse
Kernel Learning. In Proceedings of the Thirty-First
AAAT Conference on Artificial Intelligence, February
2-7, 2018, New Orleans, Louisiana, USA.

Zhouyuan Huo, Bin Gu, Ji Liu, Heng Huang. 2018.
Accelerated Method for Stochastic Composition Op-
timization with Nonsmooth Regularization. In Pro-
ceedings of the Thirty-First AAAI Conference on

Artificial Intelligence, February 2-7, 2018, New Or-
leans, Louisiana, USA.

Bin Gu, De Wang, Zhouyuan, Huo Heng Huang. 2018a.
Inexact Proximal Gradient Methods for Non-convex
and Non-smooth Optimization. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-

gence, February 2-7, 2018, New Orleans, Louisiana,
USA.



	Introduction
	AsyDSPG+ Algorithm
	Brief Discussion on Existing Algorithms
	Our AsyDSPG+ Algorithm

	Preliminaries
	Convergence Analysis
	Difficulties for the Analysis
	First Difficulty
	Second Difficulty

	Convergence Rate Analysis
	 Convex Setting
	Non-convex Setting


	Experimental Results
	Experimental Setup
	 Experimental Results and Discussion

	Conclusion

