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A Proof of Theorem 3

Given the setup in Theorem 3, we first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill, 1991) is
twice the total variation distance):
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B Operator Norms and the Spectral Gap

We also view the transition matrix P as an operator that mapping functions to functions. More precisely, let f
be a function f:Q — R and P acting on f is defined as

Pf(x):=) P(x,9)f(y)-
yeN

This is also called the Markov operator corresponding to P. We will not distinguish the matrix P from the
operator P as it will be clear from the context. Note that Pf(x) is the expectation of f with respect to the
distribution P(z,-). We can regard a function f as a column vector in R, in which case Pf is simply matrix
multiplication. Recall (4) and P* is also called the adjoint operator of P. Indeed, P* is the (unique) operator
that satisfies (f, Pg)r = (P*f,g)x. It is easy to verify that if P satisfies the detailed balanced condition (1),
then P is self-adjoint, namely P = P*.

The Hilbert space Lo(7) is given by endowing R with the inner product

(foghe = 3 F@)g(a)n(a),

e

where f, g € R?. In particular, the norm in Lo(7) is given by
£l = (fs -

The spectral gap (2) can be rewritten in terms of the operator norm of P, which is defined by

P
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Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix P), but we are

interested in the second largest eigenvalue. Define the following operator

Sp(o,7) :=m(7).

(11)

It is easy to verify that S;f(0) = (f,1), for any o. Thus, the only eigenvalues of S, are 0 and 1, and the
eigenspace of eigenvalue 0 is {f € La(7) : (f, 1), = 0}. This is exactly the union of eigenspaces of P excluding
the eigenvalue 1. Hence, the operator norm of P — S, equals the second largest eigenvalue of P, namely,

AP) =1 —||P =Szl

(12)

The expression in (12) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular, using (12), we show

that the definition (5) coincides with (3) when P is reversible.

Proposition 7. Let P be the transition matrix of a reversible matriz with the stationary distribution w. Then
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Proof. Since P is reversible, P is self-adjoint, namely, P* = P. Hence (P — S;)" = P* — S and
(P—S:)(P—5:)"=(P—5;)(P*—5,)
= PP* - PS, — S;P*+ 5,5,
= PP* - 5,,
where we use the fact that PS, = S, P* = 5,5, = S;. It implies that
1= AR(P)) = [|R(P) = S|,
= [|[PP* = Sxl
= H(P —S2) (P —8,)"
=[P~ Sl
= (1-XP))%.

T

Rearranging the terms yields the claim.

C Proof of Theorem 1

The transition matrix of updating a particular variable z is the following

2sesm(o™®)

@) if = ¢® for some s € S;
Ty(o,7) =
0 otherwise.

Moreover, let I be the identity matrix that I(o,7) = 1(0, 7).

(by (12))

(13)

Lemma 8. Let w be a bipartite distribution, and Pry, Pas, T, be defined as above. Then we have that

ni no
2. Pag = HTJ: HTyj.
i=1 j=1

I

Proof. Note that T, is the transition matrix of resampling o(x). For Pgy, the term 5 comes from the fact that

2

the chain is “lazy”. With the other 1/2 probability, we resample o (z) for a uniformly chosen = € V. This explains

the term 5= >\ Ty

For Pag, we sequentially resample all variables in V; and then all variables in V5, which yields the expression. [J
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Lemma 9. Let w be a bipartite distribution and T, be defined as above. Then we have that

1. For any x € V, T, is a self-adjoint operator and idempotent. Namely, T, =T and T,T, =T,.
2. Foranyx €V, [|T;], = 1.

3. For any z,x' € V; wherei =1 or 2, T, and T, commute. In other words TyT, = T,Ty if x,2’ € V; for
1t =1 or 2.

Proof. For Item 1, the fact that T, is self-adjoint follows from the detailed balance condition (1). Idempotence
is because updating the same vertex twice is the same as a single update.

Item 2 follows from Item 1. This is because

* 2
||Tx||7r = HTszHﬂ = ||Ta:Tz||7r = ||T$||7r

For Ttem 3, suppose ¢« = 1. Since 7 is bipartite, resampling = or 2’ only depends on ¢3. Therefore the ordering
of updating = or ' does not matter as they are in the same partition. O

Define

ni 1 na

I 1 I
Pogii= =+ — > To., d Pogoi=~+—SN T, .
GS1 2+2n1; i an GS2 2+2n2; v

Then, since ny + no = n,

1
Pry = -~ (n1Pgs1 + naPgs2) - (14)
Similarly, define
ni n2
Pas1 = [[Te,,  and Pasz =[] T,
i=1 =1
Then
Pas = Pys1Pass. (15)

With this notation, Lemma 9 also implies the following.

Corollary 10. The following holds:
1. HPA51||7T S 1 and ||PA52||7r S 1.

2. Pas1Pgs1 = Pas1 and PgsaPasa = Pasa.

Proof. For Item 1, by the submultiplicity of operator norms:

ni ni
i=1 i=1

=1. (By Item 2 of Lemma 9)

| Pas1ll, =

™

The claim ||Pag2||, <1 follows similarly.
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Ttem 2 follows from Item 1 and 3 of Lemma 9. We verify the first case as follows.

ni I 1 ni
PASl-PGS'l:HTxi 2+TZT11
1 ni =1

1 ni 1 ni ni
—§~gTzi+%~gTzi;T%

1 ni 1 ni ny
S0 IR 3 | £
2 2m j=1  i=1
1 o
=5 HT + E : ZTMTIZ Ty, Ty T, (By Item 3 of Lemma 9)
1 ny 1 ny ni
=3 HTL + o Z HTI (By Item 1 of Lemma 9)
i=1 [A2 St
1 5 A
ZQ.HTM-Fi.HTM
i=1 i=1
= Pys1.
The other case is similar. O

Ttem 2 of Corollary 10 captures the following intuition: if we sequentially update all variables in V; for i = 1,2,
then an extra individual update either before or after does not change the distribution. Recall Eq. (5).

Lemma 11. Let w be a bipartite distribution and Pry and Pag be defined as above. Then we have that

IR(Pas) = Sall, < [|Pru — Sall>

Proof. Recall (11), the definition of S, using which it is easy to see that
PA,S'lSTr = S‘rrPASQ = Sﬂ'STr = STI" (16)
Thus,

n n
Pasi(Pru — Sx)Pas2 = Pasi (;1]3651 + fpcm - Sw) Paso (By (14))
n n
= ﬁPASIPGSHPAsz + fPAmPGszPAsz — Pas15S:Pas2
- EPAS1PA32+@PA51PA52_S7T (By Item 2 of Cor 10)
n n

= Pas1Pass — Sx
= PAS - Sﬂ'v (]‘7)

where in the last step we use (15). Moreover, we have that

ni no
folp—
Pis =117 117,
i=1 j=1
ni

_ *
- II Yno+1—j | I Tnq41—i

=1

*

= H Typyir; H Ty, 1 (By Item 1 of Lemma 9)
n ny
= H Ty, H T, (By Item 3 of Lemma 9)

= PasoPas1.
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Hence, similarly to (17), we have that

Paso(Pru — Sr)Pas1i = PasaPasi — Sx

Using (16), we further verify that

(Pas — Sy) (Pig — Sx) = PasPlhig — PasSx — SxPhg + Sx Sy
= PasPlg — Sa (19)

Combining (17), (18), and (19), we see that

[R(Pas) — Szll, = [[PasPis — Sxll,
= [[(Pas — Sx) (Pis — Sa)ll,
= ||Pas1 (Pru — Sx) PasaPas2 (Pru — Sx) Pasi||,
< | Pasill; 1Prv = Szl | Pasz2ll; | Pas2ll; |1Pro = Szl [ Pasill,
< |Pru — 812,

where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of Corollary 10 in
the last line. O

Remark. The last inequality in the proof of Lemma 11 crucially uses the fact that the distribution is bipartite.
If there are, say, k partitions, then the corresponding operators Pagi,...,Pasi do not commute and the proof
does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic. Any possible state
o of the chain must be in the state space 2. Therefore 7(c) > 0 and the probability of staying at o is strictly
positive. Moreover, any single variable update can be simulated in the scan sampler, with small but strictly
positive probability. Hence if the random-update sampler is irreducible, then so is the scan sampler.

To show that Tye;(Pas) < Trei(Pru), we have the following

TralPas) = {— s (By ()
Ti- ¢||R(PlAs) — Sell. e
S e (B emma 1)
- A(le (By (12))
= Tra(Prv). (By ()

This completes the proof. O



