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A Proof of Theorem 3

Given the setup in Theorem 3, we first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill, 1991) is
twice the total variation distance):
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and by (10), we have that
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In other words,

Tmix(P ) ≤ T = log

(
4e2

πmin

)
Trel(P ).

B Operator Norms and the Spectral Gap

We also view the transition matrix P as an operator that mapping functions to functions. More precisely, let f
be a function f : Ω→ R and P acting on f is defined as

Pf(x) :=
∑

y∈Ω

P (x, y)f(y).

This is also called the Markov operator corresponding to P . We will not distinguish the matrix P from the
operator P as it will be clear from the context. Note that Pf(x) is the expectation of f with respect to the
distribution P (x, ·). We can regard a function f as a column vector in RΩ, in which case Pf is simply matrix
multiplication. Recall (4) and P ∗ is also called the adjoint operator of P . Indeed, P ∗ is the (unique) operator
that satisfies ⟨f, Pg⟩π = ⟨P ∗f, g⟩π. It is easy to verify that if P satisfies the detailed balanced condition (1),
then P is self-adjoint, namely P = P ∗.
The Hilbert space L2(π) is given by endowing RΩ with the inner product

⟨f, g⟩π :=
∑

x∈Ω

f(x)g(x)π(x),

where f, g ∈ RΩ. In particular, the norm in L2(π) is given by

∥f∥π := ⟨f, f⟩π.

The spectral gap (2) can be rewritten in terms of the operator norm of P , which is defined by

∥P∥π := max
∥f∥π ̸=0

∥Pf∥π
∥f∥π

.
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Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix P ), but we are
interested in the second largest eigenvalue. Define the following operator

Sπ(σ, τ) := π(τ). (11)

It is easy to verify that Sπf(σ) = ⟨f,1⟩π for any σ. Thus, the only eigenvalues of Sπ are 0 and 1, and the
eigenspace of eigenvalue 0 is {f ∈ L2(π) : ⟨f,1⟩π = 0}. This is exactly the union of eigenspaces of P excluding
the eigenvalue 1. Hence, the operator norm of P − Sπ equals the second largest eigenvalue of P , namely,

λ(P ) = 1− ∥P − Sπ∥π . (12)

The expression in (12) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular, using (12), we show
that the definition (5) coincides with (3) when P is reversible.
Proposition 7. Let P be the transition matrix of a reversible matrix with the stationary distribution π. Then

1

λ(P )
=

1

1−
√
1− λ(R(P ))

.

Proof. Since P is reversible, P is self-adjoint, namely, P ∗ = P . Hence (P − Sπ)
∗ = P ∗ − Sπ and

(P − Sπ) (P − Sπ)
∗ = (P − Sπ) (P

∗ − Sπ)

= PP ∗ − PSπ − SπP
∗ + SπSπ

= PP ∗ − Sπ,

where we use the fact that PSπ = SπP ∗ = SπSπ = Sπ. It implies that

1− λ(R(P )) = ∥R(P )− Sπ∥π (by (12))
= ∥PP ∗ − Sπ∥π
=

∥∥(P − Sπ) (P − Sπ)
∗∥∥

π

= ∥P − Sπ∥2π
= (1− λ(P ))2 .

Rearranging the terms yields the claim.

C Proof of Theorem 1

The transition matrix of updating a particular variable x is the following

Tx(σ, τ) =

{
π(σx,s)∑

s∈S π(σx,s) if τ = σx,s for some s ∈ S;

0 otherwise.
(13)

Moreover, let I be the identity matrix that I(σ, τ) = (σ, τ).
Lemma 8. Let π be a bipartite distribution, and PRU , PAS, Tx be defined as above. Then we have that

1. PRU =
I

2
+

1

2n

∑

x∈V

Tx.

2. PAS =
n1∏

i=1

Txi

n2∏

j=1

Tyj .

Proof. Note that Tx is the transition matrix of resampling σ(x). For PRU , the term I
2 comes from the fact that

the chain is “lazy”. With the other 1/2 probability, we resample σ(x) for a uniformly chosen x ∈ V . This explains
the term 1

2n

∑
x∈V Tx.

For PAS , we sequentially resample all variables in V1 and then all variables in V2, which yields the expression.
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Lemma 9. Let π be a bipartite distribution and Tx be defined as above. Then we have that

1. For any x ∈ V , Tx is a self-adjoint operator and idempotent. Namely, Tx = T ∗
x and TxTx = Tx.

2. For any x ∈ V , ∥Tx∥π = 1.

3. For any x, x′ ∈ Vi where i = 1 or 2, Tx and Tx′ commute. In other words Tx′Tx = TxTx′ if x, x′ ∈ Vi for
i = 1 or 2.

Proof. For Item 1, the fact that Tx is self-adjoint follows from the detailed balance condition (1). Idempotence
is because updating the same vertex twice is the same as a single update.
Item 2 follows from Item 1. This is because

∥Tx∥π = ∥TxTx∥π = ∥TxT
∗
x∥π = ∥Tx∥2π .

For Item 3, suppose i = 1. Since π is bipartite, resampling x or x′ only depends on σ2. Therefore the ordering
of updating x or x′ does not matter as they are in the same partition.

Define

PGS1 :=
I

2
+

1

2n1

n1∑

i=1

Txi , and PGS2 :=
I

2
+

1

2n2

n2∑

j=1

Tyj .

Then, since n1 + n2 = n,

PRU =
1

n
(n1PGS1 + n2PGS2) . (14)

Similarly, define

PAS1 :=
n1∏

i=1

Txi , and PAS2 :=
n2∏

j=1

Tyj .

Then

PAS = PAS1PAS2. (15)

With this notation, Lemma 9 also implies the following.
Corollary 10. The following holds:

1. ∥PAS1∥π ≤ 1 and ∥PAS2∥π ≤ 1.

2. PAS1PGS1 = PAS1 and PGS2PAS2 = PAS2.

Proof. For Item 1, by the submultiplicity of operator norms:

∥PAS1∥π =

∥∥∥∥∥

n1∏

i=1

Txi

∥∥∥∥∥
π

≤
n1∏

i=1

∥Txi∥π

= 1. (By Item 2 of Lemma 9)

The claim ∥PAS2∥π ≤ 1 follows similarly.
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Item 2 follows from Item 1 and 3 of Lemma 9. We verify the first case as follows.

PAS1PGS1 =
n1∏

i=1

Txi

⎛

⎝I

2
+

1

2n1

n1∑

j=1

Txj

⎞

⎠

=
1

2
·

n1∏

i=1

Txi +
1

2n1
·

n1∏

i=1

Txi

n1∑

j=1

Txj

=
1

2
·

n1∏

i=1

Txi +
1

2n1
·

n1∑

j=1

Txj

n1∏

i=1

Txi

=
1

2
·

n1∏

i=1

Txi +
1

2n1
·

n1∑

j=1

Tx1Tx2 · · ·TxjTxj · · ·Txn1
(By Item 3 of Lemma 9)

=
1

2
·

n1∏

i=1

Txi +
1

2n1
·

n1∑

j=1

n1∏

i=1

Txi (By Item 1 of Lemma 9)

=
1

2
·

n1∏

i=1

Txi +
1

2
·

n1∏

i=1

Txi

= PAS1.

The other case is similar.

Item 2 of Corollary 10 captures the following intuition: if we sequentially update all variables in Vi for i = 1, 2,
then an extra individual update either before or after does not change the distribution. Recall Eq. (5).
Lemma 11. Let π be a bipartite distribution and PRU and PAS be defined as above. Then we have that

∥R(PAS)− Sπ∥π ≤ ∥PRU − Sπ∥2π .

Proof. Recall (11), the definition of Sπ, using which it is easy to see that
PAS1Sπ = SπPAS2 = SπSπ = Sπ. (16)

Thus,

PAS1(PRU − Sπ)PAS2 = PAS1

(n1

n
PGS1 +

n2

n
PGS2 − Sπ

)
PAS2 (By (14))

=
n1

n
PAS1PGS1PAS2 +

n2

n
PAS1PGS2PAS2 − PAS1SπPAS2

=
n1

n
PAS1PAS2 +

n2

n
PAS1PAS2 − Sπ (By Item 2 of Cor 10)

= PAS1PAS2 − Sπ

= PAS − Sπ, (17)
where in the last step we use (15). Moreover, we have that

P ∗
AS =

⎛

⎝
n1∏

i=1

Txi

n2∏

j=1

Tyj

⎞

⎠
∗

=
n2∏

j=1

T ∗
yn2+1−j

n1∏

i=1

T ∗
xn1+1−i

=
n2∏

j=1

Tyn2+1−j

n1∏

i=1

Txn1+1−i (By Item 1 of Lemma 9)

=
n2∏

j=1

Tyj

n1∏

i=1

Txi (By Item 3 of Lemma 9)

= PAS2PAS1.
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Hence, similarly to (17), we have that

PAS2(PRU − Sπ)PAS1 = PAS2PAS1 − Sπ

= P ∗
AS − Sπ. (18)

Using (16), we further verify that

(PAS − Sπ) (P
∗
AS − Sπ) = PASP

∗
AS − PASSπ − SπP

∗
AS + SπSπ

= PASP
∗
AS − Sπ (19)

Combining (17), (18), and (19), we see that

∥R(PAS)− Sπ∥π = ∥PASP
∗
AS − Sπ∥π

= ∥(PAS − Sπ) (P
∗
AS − Sπ)∥π

= ∥PAS1 (PRU − Sπ)PAS2PAS2 (PRU − Sπ)PAS1∥π
≤ ∥PAS1∥π ∥PRU − Sπ∥π ∥PAS2∥π ∥PAS2∥π ∥PRU − Sπ∥π ∥PAS1∥π
≤ ∥PRU − Sπ∥2π ,

where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of Corollary 10 in
the last line.

Remark. The last inequality in the proof of Lemma 11 crucially uses the fact that the distribution is bipartite.
If there are, say, k partitions, then the corresponding operators PAS1, . . . , PASk do not commute and the proof
does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic. Any possible state
σ of the chain must be in the state space Ω. Therefore π(σ) > 0 and the probability of staying at σ is strictly
positive. Moreover, any single variable update can be simulated in the scan sampler, with small but strictly
positive probability. Hence if the random-update sampler is irreducible, then so is the scan sampler.
To show that Trel(PAS) ≤ Trel(PRU ), we have the following

Trel(PAS) =
1

1−
√

1− λ(R(PAS))
(By (5))

=
1

1−
√
∥R(PAS)− Sπ∥π

(By (12))

≤ 1

1− ∥PRU − Sπ∥π
(By Lemma 11)

=
1

λ(PRU )
(By (12))

= Trel(PRU ). (By (3))

This completes the proof.


