A Proof of Theorem 3

Given the setup in Theorem 3, we first restate (Fill, 1991, Theorem 2.1) (note that the norm in (Fill, 1991) is twice the total variation distance):

$$\left\| P^t(\sigma, \cdot) - \pi \right\|_{TV}^2 \le \frac{\left(1 - \lambda(R(P))\right)^t}{\pi(\sigma)}.\tag{10}$$

Let $\lambda := \lambda(R(P))$ and $T := \log\left(\frac{4e^2}{\pi_{\min}}\right) T_{rel}(P) = \frac{1}{1-\sqrt{1-\lambda}} \log\left(\frac{4e^2}{\pi_{\min}}\right)$. Then it is easy to verify that

$$T \ge \frac{2}{\lambda} \log \left(\frac{2e}{\sqrt{\pi_{\min}}} \right)$$

and by (10), we have that

$$\max_{\sigma \in \Omega} \|P^{T}(\sigma, \cdot) - \pi\|_{TV} \leq \frac{(1 - \lambda)^{T/2}}{\sqrt{\pi_{\min}}} \\
\leq \frac{(1 - \lambda)^{\lambda^{-1} \log\left(\frac{2e}{\sqrt{\pi_{\min}}}\right)}}{\sqrt{\pi_{\min}}} \\
\leq \frac{e^{-\log\left(\frac{2e}{\sqrt{\pi_{\min}}}\right)}}{\sqrt{\pi_{\min}}} \\
= \frac{1}{2e}.$$

In other words,

$$T_{mix}(P) \le T = \log\left(\frac{4e^2}{\pi_{\min}}\right) T_{rel}(P).$$

B Operator Norms and the Spectral Gap

We also view the transition matrix P as an operator that mapping functions to functions. More precisely, let f be a function $f: \Omega \to \mathbb{R}$ and P acting on f is defined as

$$Pf(x) := \sum_{y \in \Omega} P(x, y) f(y).$$

This is also called the *Markov operator* corresponding to P. We will not distinguish the matrix P from the operator P as it will be clear from the context. Note that Pf(x) is the expectation of f with respect to the distribution $P(x,\cdot)$. We can regard a function f as a column vector in \mathbb{R}^{Ω} , in which case Pf is simply matrix multiplication. Recall (4) and P^* is also called the *adjoint operator* of P. Indeed, P^* is the (unique) operator that satisfies $\langle f, Pg \rangle_{\pi} = \langle P^*f, g \rangle_{\pi}$. It is easy to verify that if P satisfies the detailed balanced condition (1), then P is self-adjoint, namely $P = P^*$.

The Hilbert space $L_2(\pi)$ is given by endowing \mathbb{R}^{Ω} with the inner product

$$\langle f, g \rangle_{\pi} := \sum_{x \in \Omega} f(x)g(x)\pi(x),$$

where $f, g \in \mathbb{R}^{\Omega}$. In particular, the norm in $L_2(\pi)$ is given by

$$||f||_{\pi} := \langle f, f \rangle_{\pi}.$$

The spectral gap (2) can be rewritten in terms of the operator norm of P, which is defined by

$$||P||_{\pi} := \max_{||f||_{\pi} \neq 0} \frac{||Pf||_{\pi}}{||f||_{\pi}}.$$

Indeed, the operator norm equals the largest eigenvalue (which is just 1 for a transition matrix P), but we are interested in the second largest eigenvalue. Define the following operator

$$S_{\pi}(\sigma,\tau) := \pi(\tau). \tag{11}$$

It is easy to verify that $S_{\pi}f(\sigma) = \langle f, \mathbf{1} \rangle_{\pi}$ for any σ . Thus, the only eigenvalues of S_{π} are 0 and 1, and the eigenspace of eigenvalue 0 is $\{f \in L_2(\pi) : \langle f, \mathbf{1} \rangle_{\pi} = 0\}$. This is exactly the union of eigenspaces of P excluding the eigenvalue 1. Hence, the operator norm of $P - S_{\pi}$ equals the second largest eigenvalue of P, namely,

$$\lambda(P) = 1 - \|P - S_{\pi}\|_{\pi}. \tag{12}$$

The expression in (12) can be found in, for example, (Ullrich, 2014, Eq. (2.8)). In particular, using (12), we show that the definition (5) coincides with (3) when P is reversible.

Proposition 7. Let P be the transition matrix of a reversible matrix with the stationary distribution π . Then

$$\frac{1}{\lambda(P)} = \frac{1}{1 - \sqrt{1 - \lambda(R(P))}}.$$

Proof. Since P is reversible, P is self-adjoint, namely, $P^* = P$. Hence $(P - S_\pi)^* = P^* - S_\pi$ and

$$(P - S_{\pi}) (P - S_{\pi})^* = (P - S_{\pi}) (P^* - S_{\pi})$$

= $PP^* - PS_{\pi} - S_{\pi}P^* + S_{\pi}S_{\pi}$
= $PP^* - S_{\pi}$,

where we use the fact that $PS_{\pi} = S_{\pi}P^* = S_{\pi}S_{\pi} = S_{\pi}$. It implies that

$$1 - \lambda(R(P)) = \|R(P) - S_{\pi}\|_{\pi}$$

$$= \|PP^* - S_{\pi}\|_{\pi}$$

$$= \|(P - S_{\pi}) (P - S_{\pi})^*\|_{\pi}$$

$$= \|P - S_{\pi}\|_{\pi}^2$$

$$= (1 - \lambda(P))^2.$$
 (by (12))

Rearranging the terms yields the claim.

C Proof of Theorem 1

The transition matrix of updating a particular variable x is the following

$$T_x(\sigma, \tau) = \begin{cases} \frac{\pi(\sigma^{x,s})}{\sum_{s \in S} \pi(\sigma^{x,s})} & \text{if } \tau = \sigma^{x,s} \text{ for some } s \in S; \\ 0 & \text{otherwise.} \end{cases}$$
 (13)

Moreover, let I be the identity matrix that $I(\sigma, \tau) = \mathbb{1}(\sigma, \tau)$.

Lemma 8. Let π be a bipartite distribution, and P_{RU} , P_{AS} , T_x be defined as above. Then we have that

1.
$$P_{RU} = \frac{I}{2} + \frac{1}{2n} \sum_{x \in V} T_x$$
.

2.
$$P_{AS} = \prod_{i=1}^{n_1} T_{x_i} \prod_{j=1}^{n_2} T_{y_j}$$
.

Proof. Note that T_x is the transition matrix of resampling $\sigma(x)$. For P_{RU} , the term $\frac{I}{2}$ comes from the fact that the chain is "lazy". With the other 1/2 probability, we resample $\sigma(x)$ for a uniformly chosen $x \in V$. This explains the term $\frac{1}{2n} \sum_{x \in V} T_x$.

For P_{AS} , we sequentially resample all variables in V_1 and then all variables in V_2 , which yields the expression. \square

Lemma 9. Let π be a bipartite distribution and T_x be defined as above. Then we have that

- 1. For any $x \in V$, T_x is a self-adjoint operator and idempotent. Namely, $T_x = T_x^*$ and $T_x T_x = T_x$.
- 2. For any $x \in V$, $||T_x||_{\pi} = 1$.
- 3. For any $x, x' \in V_i$ where i = 1 or 2, T_x and $T_{x'}$ commute. In other words $T_{x'}T_x = T_xT_{x'}$ if $x, x' \in V_i$ for i = 1 or 2.

Proof. For Item 1, the fact that T_x is self-adjoint follows from the detailed balance condition (1). Idempotence is because updating the same vertex twice is the same as a single update.

Item 2 follows from Item 1. This is because

$$||T_x||_{\pi} = ||T_x T_x||_{\pi} = ||T_x T_x^*||_{\pi} = ||T_x||_{\pi}^2.$$

For Item 3, suppose i = 1. Since π is bipartite, resampling x or x' only depends on σ_2 . Therefore the ordering of updating x or x' does not matter as they are in the same partition.

Define

$$P_{GS1} := \frac{I}{2} + \frac{1}{2n_1} \sum_{i=1}^{n_1} T_{x_i}, \quad \text{and} \quad P_{GS2} := \frac{I}{2} + \frac{1}{2n_2} \sum_{j=1}^{n_2} T_{y_j}.$$

Then, since $n_1 + n_2 = n$,

$$P_{RU} = \frac{1}{n} \left(n_1 P_{GS1} + n_2 P_{GS2} \right). \tag{14}$$

Similarly, define

$$P_{AS1} := \prod_{i=1}^{n_1} T_{x_i}, \quad \text{and} \quad P_{AS2} := \prod_{j=1}^{n_2} T_{y_j}.$$

Then

$$P_{AS} = P_{AS1} P_{AS2}. (15)$$

With this notation, Lemma 9 also implies the following.

Corollary 10. The following holds:

- 1. $||P_{AS1}||_{\pi} \leq 1$ and $||P_{AS2}||_{\pi} \leq 1$.
- 2. $P_{AS1}P_{GS1} = P_{AS1}$ and $P_{GS2}P_{AS2} = P_{AS2}$.

Proof. For Item 1, by the submultiplicity of operator norms:

$$||P_{AS1}||_{\pi} = \left\| \prod_{i=1}^{n_1} T_{x_i} \right\|_{\pi} \le \prod_{i=1}^{n_1} ||T_{x_i}||_{\pi}$$

$$= 1.$$
 (By Item 2 of Lemma 9)

The claim $||P_{AS2}||_{\pi} \leq 1$ follows similarly.

Item 2 follows from Item 1 and 3 of Lemma 9. We verify the first case as follows.

$$P_{AS1}P_{GS1} = \prod_{i=1}^{n_1} T_{x_i} \left(\frac{I}{2} + \frac{1}{2n_1} \sum_{j=1}^{n_1} T_{x_j} \right)$$

$$= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i} + \frac{1}{2n_1} \cdot \prod_{i=1}^{n_1} T_{x_i} \sum_{j=1}^{n_1} T_{x_j}$$

$$= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i} + \frac{1}{2n_1} \cdot \sum_{j=1}^{n_1} T_{x_j} \prod_{i=1}^{n_1} T_{x_i}$$

$$= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i} + \frac{1}{2n_1} \cdot \sum_{j=1}^{n_1} T_{x_1} T_{x_2} \cdots T_{x_j} T_{x_j} \cdots T_{x_{n_1}}$$

$$= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i} + \frac{1}{2n_1} \cdot \sum_{j=1}^{n_1} \prod_{i=1}^{n_1} T_{x_i}$$

$$= \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i} + \frac{1}{2} \cdot \prod_{i=1}^{n_1} T_{x_i}$$

$$= P_{AS1}.$$
(By Item 1 of Lemma 9)

The other case is similar.

Item 2 of Corollary 10 captures the following intuition: if we sequentially update all variables in V_i for i = 1, 2, then an extra individual update either before or after does not change the distribution. Recall Eq. (5).

Lemma 11. Let π be a bipartite distribution and P_{RU} and P_{AS} be defined as above. Then we have that

$$||R(P_{AS}) - S_{\pi}||_{\pi} \le ||P_{RU} - S_{\pi}||_{\pi}^{2}$$

Proof. Recall (11), the definition of S_{π} , using which it is easy to see that

$$P_{AS1}S_{\pi} = S_{\pi}P_{AS2} = S_{\pi}S_{\pi} = S_{\pi}. \tag{16}$$

Thus,

$$P_{AS1}(P_{RU} - S_{\pi})P_{AS2} = P_{AS1}\left(\frac{n_1}{n}P_{GS1} + \frac{n_2}{n}P_{GS2} - S_{\pi}\right)P_{AS2}$$

$$= \frac{n_1}{n}P_{AS1}P_{GS1}P_{AS2} + \frac{n_2}{n}P_{AS1}P_{GS2}P_{AS2} - P_{AS1}S_{\pi}P_{AS2}$$

$$= \frac{n_1}{n}P_{AS1}P_{AS2} + \frac{n_2}{n}P_{AS1}P_{AS2} - S_{\pi}$$
(By Item 2 of Cor 10)
$$= P_{AS1}P_{AS2} - S_{\pi}$$

$$= P_{AS} - S_{\pi},$$
(17)

where in the last step we use (15). Moreover, we have that

$$\begin{split} P_{AS}^* &= \left(\prod_{i=1}^{n_1} T_{x_i} \prod_{j=1}^{n_2} T_{y_j}\right)^* \\ &= \prod_{j=1}^{n_2} T_{y_{n_2+1-j}}^* \prod_{i=1}^{n_1} T_{x_{n_1+1-i}}^* \\ &= \prod_{j=1}^{n_2} T_{y_{n_2+1-j}} \prod_{i=1}^{n_1} T_{x_{n_1+1-i}} \\ &= \prod_{j=1}^{n_2} T_{y_j} \prod_{i=1}^{n_1} T_{x_i} \end{aligned} \tag{By Item 1 of Lemma 9)} \\ &= \prod_{j=1}^{n_2} T_{y_j} \prod_{i=1}^{n_1} T_{x_i} \end{aligned} \tag{By Item 3 of Lemma 9)} \\ &= P_{AS2} P_{AS1}. \end{split}$$

Hence, similarly to (17), we have that

$$P_{AS2}(P_{RU} - S_{\pi})P_{AS1} = P_{AS2}P_{AS1} - S_{\pi}$$

$$= P_{AS}^* - S_{\pi}. \tag{18}$$

Using (16), we further verify that

$$(P_{AS} - S_{\pi}) (P_{AS}^* - S_{\pi}) = P_{AS} P_{AS}^* - P_{AS} S_{\pi} - S_{\pi} P_{AS}^* + S_{\pi} S_{\pi}$$
$$= P_{AS} P_{AS}^* - S_{\pi}$$
(19)

Combining (17), (18), and (19), we see that

$$||R(P_{AS}) - S_{\pi}||_{\pi} = ||P_{AS}P_{AS}^{*} - S_{\pi}||_{\pi}$$

$$= ||(P_{AS} - S_{\pi})(P_{AS}^{*} - S_{\pi})||_{\pi}$$

$$= ||P_{AS1}(P_{RU} - S_{\pi})P_{AS2}P_{AS2}(P_{RU} - S_{\pi})P_{AS1}||_{\pi}$$

$$\leq ||P_{AS1}||_{\pi} ||P_{RU} - S_{\pi}||_{\pi} ||P_{AS2}||_{\pi} ||P_{AS2}||_{\pi} ||P_{RU} - S_{\pi}||_{\pi} ||P_{AS1}||_{\pi}$$

$$\leq ||P_{RU} - S_{\pi}||_{\pi}^{2},$$

where the first inequality is due to the submultiplicity of operator norms, and we use Item 1 of Corollary 10 in the last line.

Remark. The last inequality in the proof of Lemma 11 crucially uses the fact that the distribution is bipartite. If there are, say, k partitions, then the corresponding operators P_{AS1}, \ldots, P_{ASk} do not commute and the proof does not generalize.

Proof of Theorem 1. For the first part, notice that the alternating-scan sampler is aperiodic. Any possible state σ of the chain must be in the state space Ω . Therefore $\pi(\sigma) > 0$ and the probability of staying at σ is strictly positive. Moreover, any single variable update can be simulated in the scan sampler, with small but strictly positive probability. Hence if the random-update sampler is irreducible, then so is the scan sampler.

To show that $T_{rel}(P_{AS}) \leq T_{rel}(P_{RU})$, we have the following

$$T_{rel}(P_{AS}) = \frac{1}{1 - \sqrt{1 - \lambda(R(P_{AS}))}}$$

$$= \frac{1}{1 - \sqrt{\|R(P_{AS}) - S_{\pi}\|_{\pi}}}$$

$$\leq \frac{1}{1 - \|P_{RU} - S_{\pi}\|_{\pi}}$$
(By (12))
$$= \frac{1}{\lambda(P_{RU})}$$
(By Lemma 11)
$$= \frac{1}{\lambda(P_{RU})}$$
(By (12))
$$= T_{rel}(P_{RU}).$$
(By (3))

This completes the proof.